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This lecture refers to Chapter 9 in [2].

1 The classical matrix groups

1.1 The topology of matrix groups
Let K = R or C be the real or complex number field, and let Mn(K) denote the set of all n × n
matrices with entries in K. The n-dimensional general linear group is the (multiplicative) group
of all invertible n× n matrices. Over K we have

GLn(K) := {A ∈Mn(K) | AB = BA = I for some B ∈Mn(K)}
= {A ∈Mn(K) | detA ̸= 0}.

Subgroups of the general linear group GLn are called linear groups, or matrix groups. The
most important ones are the special linear, orthogonal, unitary, and symplectic groups — the clas-
sical groups. Some of them will be familiar, but let’s review the definitions.

• The special linear group SLn is the group of matrices with determinant 1:

SLn(K) :− {P ∈ GLn(K) | detP = 1}.

• The orthogonal group On is the group of real matrices P such that P t = P−1:

On(R) = On := {P ∈ GLn(R) | P tP = I}.

A change of basis by an orthogonal matrix preserves the dot productX tY on Rn. This group
has a complex analogue, the complex orthogonal group:

On(C) := {P ∈ GLn(C) | P tP = I}.
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• Let P ∗ := P t be the complex conjugate of the transpose of a complex matrix P . The unitary
group Un is the group of complex matrices P such that P ∗ = P−1:

Un := {P ∈ GLn(C) | P ∗P = I}.

A change of basis by a unitary matrix preserves the standard Hermitian productX t Y on Cn.
Note that the complex orthogonal group is not the same as the unitary group.

• The symplectic group is the group of matrices that preserve the skew-symmetric form
X tJY on K2n, where

J = Jn,n :=

[
0 In

−In 0

]
, Sp2n(K) := {P ∈ GL2n(K) | P tJP = J}.

The word “special” is added to indicate the subgroup of matrices with determinant 1:

Special orthogonal group SOn := On ∩ SLn(R),
Special unitary group SUn := Un ∩ SLn(C).

Though this is not obvious from the definition, symplectic matrices have determinant 1, so the two
uses of the letter S do not conflict.

Now On, Un and Sp2n can be viewed as a group of linear transformations which preserve a
given quadratic form. There are analogues of the orthogonal group for indefinite forms. For ex-
ample, the Lorentz group is the group of real matrices that preserve the Lorentz form ⟨X,Y ⟩ :=
x1y1 + x2y2 + x3y3 − x4y4 on R4:

O3,1 := {P ∈ GL4(R) | P tI3,1P = I3,1}, I3,1 := diag(1, 1, 1,−1).

The linear operators represented by these matrices are called Lorentz transformations. An anal-
ogous group Op,q can be defined for any signature (p, q):

Op,q := {P ∈ GLp+q(R) | P tIp,qP = Ip,q}, Ip,q :=

[
Ip 0
0 −Iq

]
.

Recall that the Euclidean topology is the natural topology induced onm-dimensional Euclidean
space Rm by the Euclidean metric; and in a topological space X , the open sets with respect to the
subspace topology of a subspace Y are defined to be the sets U ∩ Y , where U is an open set in
X . To study a matrix group G as a geometric object, we can think of G as a subset of a Euclidean
space Rm as following:

G ⊆ GLn(K) ⊆Mn(K) ∼= Kn2 ∼=

{
Rn2 if K = R,
R2n2 if K = C.

A manifold M of dimension d is a set in which every point has a neighborhood that is home-
omorphic to an open set in Rd. It is not surprising that the classical groups are manifolds, though
there are subgroups ofGLn(K) that are not. The groupGLn(Q) of invertible matrices with rational
coefficients is an interesting group, but it is a countable dense subset of the space of matrices.

The following theorem gives a satisfactory answer to the question of which linear groups are
manifolds:

Theorem ([2] Theorem 9.7.4). A subgroup of GLn(K) that is a closed subset of GLn(K) is a
manifold.

2



In general, an arbitrary group G is called a topological group if G has two structures — a
group structure and a topology, such that the group operations are continuous. Specifically, the
mapping (a, b) 7→ ab−1 from the direct product G×G into G must be continuous. A Lie group is
a separable topological group with the structure of a smooth manifold such that multiplication and
inversion are smooth. Closed matrix groups are Lie groups.

Recall that, a homeomorphism φ : X → Y is a continuous bijective map whose inverse
function is also continuous; given two manifolds X and Y , a differentiable map φ : X → Y is
called a diffeomorphism if it is a bijection and its inverse is differentiable as well. For instance,
the unit circle S1,

x20 + x21 = 1,

has several incarnations as a matrix group, all isomorphic and diffeomorphic. Writing (x0, x1) =
(cos θ, sin θ) identifies the circle as the additive group of angles. Or, thinking of it as the unit circle
in the complex plane by eiθ, it becomes a multiplicative group, the group of unitary 1× 1 matrices

U1 = {z ∈ C× | z̄z = 1}.

The unit circle can also be embedded into M2(R) by the map

(cos θ, sin θ) 7→
[
cos θ − sin θ
sin θ cos θ

]
;

it is isomorphic to the special orthogonal group SO2, the group of rotations of the plane. These are
three descriptions of what is essentially the same group, the circle group.

The dimension of a linear group G is, roughly speaking, the number of degrees of freedom
(over R) of a matrix in G. The circle group has dimension 1. The group SL2(R) has dimension
3, because the equation detP = 1 eliminates one degree of freedom from the four matrix entries.
The smallest dimension in which really interesting nonabelian groups appearis 3, and the most
important ones are SU2, SO3, and SL2(R).

1.2 Matrices over quaternions
Recall that the quaternion algebra H is a division algebra over R with R-basis 1, i, j, k satisfying

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, and ki = −ik = j.

The real part of a quaternion is given by Re(a+ bi+ cj + dk) = a. Conjugation is given by

a+ bi+ cj + dk := a− bi− cj − dk.

If x is in H, then xx̄ = x̄x = |x|2 is the square of the usual Euclidean norm from R4.
The ring of all matrices Mn(H), the general linear group GLn(H) and the special linear group

SLn(H) can be defined as usual. We can think of GLn(H) as a subset of a Euclidean space Rm:

GLn(H) ⊆Mn(H) ∼= Hn2 ∼= R4n2

.

Let Hn be the space of n-component column vectors with quaternion entries. The standard
inner product on Hn is the function from Hn ×Hn to H defined by X t Y :

⟨X, Y ⟩H := x1y1 + x2y2 + · · ·+ xnyn.
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The symplectic group over H is the group of matrices preserving this standard inner product:

Spn(H) := {P ∈ GLn(H) | ⟨PX,PY ⟩H = ⟨X, Y ⟩H for all X, Y ∈ Hn}
= {P ∈ GLn(H) | P ∗P = I},

where P ∗ is the conjugate transpose of P .
Groups (and Lie algebras) of complex matrices can be realized as groups (and Lie algebras) of

real matrices of twice the size. Similarly, groups of quaternion matrices can be realized as groups
of complex matrices of twice the size.

We begin with the relationship between complex and real matrices. The quadratic extension
C of R is a 2-dimensional real vector space with basis 1, i. Similarly we have Cn ∼= R2n, an
isomorphism of real vector spaces, given in block form by

v 7→
[
Re v
Im v

]
.

Under this isomorphism, left multiplication by M ∈ GLn(C) on Cn corresponds to left multipli-
cation on R2n by

Z(M) :=

[
ReM −ImM
ImM ReM

]
.

One can check that Z(MM ′) = Z(M)Z(M ′), and therefore Z induces an embedding GLn(C) ↩→
GL2n(R) of matrix groups. In particular for 1× 1 matrices,

[z] = [x+ iy] 7→
[
x −y
y x

]
.

This is another way to understand the isomorphism U1
∼= SO2.

Next let us discuss the relationship between quaternion and complex matrices. Write v ∈ Hn

as v = a+ ib+ jc+ kd with a, b, c, d ∈ Rn, and define z1 : Hn → Cn and z2 : Hn → Cn by

z1(v) := a+ bi and z2(v) := c− di

so that v = z1(v) + jz2(v) if we allow i to be interpreted as in H or C. Then v 7→
[
z1(v)
z2(v)

]
is a

C-isomorphism from Hn to C2n if H is regarded as a right vector space over C (complex scalars
multiplying as expected on the right). (To verify this we have only to check that z1(vi) = z1(v)i
and z2(vi) = z2(v)i.)

If M is an n × n matrix over H, we define z1(M) and z2(M) similarly. Under the above
isomorphism, left multiplication by M on Hn corresponds to left multiplication on C2n by

Z(M) :=

[
z1(M) −z2(M)

z2(M) z1(M)

]
.

This identification satisfies that Z(MM ′) = Z(M)Z(M ′), and therefore Z induces an embedding
GLn(H) ↩→ GL2n(C) of matrix groups.

Proposition ([3] Proposition 1.139). Under the identification M 7→ Z(M),

Spn(H) ∼= Sp2n(C) ∩ U2n.
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In particular, when n = 1, the identification becomes

a+ bi+ cj + dk 7→
[
a+ bi −c− di
c− di a− bi

]
.

This determines an isomorphism Sp1(H) ∼= SU2 (cf. [4] Proposition 3.13).
By analogy with the unit circle in R2 and unit sphere in R3, the locus

Sn := {x20 + x21 + · · ·+ x2n = 1}

in Rn+1 is called the n-dimensional unit sphere, or the n-sphere for short. By definition,

Sp1(H) = {x ∈ H× | x̄x = 1} = {x0 + x1i+ x2j + x3k ∈ H | x20 + x21 + x22 + x23 = 1}.

Therefore quaternionic multiplication provides a group operation on the 3-sphere. In fact we have
the following (nontrivial) result.

Theorem (Hans Samelson, 1940). Among the n-spheres, only S0, S1 and S3 can admit a Lie group
structure.

2 Lie algebras

2.1 Lie algebras as tangent spaces
The space Te(G) of tangent vectors to a Lie group G at the identity is called the Lie algebra of the
group. We denote it by g or Lie(G). (It is called an algebra because it has a law of composition,
the bracket operation that is defined later.) For instance, when we represent the circle group S1 as
the unit circle U1 in the complex plane, the Lie algebra is the space of real multiples of i.

The observation from which the definition of tangent vector is derived is something we learn in
calculus: if φ(t) = (φ1(t), . . . , φm(t)) is a differentiable path in Rm, the velocity vector v = φ′(0)
is tangent to the path at the point p = φ(0). A vector v ∈ Rm is said to be tangent to a subset S
of Rm at a point p if there is a differentiable path φ(t), defined for sufficiently small t and lying
entirely in S, such that φ(0) = p and φ′(0) = v.

The elements of a linear group G are matrices, so a path φ(t) in G will be a matrix-valued
function. Its derivative φ′(0) at t = 0 will be represented naturally as a matrix, and if φ(0) = I ,
the matrix φ′(0) will be an element of Lie(G):

g = Lie(G) := Te(G) = {φ′(0) | φ : (−ε, ε) → G is differentiable with φ(0) = e}.

Example. The usual parametrization of the group SO2,

φ(θ) :=

[
cos θ − sin θ
sin θ cos θ

]
,

satisfies φ(0) = I . So φ′(0) = [ 0 −1
1 0 ] is in the Lie algebra so2 = Lie(SO2). More generally, for

any a ∈ R,

φa(θ) :=

[
cos aθ − sin aθ
sin aθ cos aθ

]
satisfies φa(0) = I and φ′

a(0) = [ 0 −a
a 0 ]. Therefore all skew-symmetric 2 × 2 real matrices lie in

the Lie algebra so2.
The next proposition shows that the Lie algebra consists precisely of those matrices. Since the

paths φa are very special, this is not completely obvious. There are many other paths.
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Proposition ([2] Proposition 9.6.1). The Lie algebra of the orthogonal group On consists of the
skew-symmetric matrices.

Proof. We denote transpose by ∗ If φ is a path in On with φ(0) = I and φ′(0) = X ∈ Mn(R),
then φ(t)∗φ(t) = I for any t, and so

0 =
d

dt

(
φ(t)∗φ(t)

)∣∣∣∣
t=0

=

(
dφ∗

dt
φ+ φ∗dφ

dt

)∣∣∣∣
t=0

= X∗ +X.

Exercise. For matrix-valued functions φ and ψ, show that d
dt

(
φ(t)ψ(t)

)
= dφ

dt
ψ(t) + φ(t)dψ

dt
.

Exercise. Explain why the Lie algebras of SO2 and O2 are the same. (Hint: The Lie group On is
disconnected.)

Similar methods are used to describe the Lie algebras of other classical groups. We have the
following list of Lie groups and their corresponding Lie algebras:

GLn(K) = {A ∈Mn(K) | detA ̸= 0}, gln(K) =Mn(K);

SLn(K) = {A ∈ GLn(K) | detA = 1}, sln(K) = {X ∈ gln(K) | TrX = 0};
On

SOn

= {A ∈ GLn(R) | AtA = I},
= On ∩ SLn(R),

son = {X ∈ gln(R) | X t +X = 0};

On(C) = {A ∈ GLn(C) | AtA = I}, son(C) = {X ∈ gln(C) | X t +X = 0};
Un = {A ∈ GLn(C) | A∗A = I}, un = {X ∈ gln(C) | X∗ +X = 0} ∼= sun ⊕ R;

SUn = Un ∩ SLn(C), sun = {X ∈ gln(C) | X∗ +X = 0, TrX = 0};
Sp2n(K) = {A ∈ GL2n(K) | AtJn,nA = Jn,n}, sp2n(K) = {X ∈ gl2n(K) | X tJn,n + Jn,nX = 0};

Op,q = {A ∈ GLp+q(R) | AtIp,qA = Ip,q}, sop,q(R) = {X ∈ glp+q(R) | X tIp,q + Ip,qX = 0}.
Here K = R or C, A∗ is the conjugate transpose of A, and

Jn,n :=

[
0 In

−In 0

]
, Ip,q :=

[
Ip 0
0 −Iq

]
.

Exercise ([2] Lemma 9.6.2 & Proposition 9.6.4). Let φ be a path in GLn(R) with φ(0) = I and
φ′(0) = X . Show that

d

dt
(detφ(t))

∣∣∣∣
t=0

= TrX;

and show that the Lie algebra sln(R) of the special linear group SLn(R) consists of the trace-zero
matrices.

Note that the Lie algebras above are all real vector spaces, subspaces of the space of matrices. It
is easy to verify for other closed matrix groups that Lie(G) is a real vector space: for φ′(0), ψ′(0) ∈
Lie(G) and for any a ∈ R, we have

d

dt

(
φ(t)ψ(t)

)
= φ′(t)ψ(t) + φ(t)ψ′(t),

d

dt
φ(at) = aφ′(at),

and hence
d

dt

(
φ(t)ψ(t)

)∣∣∣∣
t=0

= φ′(0)ψ(0) + φ(0)ψ′(0) = φ′(0) + ψ′(0),
d

dt
φ(at)

∣∣∣∣
t=0

= aφ′(0).

Exercise. (a) Notice that SUn, Un, SOn(C) are all closed subgroups of GLn(C). Are sun, un,
son(C) vector spaces over C?
(b) Is the Lie algebra always an algebra (is it closed under matrix multiplication)?
(c) What is the Lie algebra sln(H) of SLn(H)? (Hint: Be careful that the condition in sln(H) is
not simply TrX = 0.)
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2.2 The Lie bracket
The Lie algebra (of a matrix group) has an additional structure, an operation called the bracket
defined by

[X, Y ] := XY − Y X.

The bracket is a version of the commutator: it is zero if and only if X and Y commute. There is no
an associative law, but it satisfies an identity called the Jacobi identity (cf. [2] §9.6 Exercise 6.1):

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

To show that the bracket is defined on the Lie algebra, we must check that if X and Y are in
Lie(G), then [X, Y ] is also in Lie(G). This can be done easily for any particular group. For the
special linear group, the required verification is that if X and Y have trace zero, then XY − Y X
also has trace zero, which is true because TrXY = TrY X . The Lie algebra of the orthogonal
group is the space of skew-symmetric matrices. For that group, we must verify that if X and Y are
skew-symmetric, then [X,Y ] is skew-symmetric:

[X,Y ]t = (XY )t − (Y X)t = Y tX t −X tY t = (−Y )(−X)− (−X)(−Y ) = −[X,Y ].

Exercise ([3] Eq.(0.6)). For any matrix group G, show that [X, Y ] ∈ Lie(G) if X,Y ∈ Lie(G).

The definition of an abstract Lie algebra includes a bracket operation.

Definition ([2] Definition 9.6.7). An (abstract) Lie algebra V is a real vector space together with
a law of composition V × V → V denoted by (v, w) 7→ [v, w] and called the bracket, which
satisfies these axioms for all u, v, w in V and all λ, µ ∈ R:

• bilinearity: [λu+ µv, w] = λ[u,w] + µ[v, w], and [w, λu+ µv] = λ[w, u] + µ[w, v],

• skew-symmetry: [v, w] = −[w, v], or [v, v] = 0,

• Jacobi identity: [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0.

Lie algebras are useful because, being vector spaces, they are easier to work with than linear
groups. And, though this is not easy to prove, many (connected and simply connected) linear
groups, including the classical groups, are nearly determined by their Lie algebras (cf. [3] Propo-
sition 1.100).

2.3 Lie algebra vectors as vector fields
A smooth vector field on any open subset U ⊆ Rn is any operator on C∞(U) (the set of smooth
functions on U ) of the form X =

∑n
i=1 ai(x)

∂
∂xi

with all ai(x) ∈ C∞(U). This definition gen-
eralizes to any smooth manifold M . (One can understand the vector field X as an assignment of
a tangent vector Xp ∈ Tp(M) to each point p ∈ M .) The real vector space of all smooth vector
fields on M becomes a Lie algebra if the bracket is defined by [X, Y ] = XY − Y X .

Exercise. Show that the space of all smooth vector fields on any open subset U ⊆ Rn is closed
under the bracket [X, Y ] := XY − Y X .

Let g be an element of a matrix group G. Left multiplication by g is a bijective map from G to
itself:

Lg : G→ G, x 7→ gx.
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Its inverse function is left multiplication by g−1. The maps Lg and Lg−1 are continuous because
matrix multiplication is continuous. Thus Lg is a homeomorphism from G to G (not a homomor-
phism). It is also called left translation by g, in analogy with translation in the plane, which is left
translation in the additive group R2. For example, left multiplication in the circle group S1 rotates
the circle, and left multiplication in SU2 is also a rigid motion of the 3-sphere.

The important property of a group that is implied by the existence of these maps is homogene-
ity. Multiplication by g is a homeomorphism that carries the identity element e to g. Intuitively,
the group looks the same at g as it does at e, and since g is arbitrary, it looks the same at any two
points. This is analogous to the fact that the plane looks the same everywhere.

..
U

.

gU

. x.

y

.
0

.
e

.

g

.

Lg

Figure 1: Left Translation on GL1(C).

A vector field X on a Lie group G is left invariant if, for any x and y in G, (dLyx−1)(Xx) =
Xy. Equivalently X , as an operator on smooth real-valued functions, commutes with left transla-
tions: (Xf)(gx) = X(f(g · _))(x) for any g, x ∈ G and for any smooth function f : G → R.
When G is a matrix group, left-invariant vector fields may be easier to understand (cf. [4] §5.3).
Let φ be the path onG such that φ(0) = e and φ′(0) = Xe. Then for any g ∈ G, (Lgφ)(t) := gφ(t)
is a path near g such that (Lgφ)(0) = g. By left invariance, the tangent vector assigned to the point
g is defined by

dLg(Xe) := (Lgφ)
′(0) =

d

dt
gφ(t)

∣∣∣∣
t=0

.

.. x.

y

.
e

.

Xe

Figure 2: A Left-Invariant Vector Field X on U1.

If G is a Lie group, then the map X 7→ Xe is an isomorphism of the real vector space of left-
invariant vector fields on G onto Te(G), and the inverse map is Xf(x) := Xe(f(x

−1 · _)). Every
left-invariant vector field on a Lie group G is smooth, and the bracket of two left-invariant vector
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fields is again left invariant. In fact, if G is a matrix group, X 7→ Xe gives an isomorphism of Lie
algebras, from the Lie algebra of the Lie group G consisting of all left-invariant vector fields on G,
onto the (linear) Lie algebra of the matrix group G (cf. [3] Proposition 1.74).

3 Matrix exponentiation

3.1 The exponential map
It is possible also to go backwards from the Lie algebra g to a Lie group G. The tool for doing so
is the exponential map.

Let K = R or C. For any X = (xij) ∈Mn(K) define the ℓ1-norm ∥X∥ :=
∑

i,j |xij|, i.e., ∥X∥
is the sum of the absolute values of all the entries of X (cf. [1] §12.3 Exercise 40). One can also
define an operator or sup (= supremum) norm by ∥X∥ := sup0 ̸=v∈Kn |Xv|/|v|, where | · | refers
to the Euclidean norm on Kn (cf. [3] Proposition 0.11). Both norms lead to the same topology on
Mn(K).

The exponential of an n × n real or complex matrix X is the matrix obtained by substituting
X for x (and I for 1) into the Taylor’s series for ex:

exp(X) = eX := I +
X

1!
+
X2

2!
+
X3

3!
+ · · · =

∞∑
k=0

Xk

k!
.

This series converges absolutely and uniformly on bounded sets of complex matrices (cf. [2]
Theorem 5.4.4(a)).

Example. If X = iθ ∈ u1 for some θ ∈ R, then eX = [eiθ] = [cos θ + i sin θ] ∈ U1
∼= S1.

If X is diagonal, with diagonal entries λ1, . . . , λn, then inspection of the series shows that eX

is also diagonal, and that its diagonal entries are eλi .
If X = [ 0 1

0 0 ], notice that X2 = 0 (X is nilpotent), and therefore etX = I + tX = [ 1 t
0 1 ].

Exercise. If X =

[
0 −1
1 0

]
, show that etX =

[
cos t − sin t
sin t cos t

]
.

Proposition. (1) ([2] Theorem 5.4.4(c)). eXeY = eX+Y if X and Y commute.

(2) ([2] Corollary 5.4.5). eX is invertible, and (eX)−1 = e−X .

Remark that, in general etXetY = exp
(
t(X + Y ) + 1

2
t2[X, Y ] +O(t3)

)
as t→ 0 (if X and Y

do not commute, cf. [3] Lemma 1.90).

Proof. We have

eXeY =

(
∞∑
r=0

Xr

r!

)(
∞∑
s=0

Y s

s!

)
=

∞∑
k=0

∑
0≤r≤k
s=k−r

Xr

r!

Y k−r

(k − r)!

=
∞∑
k=0

1

k!

k∑
r=0

(
k

r

)
XrY k−r ===

if X,Y commute

∞∑
k=0

1

k!
(X + Y )k = eX+Y .

And (2) follows by taking Y = −X in (1) and using e0 = I .
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Since matrix multiplication is relatively complicated, it is often not easy to write down the
entries of the matrix eX . They won’t be obtained by exponentiating the entries of X unless X is
a diagonal matrix. But it is fairly easy to compute for a triangular 2 × 2 matrix. For example, if
X = [ 1 1

2 ], then

eX =

[
1

1

]
+

1

1!

[
1 1

2

]
+

1

2!

[
1 3

4

]
+

1

3!

[
1 7

8

]
+ · · · =

[
e ∗

e2

]
.

Moreover, eX can be determined whenever we know a matrix P such that Λ = P−1XP is
diagonal. Using the rule P−1XkP = (P−1XP )k and the distributive law for matrix multiplication,

P−1eXP =
∞∑
k=0

P−1X
k

k!
P =

∞∑
k=0

(P−1XP )k

k!
= eP

−1XP .

When Λ = P−1XP is diagonal, so is eΛ, and we can compute eX explicitly by eX = PeΛP−1.
For example, if X = [ 1 1

2 ] and P = [ 1 1
1 ], then P−1XP = Λ = [ 1 2 ] and

eX = PeΛP−1 =

[
1 1

1

] [
e

e2

] [
1 −1

1

]
=

[
e e2 − e

e2

]
.

Exercise ([2] Lemma 9.5.9). Show that det eX = eTrX .

3.2 The best path in a matrix group
Let G be a matrix group. Given X ∈ Lie(G), what is the most natural differentiable path φ(t) in
G such that φ(0) = I and φ′(0) = X?

Let us begin with a simple example with [ 0 −1
1 0 ] ∈ so2 (cf. [4] §6.3). We denote by X the left-

invariant vector field with XI being the given matrix. The choice φ(t) := I + tXI seems natural,
but is not in SO2. Every path in SO(2) has the form:

φ(t) :=

[
cos f(t) − sin f(t)
sin f(t) cos f(t)

]
,

where f(t) is a differentiable function with f(0) = 0 and f ′(0) = 1. The choice f(t) = t is clearly
the most natural choice; what visual property does this path φ(t) have that no other candidate
shares? The answer is that, the path φ(t) is an “integral curve” of the vector field X . This means
that the vector field X tells the direction that every v ∈ R2 is moved by the family of linear
transformations associated to φ(t) for all time rather than just initially at t = 0; more precisely,

d

dt
φ(t)

∣∣∣∣
t=t0

= Xφ(t0) =
d

dt

(
φ(t0)φ(t)

)∣∣∣∣
t=0

= φ(t0)
d

dt
φ(t)

∣∣∣∣
t=0

= φ(t0)XI .

Therefore φ(t) is a solution of the differential equation dφ
dt

= φ(t)XI . By writing φ(t) in terms of
f(t), one can find that f(t) = t is the only solution such that f(0) = 0 and f ′(0) = 1.

Theorem ([2] Theorem 5.4.4(b)). Let X ∈ Mn(K) be a real or complex n × n matrix. Then the
path φ(t) := etX is differentiable, and d

dt
etX = XetX = etXX .

Proof. Each of the n2 entries of etX is a power series in t. By termwise differentiation

d

dt
etX =

d

dt

(
I + tX +

1

2
t2X2 +

1

6
t3X3 + · · ·

)
= 0 +X + tX2 +

1

2
t2X3 + · · ·

which equals XetX or etXX depending on whether you factor an X out on the left or right.
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The above theorem describe an analytic property of the path φ(t) = etX . There is also an
important algebraic property of it, namely, its image is a subgroup of GLn(K).

Theorem ([2] Theorem 9.5.2). Let X ∈Mn(K) be a real or complex n×n matrix, and let (R,+)
denote the group of real numbers under the operation of addition. Then the map φ : (R,+) →
GLn(K) defined by φ(t) = etX is a group homomorphism.

A one-parameter group in a Lie group G is a homomorphism of Lie groups (a differentiable
group-homomorphism) φ : (R,+) → G. Let φ be a one-parameter group in GLn(K). Then
φ(t) = etφ

′(0) for all t, i.e., every one-parameter group in GLn(K) is of the form φ(t) = etX for
some X ∈Mn(K).

Proof. Exercise.

..x .

y

.
0

.1 .

X = i

. x.

y

.
0

. 1.

X = 1
5
+ i

. x.

y

.
0

. 1.

X = −1
2
+ i

Figure 3: Images of Some One-Parameter Groups in GL1(C).

At last we intruduce some topological properties of the exponential map.

Theorem ([4] Theorem 7.1). Let G ≤ GLn(K) be a closed matrix group, with Lie algebra g =
Lie(G) ⊆ gln(K).

(1) For all X ∈ g, eX ∈ G. In particular, if a one-parameter group in GLn(K) begins tangent to
a matrix group G, then it lies entirely in G. Consequently

g = {X ∈ gln(K) | etX ∈ G for all real t}.

(2) There exist an open neighborhood U about 0 in g such that V := expU is an open neighbor-
hood of e in G, and the restriction exp : U → V is a diffeomorphism.

(3) ([3] Corollary 0.20). exp g generates the identity component G0 (the connected component of
the identity e ∈ G).

The inverse of exp is denoted “log”, which is a smooth function defined on a neighborhood of
I in GLn(K): the series

log(I +B) = B − 1

2
B2 +

1

3
B3 − · · · = −

∞∑
k=1

(−B)k

k

converges for small matrices B, and it inverts the exponential.
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Other related exercises in [2]
§9.1 2 3 4 5 6
§9.3 1 2 4
§9.5 2 3 4 5 6 7 9 10
§9.6 1 2 3 4 5 7 8 10 11
§9.7 1 2 3
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