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This lecture refers to Chapter 17 in [1]. All the equation numbers without reference labels are
from this book.

1 Cohomology and homology groups
Cohomology and homology groups occur in many areas of mathematics. The formal notions
of homology and cohomology groups and the general area of homological algebra arose from
algebraic topology around the middle of the 20th century in the study of the relation between the
higher homotopy groups and the fundamental group of a topological space. Much of the language
of homology and cohomology reflects its topological origins: homology groups, chains, cycles,
boundaries, etc.

1.1 Definitions
We begin with a generalization of the notion of an exact sequence, namely a sequence of abelian
group homomorphisms where successive maps compose to zero (i.e., the image of one map is
contained in the kernel of the next):

Definition. Let C be a sequence of abelian group homomorphisms:

0 −→ C0 d1−→ C1 −→ · · · −→ Cn−1 dn−→ Cn dn+1−→ · · · .

The sequence C is called a cochain complex if the composition of any two successive maps is zero:
dn+1 ◦ dn = 0 for all n. The nth cohomology group of a cochain complex C is the quotient group
ker dn+1/ image dn, and is denoted by Hn(C).

There is a completely analogous “dual” version in which the homomorphisms are between
groups in decreasing order: if a sequence C of abelian group homomorphisms

· · · ∂n+1−→ Cn
∂n−→ · · · ∂1−→ C0 −→ 0

satisfies that the composition of any two successive homomorphisms is zero, then the complex C is
called a chain complex, and its homology groups are defined as Hn(C) := ker ∂n/ image ∂n+1.
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For chain complexes the notation is often chosen so that the indices appear as subscripts and
are decreasing, whereas for cochain complexes the indices are superscripts and are increasing.
Let R be a commutative ring with 1. We shall also be interested in the situation where each
Cn (respectively Cn) is an R-module and the homomorphisms dn (respectively ∂n) are R-module
homomorphisms (referred to simply as a complex ofR-modules), in which case the groupsHn(C)
(respectively Hn(C)) are also R-modules.

Note that if C is a cochain (respectively, chain) complex, then C is an exact sequence if and
only if all its cohomology (respectively, homology) groups are zero. Thus the nth cohomology
(respectively, homology) group measures the failure of exactness of a complex at the nth stage.

In this section we shall concentrate on cochains and cohomology, although all of the general
results in this section have similar statements for chains and homology.

Let A = {An}, B = {Bn} and C = {Cn} be cochain complexes. A homomorphism of
complexes α : A → B is a set of homomorphisms αn : An → Bn such that for every n the
following diagram commutes:

· · · // An

αn

��

// An+1

αn+1

��

// · · ·

· · · // Bn // Bn+1 // · · ·

(17.4)

A short exact sequence of complexes 0 → A α→ B β→ C → 0 is a sequence of homomorphisms
of complexes such that 0 → An

αn→ Bn βn→ Cn → 0 is short exact for every n.

Proposition ([1] §17.1 Proposition 1). A homomorphism α : A → B of cochain complexes induces
group homomorphisms from Hn(A) to Hn(B) for n ≥ 0 on their respective cohomology groups.

Theorem ([1] §17.1 Theorem 2, the Long Exact Sequence in Cohomology). Let 0 → A α→ B β→
C → 0 be a short exact sequence of cochain complexes. Then there is a long exact sequence of
cohomology groups:

0 // H0(A) // H0(B) // H0(C) =<JKN δ0______________________________8?9��
// H1(A) // H1(B) // H1(C) =<JKN δ1______________________________8?9��
// H2(A) // H2(B) // H2(C) =<BCF_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

G� �
�
�

89
//___ Hn(A) // Hn(B) // Hn(C)

(17.5)

where the maps between cohomology groups at each level are those in the above proposition. The
maps δn are called connecting homomorphisms.

One immediate consequence of the existence of the long exact sequence in the above theorem
is the fact that, if any two of the cochain complexes A, B, C are exact, then so is the third (cf. [1]
§17.1 Exercise 6).
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1.2 The idea of homology
Homology groups, by contrast, are quite directly related to cell structures, and may indeed be
regarded as simply an algebraization of the first layer of geometry in cell structures: how cells of
dimension n attach to cells of dimension n − 1. Let us look at some examples (cf. [2] Chapter 2)
to see what the idea is.

..

x

.

y

.a .b . c. d

Consider the graph X1 shown in the above figure, consisting of two vertices joined by four
edges. When studying the fundamental group of X1 we consider loops formed by sequences of
edges, starting and ending at a fixed basepoint. For example, at the basepoint x, the loop ab−1

travels forward along the edge a, then backward along b, as indicated by the exponent −1. A
salient feature of the fundamental group is that it is generally nonabelian, which both enriches and
complicates the theory.

Suppose we simplify matters by abelianizing. Thus for example the two loops ab−1 and b−1a
are to be regarded as equal. These two loops ab−1 and b−1a are really the same circle, just with a
different choice of starting and ending point: x for ab−1 and y for b−1a. The same thing happens
for all loops: Rechoosing the basepoint in a loop just permutes its letters cyclically, so a byproduct
of abelianizing is that we no longer have to pin all our loops down to a fixed basepoint. Thus loops
become cycles, without a chosen basepoint.

Having abelianized, let us switch to additive notation, so cycles become linear combinations of
edges with integer coefficients, such as a− b+ c− d. Let us call these linear combinations chains
of edges. Some chains can be decomposed into cycles in several different ways, for example
(a − c) + (b − d) = (a − d) + (b − c), and if we adopt an algebraic viewpoint then we do not
want to distinguish between these different decompositions. Thus we broaden the meaning of the
term “cycle” to be simply any linear combination of edges for which at least one decomposition
into cycles in the previous more geometric sense exists.

What is the condition for a chain to be a cycle in this more algebraic sense? A geometric cycle,
thought of as a path traversed in time, is distinguished by the property that it enters each vertex
the same number of times that it leaves the vertex. For an arbitrary chain ka + lb + mc + nd,
the net number of times this chain enters y is k + l + m + n since each of a, b, c, and d enters
y once. Similarly, each of the four edges leaves x once, so the net number of times the chain
ka+ lb+mc+ nd enters x is −k − l−m− n. Thus the condition for ka+ lb+mc+ nd to be a
cycle is simply k + l +m+ n = 0.

To describe this result in a way that would generalize to all graphs, let C1 be the free abelian
group with basis the edges a, b, c, d and let C0 be the free abelian group with basis the vertices x, y.
Elements of C1 are linear combinations of edges, or 1-dimensional chains, and elements of C0 are
linear combinations of vertices, or 0-dimensional chains. Define a homomorphism ∂ : C1 → C0

by sending each basis element a, b, c, d to y−x, the vertex at the head of the edge minus the vertex
at the tail. Thus we have

∂(ka+ lb+mc+ nd) = (k + l +m+ n)y − (k + l +m+ n)x,

and the cycles are precisely the kernel of ∂. It is a simple calculation to verify that every cycle in
X1 is a unique linear combination of three most obvious cycles a− b, b− c, and c− d. By means
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of these three basic cycles we convey the geometric information that the graph X1 has three visible
“holes”, the empty spaces between the four edges.

..

x

.

y

.a .b . c. d.

A

.

B

Let us now enlarge the preceding graph X1 by attaching two 2-cells A and B along the cycle
a − b, producing a 2-dimensional cell complex X2. If we think of the 2-cells as being oriented
clockwise, then we can regard their boundaries as the cycle a−b. This cycle is now homotopically
trivial since we can contract it to a point by sliding over A. In other words, it no longer encloses a
hole in X2. This suggests that we form a quotient of the group of cycles in the preceding example
by factoring out the subgroup generated by a − b. In this quotient the cycles a − c and b − c, for
example, become equivalent, consistent with the fact that they are homotopic in X2.

Algebraically, we can define now a pair of homomorphisms C2
∂2→ C1

∂1→ C0, where C2 is
the free abelian group generated by A and B, and ∂2(A) = ∂2(B) := a − b. The map ∂1 is
the boundary homomorphism in the previous example. The quotient group we are interested in
is ker ∂1/ image ∂2, the 1-dimensional cycles modulo those that are boundaries, the multiples of
a − b. This quotient group is the homology group H1(X2). The previous example can be fit
into this scheme too by taking C2 to be zero since there are no 2 cells in X1, so in this case
H1(X1) = ker ∂1/ image ∂2 = ker ∂1, which as we saw was free abelian on three generators. In
the present example, H1(X2) is free abelian on two generators, b − c and c − d, expressing the
geometric fact that by filling in a 2-cell we have reduced the number of “holes” in our space from
three to two.

Again by taking C3 to be zero, we have H2(X2) = ker ∂2/ image ∂3 = ker ∂2 which is the
cyclic group generated by A−B. Topologically, the cycle A−B is the sphere formed by the cells
A and B together with their common boundary circle. This spherical cycle detects the presence of
a “3-dimensional hole” in X2, the missing interior of the sphere.

It is clear what the general pattern of the examples is. For a cell complex X one has chain
groups Cn(X) which are free abelian groups with basis the n-cells of X , and there are boundary
homomorphisms ∂n : Cn → Cn−1, in terms of which one defines the homology group Hn(X) :=
ker ∂n/ image ∂n+1. The major difficulty is how to define ∂n in general. For larger n, even if one
restricts attention to cell complexes formed from polyhedral cells with nice attaching maps, there
is still the matter of orientations to sort out.

The best solution to this problem seems to be to adopt an indirect approach. Arbitrary polyhe-
dra can always be subdivided into special polyhedra called simplices (the triangle and the tetrahe-
dron are the 2-dimensional and 3-dimensional instances) so there is no loss of generality, though
initially there is some loss of efficiency, in restricting attention entirely to simplices. For simplices
there is no difficulty in defining boundary maps or in handling orientations. So one obtains a ho-
mology theory, called simplicial homology, for cell complexes built from simplices. Still, this is
a rather restricted class of spaces, and the theory itself has a certain rigidity that makes it awkward
to work with.

The way around these obstacles is to step back from the geometry of spaces decomposed into
simplices and to consider instead something which at first glance seems wildly more complicated,
the collection of all possible continuous maps of simplices into a given space X . These maps
generate tremendously large chain groupsCn(X), but the quotientsHn(X) := ker ∂n/ image ∂n+1,
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called singular homology groups, turn out to be much smaller, at least for reasonably nice spaces
X . In fact the singular homology groups coincide with the homology groups from the cellular
chains. Moreover, singular homology allows one to define these nice cellular homology groups
for all cell complexes, and in particular to solve the problem of defining the boundary maps for
cellular chains.

1.3 The de Rham cohomology
In this section we define the de Rham cohomology (cf. [3] §1.1), which is the most important
diffeomorphism invariant of a manifold.

Let x1, . . . , xn be the linear coordinates on Rn. We define Ω∗ to be the (exterior) algebra over
R generated by dx1, . . . , dxn with the relations

(dxi)
2 = 0; dxidxj = −dxjdxi, i ̸= j.

As a vector space over R, Ω∗ ∼= Λ(Rn) has basis

1, dxi, dxidxj (i < j), dxidxjdxk (i < j < k), . . . , dx1 · · · dxn.

The C∞ differential forms on Rn are elements of

Ω∗ (Rn) := {C∞ functions on Rn} ⊗R Ω∗.

Thus, if ω is such a form, then ω can be uniquely written as
∑
fi1···ikdxi1 · · · dxik where the coef-

ficients fi1···ik are C∞ functions (we also write ω =
∑
fIdxI). The algebra Ω∗ (Rn) is naturally

graded: Ω∗ (Rn) =
⊕n

q=0Ω
q (Rn), where Ωq (Rn) consists of the C∞ q-forms on Rn.

There is a differential operator d : Ωq(Rn) → Ωq+1(Rn) defined as follows:

• if f ∈ Ω0(Rn), then df :=
∑ ∂f

∂xi
dxi; • if ω =

∑
fIdxI , then dω :=

∑
dfIdxI .

This d, called the exterior differentiation, is the ultimate abstract extension of the usual gradient,
curl, and divergence of vector calculus on R3, as the example below partially illustrates.

Example ([3] §1.1 Example 1.2). On R3, Ω0 (R3) and Ω3 (R3) are each 1-dimensional, and
Ω1 (R3) and Ω2 (R3) are each 3-dimensional over the C∞ functions. On functions,

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

On 1-forms,

d (f1dx+ f2dy + f3dz) =

(
∂f3
∂y

− ∂f2
∂z

)
dydz −

(
∂f1
∂z

− ∂f3
∂x

)
dxdz +

(
∂f2
∂x

− ∂f1
∂y

)
dxdy.

On 2-forms,

d (f1dydz + f2dxdz + f3dxdy) =

(
∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

)
dxdydz.

In summary,
d (0-forms) = gradient,
d (1-forms) = curl,
d (2-forms) = divergence.
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Exercise ([3] §1.1 Proposition 1.4). Show that d2 = 0. [Remark: This is basically a consequence
of the fact that the mixed partials are equal.]

The complex Ω∗(Rn) together with the differential operator d is called the de Rham complex
on Rn. The kernel of d are the closed forms and the image of d, the exact forms. The qth de Rham
cohomology of Rn is the vector space

Hq
dR(R

n) :=
(
Ωq(Rn) ∩ ker d

)
/
(
Ωq(Rn) ∩ image d

)
= {closed q-forms}/{exact q-forms}.

Note that all the definitions so far work equally well for any open subset U of Rn; for instance,

Ω∗(U) := {C∞ functions on U} ⊗R Ω∗

So we may also speak of the de Rham cohomology Hq
dR(U) of U .

Example ([3] §1.1 Example 1.5). In general

Hq
dR(R

n) =

{
R if q = 0,

0 if q ≥ 1.

This result is called the Poincaré Lemma. We will show in particular that H1
dR(R1) = 0: if

ω = g(x)dx is a 1-form, then by taking f(x) :=
∫ x
0
g(u)du we find that df = g(x)dx. Therefore

every 1-form on R1 is exact.

Exercise. Show that H1
dR(R2) = H1

dR(R3) = H2
dR(R3) = 0.

Theorem (The de Rham Theorem). The de Rham cohomology Hn
dR(X) of a smooth manifold X

(without boundary) is isomorphic to its singular cohomology Hn(X,R).

2 Derived functors

2.1 The Ext cohomology groups

Let R be a commutative ring with 1. Recall that a short exact sequence 0 → L
ψ→ M

φ→ N → 0
of R-modules gives rise to an exact sequence of abelian groups

0 −→ HomR(N,D)
φ∗
−→ HomR(M,D)

ψ∗
−→ HomR(L,D) (17.2)

for any R-module D, and that the homomorphism ψ∗ is in general not surjective so this sequence
cannot always be extended to a short exact sequence. Equivalently, homomorphisms from L to
D cannot in general be lifted to homomorphisms from M into D. The Long Exact Sequence in
Cohomology provides a method of extending some exact sequences in a natural way.

We try to produce a cochain complex whose first few cohomology groups in the long exact
sequence (17.5) agree with the terms in (17.2). To do this we introduce the notion of a “resolution”
of an R-module:

Definition. Let A be any R-module. A projective resolution of A is an exact sequence

· · · −→ Pn
dn−→ Pn−1 −→ · · · d1−→ P0

ϵ−→ A −→ 0

such that each Pi is a projective R-module (recall that P is projective if and only if the functor
HomR(P, _) is exact, if and only if P is a direct summand of a free R-module).
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Example. Every R-module has a projective resolution: Let P0 be any free (hence projective) R-
module on a set of generators of A and define an R-module homomorphism ϵ from P0 onto A by
[1] §10.3 Theorem 6. This begins the resolution ϵ : P0 → A→ 0. The surjectivity of ϵ ensures that
this sequence is exact. Next let P1 be any free module mapping onto the submodule ker ϵ of P0;
this gives the second stage P1 → P0 → A which, by construction, is also exact. We can continue
this way, taking at the nth stage a free R-module Pn+1 that maps surjectively onto the submodule
ker dn of Pn, obtaining in fact a free resolution of A.

In general a projective resolution is infinite in length, but if A is itself projective, then it has a
very simple projective resolution of finite length, namely 0 → A

id→ A → 0 given by the identity
map from A to itself.

Given the projective resolution, we may form a related sequence by taking homomorphisms
of each of the terms into an R-module D, keeping in mind that this reverses the direction of the
homomorphisms. This yields the sequence

0 −→ HomR(A,D)
ϵ−→ HomR(P0, D)

d1−→ HomR(P1, D)
d2−→ · · ·

· · · dn−1−→ HomR(Pn−1, D)
dn−→ HomR(Pn, D)

dn+1−→ · · ·

where to simplify notation we have denoted the induced maps HomR(Pn−1, D) → HomR(Pn, D)
for n ≥ 1 again by dn and similarly for the map induced by ϵ. This sequence is not necessarily
exact, however it is a cochain complex. The group

ExtnR(A,D) :=

{
ker d1 if n = 0,

ker dn+1/ image dn if n > 0

is called the nth cohomology group derived from the functor HomR(_, D). When R = Z the
group ExtnZ(A,D) is also denoted simply Extn(A,D).

Note that the groups ExtnR(A,D) are the cohomology groups of the cochain complex

0 −→ HomR(P0, D)
d1−→ HomR(P1, D)

d2−→ HomR(P2, D)
d3−→ · · ·

obtained by replacing HomR(A,D) with zero (which does not effect the cochain property).

Proposition ([1] §17.1 Proposition 3). For anyR-moduleAwe have Ext0R(A,D) ∼= HomR(A,D).

Proof. Since the sequence P1
d1−→ P0

ϵ−→ A→ 0 is exact, it follows that the corresponding sequence
0 → HomR(A,D)

ϵ−→ HomR(P0, D)
d1−→ HomR(P1, D) is also exact by [1] §10.5 Theorem 33.

Hence Ext0R(A,D) = ker d1 = image ϵ ∼= HomR(A,D), as claimed.

Example. Let R = Z and let A = Z/mZ for some m ≥ 2. By the proposition we have

Ext0Z(A,D) ∼= HomZ(A,D) ∼= mD := {d ∈ D | md = 0},

the subgroup of D annihilated by m (containing elements of D with order dividing m).
For the higher cohomology groups, we use the simple projective resolution

0
d2−→ Z d1−→

×m
Z ϵ−→ Z/mZ −→ 0

for A = Z/mZ given by multiplication by m on Z. Taking homomorphisms into a fixed Z-module
D gives the cochain complex

0 −→ HomZ(Z/mZ, D)
ϵ−→ HomZ(Z, D)

d1−→
(×m)∗

HomZ(Z, D)
d2−→ 0

d3−→ 0 · · · .
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Recall that HomZ(Z, D) ∼= D (defined by f 7→ f(1)) and under this isomorphism we have

Ext1Z(Z/mZ, D) = ker d2/ image d1 ∼= D/mD

for any abelian group D. It follows from the definition and the cochain complex above that

ExtnZ(Z/mZ, D) = 0 for all n ≥ 2 and any abelian group D.

Example. Let P be a projective R-module. Then the simple exact sequence 0
d1→ P

ϵ→
id
P → 0

given by the identity map on P is a projective resolution of P . Taking homomorphisms into any
R-module D gives the simple cochain complex

0 −→ HomR(P,D)
ϵ−→
id

HomR(P,D)
d1−→ 0

d2−→ 0 · · · .

By definition

ExtnR(P,D) =

{
HomR(P,D) if n = 0,

0 if n > 0.

In fact for an R-module P the following are equivalent (cf. [1] §17.1 Proposition 11):

(1) P is projective,

(2) Ext1R(P,D) = 0 for all R-modules D, and

(3) ExtnR(P,D) = 0 for all R-modules D and all n ≥ 1.

The groups ExtnR(A,D) are independent of the choice of projective resolution of A (cf. [1]
§17.1 Theorem 6). But the same abelian groups may be modules over several different ringsR, and
the ExtR cohomology groups depend on R. For example, we have shown that Ext1Z(Z/mZ, D) ∼=
D/mD while Ext1Z/mZ(Z/mZ, D) = 0.

2.2 Right derived functors
Let f : A→ A′ be any homomorphism of R-modules and take projective resolutions of A and A′,
respectively. Then (cf. [1] §17.1 Proposition 4) for each n ≥ 0 there is a lift fn of f such that the
following diagram commutes:

· · · d2 // P1

f1
��

d1 // P0

f0
��

ϵ // A

f
��

// 0

· · ·
d′2 // P ′

1

d′1 // P ′
0

ϵ′ // A′ // 0

where the rows are the projective resolutions of A and A′, respectively. Then, the induced diagram

0 // HomR(A,D) ϵ // HomR(P0, D)
d1 // HomR(P1, D)

d2 // · · ·

0 // HomR(A
′, D)

f∗

OO

ϵ′ // HomR(P
′
0, D)

f∗0

OO

d′1 // HomR(P
′
1, D)

f∗1

OO

d′2 // · · ·

is also commutative. The two rows of this diagram are cochain complexes, and this commutative
diagram depicts a homomorphism of these cochain complexes. By [1] §17.1 Proposition 1 we have
an induced map on their cohomology groups: φn : ExtnR(A

′, D) → ExtnR(A,D), and the maps φn
depend only on f , not on the choice of lifts fn (cf. [1] §17.1 Proposition 5).

The next result shows that projective resolutions for a submodule and corresponding quotient
module of an R-module M can be fit together to give a projective resolution of M .
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Proposition ([1] §17.1 Proposition 7, Simultaneous Resolution). Let 0 → L → M → N → 0
be a short exact sequence of R-modules, let L and N both have projective resolutions where the
projective modules are denoted by Pn and P n respectively. Then there is a resolution of M by the
projective modules Pn ⊕ P n such that the following diagram commutes:

...

��

...

��

...

��

0 // P1

��

// P1 ⊕ P 1

��

// P 1

��

// 0

0 // P0

��

// P0 ⊕ P 0

��

// P 0

��

// 0

0 // L

��

//M

��

// N

��

// 0

0 0 0

Moreover, the rows and columns of this diagram are exact and the rows are split.

The above diagram induces a short exact sequence of cochain complexes

0 −→ HomR(P •, D) −→ HomR(P• ⊕ P •, D) −→ HomR(P•, D) −→ 0,

and next it induces a Long Exact Sequence in Cohomology (cf. [1] §17.1 Theorem 2):

Theorem ([1] §17.1 Theorem 8). Let 0 → L → M → N → 0 be a short exact sequence of
R-modules. Then there is a long exact sequence of abelian groups

0 // HomR(N,D) // HomR(M,D) // HomR(L,D) =<JKN δ0��	�����// Ext1R(N,D) // Ext1R(M,D) // Ext1R(L,D) =<JKN δ1��	�����// Ext2R(N,D) // · · ·

(17.12)

where the maps between groups at the same level n are as in [1] §17.1 Proposition 5 and the
connecting homomorphisms δn are given by (17.5).

Exercise ([1] §17.1 Proposition 9). Show that, for an R-module Q the following are equivalent:

(1) Q is injective,

(2) Ext1R(D,Q) = 0 for all R-modules D, and

(3) ExtnR(D,Q) = 0 for all R-modules D and all n ≥ 1.

For a fixed R-module D, the result in the above theorem can be viewed as explaining what
happens to the short exact sequence 0 → L → M → N → 0 on the right after applying the
left exact functor HomR(_, D). This is why the (contravariant) functors ExtnR(_, D) are called the
right derived functors for the functor HomR(_, D).

One can also consider the effect of applying the left exact functor HomR(D, _), i.e., by taking
homomorphisms from D rather than into D. The next theorem shows that in fact the same ExtR
groups define the (covariant) right derived functors for HomR(D, _) as well.
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Theorem ([1] §17.1 Theorem 10). Let 0 → L → M → N → 0 be a short exact sequence of
R-modules. Then there is a long exact sequence of abelian groups

0 // HomR(D,L) // HomR(D,M) // HomR(D,N) =<JKN γ0��	�����// Ext1R(D,L) // Ext1R(D,M) // Ext1R(D,N) =<JKN γ1��	�����// Ext2R(D,L) // · · · .

(17.14)

2.3 Left derived functors
The cohomology groups ExtnR(A,B) determine what happens to short exact sequences on the right
after applying the left exact functors HomR(D, _) and HomR(_, D). One may similarly ask for
the behavior of short exact sequences on the left after applying the right exact functor D ⊗R _ or
the right exact functor _ ⊗R D. This leads to the Tor (homology) groups (whose name derives
from their relation to torsion submodules), and we now briefly outline the development of these
left derived functors. In some respects this theory is “dual” to the theory for ExtR.

We concentrate on the situation for D ⊗R _ when D is a right R-module. When D is a left
R-module there is a completely symmetric theory for _ ⊗R D; when R is commutative and all
R-modules have the same left and right R-action, the homology groups resulting from both devel-
opments are isomorphic.

Suppose then that D is a right R-module. Then for every left R-module B the tensor product
D⊗R B is an abelian group and the functor D⊗R _ is covariant and right exact, i.e., for any short
exact sequence 0 → L→M → N → 0 of left R-modules,

D ⊗R L −→ D ⊗RM −→ D ⊗R N −→ 0

is an exact sequence of abelian groups. This sequence may be extended at the left end to a long
exact sequence as follows.

Let
· · · −→ Pn

dn−→ Pn−1 −→ · · · d1−→ P0
ϵ−→ B −→ 0

be a projective resolution of B. It follows from the argument in [1] §10.5 Theorem 39 that

· · · −→ D ⊗ Pn
id⊗dn−→ D ⊗ Pn−1 −→ · · · id⊗d1−→ D ⊗ P0

id⊗ϵ−→ D ⊗B −→ 0

is a chain complex — the composition of any two successive maps is zero — so we may form its
homology groups:

TorRn (D,B) :=

{
(D ⊗ P0)/ image(id⊗d1) if n = 0,

ker(id⊗dn)/ image(id⊗dn+1) if n > 0

The group TorRn (D,B) is called the nth homology group derived from the functor D⊗ _. When
R = Z the group TorZn(D,B) is also denoted simply Torn(D,B).

Note that the groups TorRn (D,B) is the nth homology group of the chain complex

· · · −→ D ⊗ Pn
id⊗dn−→ D ⊗ Pn−1 −→ · · · id⊗d1−→ D ⊗ P0 −→ 0

obtained by removing the term D ⊗B.
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Exercise ([1] §17.1 Proposition 13). Show that TorR0 (D,B) = D ⊗R B for any left R-module B
and any right R-module D.

There is a Long Exact Sequence in Homology analogous to [1] §17.1 Theorem 2, except that
all the arrows are reversed:

Theorem ([1] §17.1 Theorem 15). Let 0 → L → M → N → 0 be a short exact sequence of left
R-modules. Then there is a long exact sequence of abelian groups

· · · // TorR2 (D,N) =<JKN δ1��	�����// TorR1 (D,L) // TorR1 (D,M) // TorR1 (D,N) =<JKN δ0��	�����// D ⊗ L // D ⊗M // D ⊗N // 0

We have defined TorRn (A,B) as the homology of the chain complex obtained by tensoring
a projective resolution of B on the left with A. The same groups are obtained by taking the
homology of the chain complex obtained by tensoring a projective resolution of A on the right by
B. Put another way, the TorRn (A,B) groups define the (covariant) left derived functors for both
of the right exact functors A⊗R _ and _ ⊗R B.

Exercise ([1] §17.1 Proposition 9). Show that, for a right R-module D the following are equiva-
lent:

(1) D is flat,

(2) TorR1 (D,B) = 0 for all left R-modules B, and

(3) TorRn (D,B) = 0 for all left R-modules B and all n ≥ 1.

Finally, we mention that the cohomology and homology theories we have described may be
developed in a vastly more general setting by axiomatizing the essential properties of R-modules
and the HomR and tensor product functors. This leads to the general notions of abelian categories
and additive functors.

In the case of the abelian category of R-modules, any additive functor F to the category of
abelian groups gives rise to a set of derived functors, Fn, also from R-modules to abelian groups,
for all n ≥ 0. Then for each short exact sequence 0 → L → M → N → 0 of R-modules, there
is a long exact sequence of (cohomology or homology) groups whose terms are Fn(L), Fn(M)
and Fn(N), and these long exact sequences reflect the exactness properties of the functor F . If
F is left or right exact then the 0th derived functor F0 is naturally equivalent to F (hence the 0th

degree groups F0(X) are isomorphic to F(X)), and if F is an exact functor then Fn(X) = 0 for
all n ≥ 1 and all R-modules X .

3 The cohomology of groups
In this section we consider the application of the general techniques of the previous section in an
important special case.

Let G be a group. An abelian group A on which G acts (on the left) as automorphisms is
called a G-module. Note that a G-module is the same as an abelian group A and a homomorphism
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φ : G → Aut(A) of G into the group of automorphisms of A. Since an abelian group is the same
as a module over Z, it is also easy to see that a G-module A is the same as a ZG-module over the
integral group ring,

ZG :=
{∑

g∈G
λgg | αg ∈ Z, αg = 0 for all but finitely many g

}
,

of G with coefficients in Z.
As usual we shall often use multiplicative notation and write ga in place of g · a for the action

of the element g ∈ G on the element a ∈ A. Let

AG := {a ∈ A | ga = a for all g ∈ G}

be the set of elements of A fixed by all the elements of G. Then fixed point subgroup AG is
clearly a ZG-submodule of A on which G acts trivially.

Example. If K/F is an extension of fields that is Galois with Galois group G, then the additive
groupK is naturally aG-module, withKG = F . Similarly, the multiplicative groupK× of nonzero
elements in K is a G-module, with fixed points (K×)G = F×.

It is easy to see that a short exact sequence 0 → A → B → C → 0 of G-modules induces an
exact sequence

0 −→ AG −→ BG −→ CG

that in general cannot be extended to a short exact sequence (in general a coset in the quotient
C ∼= B/A that is fixed by G need not be represented by an element in B fixed by G). One way to
show the exactness is to observe that AG can be related to a Hom group:

Exercise ([1] §17.2 Lemma 19). Suppose A is a G-module and HomZG(Z, A) is the group of all
ZG-module homomorphisms from Z (with trivial G-action, i.e., ga = a for any g ∈ G, a ∈ Z) to
A. Then f 7→ f(1) defines an isomorphism HomZG(Z, A) ∼= AG of ZG-modules.

The above lemma also shows that, any projective resolution of Z (considered as a ZG-module)
will give a long exact sequence extending 0 → AG → BG → CG. One such projective resolution
is the standard resolution or bar resolution of Z:

· · · −→ Fn
dn−→ Fn−1 −→ · · · d1−→ F0

aug−→ Z −→ 0. (17.16)

Here Fn := (ZG)⊗(n+1) = ZG ⊗Z ZG ⊗Z · · · ⊗Z ZG (where there are n + 1 factors) for n ≥ 0,
which is a G-module under the action defined on simple tensors by

g · (g0 ⊗ g1 ⊗ · · · ⊗ gn) := (gg0)⊗ g1 ⊗ · · · ⊗ gn.

It is not difficult to see that Fn is a free ZG-module of rank |G|n, with ZG-basis given by the
elements 1⊗ g1 ⊗ g2 ⊗ · · · ⊗ gn, where gi ∈ G. The map aug : F0 → Z is the augmentation map
aug(

∑
g∈G αgg) :=

∑
g∈G αg, and the map d1 is given by d1(1 ⊗ g) := g − 1. The maps dn for

n ≥ 2 are more complicated and their definition, together with a proof that (17.16) is a projective
(in fact, free) resolution can be found in [1] §17.2 Exercises 1-3.

Applying (ZG-module) homomorphisms from the terms in (17.16) to the G-module A (replac-
ing the first term by 0) as in the previous section, we obtain the cochain complex

0 −→ HomZG(F0, A)
d1−→ HomZG(F1, A)

d2−→ HomZG(F2, A)
d3−→ · · · , (17.17)
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the cohomology groups of which are, by definition, the groups ExtnZG(Z, A). Then, as in [1] §17.1
Theorem 8, the short exact sequence 0 → A → B → C → 0 of G-modules gives rise to a long
exact sequence whose first terms are given by 0 → AG → BG → CG and whose higher terms are
the cohomology groups ExtnZG(Z, A).

To make this more explicit, we can reinterpret the terms in this cochain complex without ex-
plicit reference to the standard resolution of Z, as follows. The elements of HomZG(Fn, A) are
uniquely determined by their values on the ZG-basis elements of Fn, which may be identified with
the n-tuples (g1, g2, . . . , gn) of elements gi ∈ G. It follows for n ≥ 1 that the group HomZG(Fn, A)
may be identified with the set of functions from Gn := G× · · · ×G (n copies) to A. For n = 0 we
identify HomZG(ZG,A) with A.

Definition. If G is a finite group and A is a G-module, define

Cn(G,A) :=


{all maps f : G× · · · ×G︸ ︷︷ ︸

n copies

→ A} if n ≥ 1,

A if n = 0.

The elements of Cn(G,A) are called n-cochains (of G with values in A). Each Cn(G,A) is an
additive abelian group given by the usual pointwise addition of functions (for n ≥ 1).

Under the identification of HomZG(Fn, A) with Cn(G,A), the cochain maps dn in (17.17) can
be given very explicitly: for n ≥ 0, dn : Cn(G,A) → Cn+1(G,A) is given by

dn(f)(g1, . . . , gn+1) := g1 · f(g2, . . . , gn+1)

+
n∑
i=1

(−1)if(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn),

(17.18)

where the product gigi+1 occupying the ith position of f is taken in the group G. It is immedi-
ate from the definition that the maps dn are group homomorphisms, called the nth coboundary
homomorphisms.

Define

Zn(G,A) := ker dn for n ≥ 0; Bn(G,A) :=

{
0 ∈ A for n = 0,

image dn−1 for n ≥ 1.

The elements of Zn(G,A) are called n-cocycles, and the elements of Bn(G,A) are called n-
coboundaries. It follows from the fact that (17.17) is a projective resolution that dn ◦ dn−1 = 0 for
n ≥ 1, so that Bn(G,A) is always a subgroup of Zn(G,A). The quotient group

Hn(G,A) := Zn(G,A)/Bn(G,A), n ≥ 0

is called the nth cohomology group of G with coefficients in A.

The definition of the cohomology group Hn(G,A) in terms of cochains will be particularly
useful when we examine the low dimensional groupsH1(G,A) andH2(G,A) and their application
in a variety of settings. It should be remembered, however, that Hn(G,A) ∼= ExtnZG(Z, A) for all
n ≥ 0. In particular, these groups can be computed using any projective resolution of Z.

Example. For f = a ∈ C0(G,A) we have d0(f)(g) = g · a− a and so

H0(G,A) = Z0(G,A) = ker d0 = {a ∈ A | g · a = a for all g ∈ G} = AG
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for any group G and G-module A.
For f ∈ C1(G,A) we have

d1(f)(g1, g2) = g1 · f(g2)− f(g1g2) + f(g1).

Thus any function f : G→ A is a 1-cocycle if and only if it satisfies the identity

f(gh) = f(g) + g · f(h) for all g, h ∈ G. (17.20)

By the definition of d0, a 1-cochain f is a 1-coboundary if there is some a ∈ A such that

f(g) = g · a− a for all g ∈ G. (17.21)

One can verify directly that a 1-coboundary is always a 1-cocycle.

Exercise. Write explicitly the conditions for a function f : G × G → A being a 2-cocyle or a
2-coboundary, and verify directly that a 2-coboundary is always a 2-cocycle.

Example (Cohomology of a Finite Cyclic Group). Suppose G = ⟨σ⟩ is cyclic of order m. Let
N := 1 + σ + σ2 + · · · + σm−1 ∈ ZG. Then N(σ − 1) = (σ − 1)N = σm − 1 = 0, and so we
have a particularly simple free resolution

· · · σ−1−→ ZG N−→ ZG σ−1−→ · · · N−→ ZG σ−1−→ ZG aug−→ Z −→ 0

where aug denotes the augmentation map. Taking ZG-module homomorphisms from the terms of
this resolution toA (replacing the first term by 0) and using the identification HomZG(ZG,A) = A
gives the chain complex

0 −→ A
σ−1−→ A

N−→ A
σ−1−→ A

N−→ · · ·
whose cohomology computes the groups Hn(G,A):

H0(G,A) = AG, and Hn(G,A) =

{
AG/NA if n is even, n ≥ 2

NA/(σ − 1)A if n is odd, n ≥ 1

where NA := {a ∈ A | Na = 0} is the subgroup of A annihilated by N , since the kernel of
multiplication by σ − 1 is AG.

If in particularG = ⟨σ⟩ acts trivially onA, thenN ·a = ma, so that in this caseH0(G,A) = A,
with Hn(G,A) = A/mA for even n ≥ 2; and Hn(G,A) = mA, the elements of A of order
dividing m, for odd n ≥ 1.

Other related exercises in [1]
§17.1 1 2 4 5 7 9 12 13 14 18
§17.2 1 2 3 4 5 8 9
§17.3 1 13
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