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Preface 

The name "real analysis" is something of an anachronism. Originally applied to the 
theory of functions of a real variable, it has come to encompass several subjects of 
a more general and abstract nature that underlie much of modem analysis. These 
general theories and their applications are the subject of this book, which is intended 
primarily as a text for a graduate-level analysis course . Chapters 1 through 7 are 
devoted to the core material from measure and integration theory, point set topology, 
and functional analysis that is a part of most graduate curricula in mathematics, 
together with a few related but less standard items with which I think all analysts 
should be acquainted. The last four chapters contain a variety of topics that are meant 
to introduce some of the other branches of analysis and to illustrate the uses of the 
preceding material . I believe these topics are all interesting and important, but their 
selection in preference to others is largely a matter of personal predilection. 

The things one needs to know in order to read this book are as follows : 

1 .  First and foremost, the classical theory of functions of a real variable : limits and 
continuity, differentiation and (Riemann) integration, infinite series, uniform 
convergence, and the notion of a metric space. 

2. The arithmetic of complex numbers and the basic properties of the complex 
exponential function ex+iy == ex (cosy + i sin y) . (More advanced results 
from complex function theory are used only in the proof of the Riesz-Thorin 
theorem and in a few exercises and remarks .) 

3. Some elementary set theory. 
vii 



viii PREFACE 

4. A bit of linear algebra - actually, not much beyond the definitions of vector 
spaces, l inear mappings, and determinants . 

All of the necessary material in ( 1 )  and (2) can be found in W. Rudin's classic Princi
ples of Mathematical Analysis (3rd ed . ,  McGraw-Hill, 1976) or its descendants such 
as R. S .  Strichatrz's The Way of Analysis (Jones and Bartlett, 1 995) or S .  G. Krantz's 
Real Analysis and Foundations (CRC Press, 1 99 1 ) . A summary of the relevant facts 
about sets and metric spaces is provided here in Chapter 0. The reader should be
gin this book by examining §0. 1 and §0.5 to become familiar with my notation and 
terminology; the rest of Chapter 0 can then be referred to as needed. 

Each chapter concludes with a section entitled "Notes and References." These 
sections contain miscellaneous remarks, acknowledgments of sources, indications 
of results not discussed in the text, references for further reading, and historical 
notes. The latter are quite sketchy, although references to more detailed sources are 
provided; they are intended mainly to give an idea of how the subject grew out of its 
classical origins. I found it entertaining and instructive to read some of the original 
papers, and I hope to encourage others to do the same. 

A sizable portion of this book is devoted to exercises. They are mostly in the 
form of assertions to be proved, and they range from trivial to difficult; hints and 
intermediate steps are provided for the more complicated ones. Every reader should 
peruse them, although only the most ambitious will try to work them all out. They 
serve several purposes: amplification of results and completion of proofs in the 
text, discussion of examples and counterexamples, applications of theorems, and 
development of further ideas . Instructors will probably wish to do some of the 
exercises in class; to maximize flexibility and minimize verbosity, I have followed 
the principle of "When in doubt, leave it as an exercise," especially with regard 
to examples. Exercises occur at the end of each section, but they are numbered 
consecutively within each chapter. In referring to them, "Exercise n" means the nth 
exercise in the present chapter unless another section is explicitly mentioned. 

The topics in the book are arranged so as to allow some flexibility of presentation. 
For example, Chapters 4 and 5 do not depend on Chapters 1-3 except for a few 
examples and exercises . On the other hand, if one wishes to proceed quickly to LP 
theory, one can skip from §3 .3 to §§5 . 1-2 and thence to Chapter 6 .  Chapters 10  
and 1 1  are independent of Chapters 8 and 9 except that the ideas i n  §8 .6 are used in 
Chapter 10. 

The new features of this edition are as follows : 

• The material on the n-dimensional Lebesgue integral ( § §2.6-7) has been rear
ranged and expanded. 

• Tychonoff's theorem (§4.6) is proved by an elegant argument recently discov
ered by Paul Chernoff. 

• The chapter on Fourier analysis has been split into two chapters (8 and 9) . 
The material on Fourier series and integrals (§ §8.3-5) has been rearranged and 
now contains the Dirichlet-Jordan theorem on convergence of Fourier series . 
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The material on distributions (§§9. 1-2) has been extensively rewritten and 
expanded. 

• A section on self-similarity and Hausdorff dimension (§ 1 1 .3) has been added, 
replacing the outdated calculation of the Hausdorff dimension of Cantor sets 
in the old § 1 0.2 . 

• Innumerable small changes have been made in the hope of improving the 
exposition. 

The writer of a text on such a well-developed subject as real analysis must neces
sarily be indebted to his predecessors . I kept a large supply of books on hand while 
writing this one; they are too numerous to list here, but most of them can be found 
in the bibliography. I am also happy to acknowledge the influence of two of my 
teachers : the late Lynn Loomis, from whose lectures I first learned this subject, and 
Elias Stein, who has done much to shape my point of view. Finally, I am grateful to 
a number of people - especial ly Steven Krantz, Kenneth Ross, and William Faris 
- whose comments and corrigenda concerning the first edition have helped me to 
prepare the new one. 

GERALD B. FOLLAND 
Seattle, Washington 
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Real Analysis 





Prologue 

The purpose of this introductory chapter is to establish the notation and terminology 
that will be used throughout the book and to present a few diverse results from set 
theory and analysis that will be needed later. The style here is deliberately terse, 
since this chapter is intended as a reference rather than a systematic exposition. 

0.1 TH E LANG UAG E  OF SET TH EORY 

It is assumed that the reader is familiar with the basic concepts of set theory; the 
following discussion is meant mainly to fix our terminology. 

Number Systems . Our notation for the fundamental number systems is as 
follows: 

N = the set of positive integers (not including zero) 
Z = the set of integers 
<Q = the set of rational numbers 
lR = the set of real numbers 
<C = the set of complex numbers 

Logic. We shall avoid the use of special symbols from mathematical logic, 
preferring to remain reasonably close to standard English. We shall, however, use 
the abbreviation iff for "if and only if." 

One point of elementary logic that is often insufficiently appreciated by students 
is the following: If A and B are mathematical assertions and -A, -B are their 

1 



2 PROLOGUE 

negations, the statement "A implies B" is logically equivalent to the contrapositive 
statement "-B implies -A." Thus one may prove that A implies B by assuming -B 
and deducing -A, and we shall frequently do so. This is not the same as reductio ad 
absurdum, which consists of assuming both A and -B and deriving a contradiction. 

Sets . The words "family" and "collection" will be used synonymously with 
"set," usually to avoid phrases like "set of sets ." The empty set is denoted by 0, and 
the family of all subsets of a set X is denoted by P(X) :  

P(X) = { E :  E c X} .  
Here and elsewhere, the inclusion sign c is interpreted in the weak sense; that is, the 
assertion "E c X" includes the possibility that E = X. 

If £ is a family of sets, we can form the union and intersection of its members : 

U E = { x : x E E for some E E £}, 
EE£ 
n E = {X : X E E for all E E £}. 

EE£ 

Usually it is more convenient to consider indexed families of sets : 

in which case the union and intersection are denoted by 

If Ea n Ef3 = 0 whenever a =/= {3, the sets Ea are called disjoint. The terms "disjoint 
collection of sets" and "collection of disjoint sets" are used interchangeably, as are 
"disjoint union of sets" and "union of disjoint sets ." 

When considering families of sets indexed by N, our usual notation will be 

and likewise for unions and intersections. In this situation, the notions of limit 
superior and limit inferior are sometimes useful : 

00 00 

lim sup En = n U En , 
k=l n=k 

The reader may verify that 

00 00 

lim inf En = U n En . 
k= l n=k 

lim sup En = { x : x E En for infinitely many n}, 
lim inf En = { x : x E En for all but finitely many n} .  



THE LANGUAGE OF SET THEORY 3 

If E and F are sets, we denote their difference by E \ F: 

E \ F = { x : x E E and x � F} ,  

and their symmetric difference by E�F: 

E � F == ( E \ F) u ( F \ E) . 

When it is clearly understood that all sets in question are subsets of a fixed set X, we 
define the complement Ec of a set E (in X): 

In this situation we have deMorgan's laws: 

( u E, r = n E�' (n E,r = u E�. 
aEA nEA nEA nEA 

If X and Y are sets, their Cartesian product X x Y is the set of all ordered pairs 
(x, y) such that x E X and y E Y. A relation from X to Y is a subset of X x Y. 
(If Y == X, we speak of a relation on X.) If R is a relation from X to Y, we shall 
sometimes write xRy to mean that (x, y) E R. The most important types of relations 
are the following: 

• Equivalence relations . An equivalence relation on X is a relation R on X 
such that 

xRx for all x E X, 
xRy iff yRx, 
xRz whenever xRy and yRz for some y. 

The equivalence class of an element x is {y E X : xRy} .  X is the disjoint 
union of these equivalence classes . 

• Orderings. See §0.2. 

• Mappings . A mapping f : X -t Y is a relation R from X to Y with the 
property that for every x E X there is a unique y E Y such that xRy, in which 
case we write y == f(x) . Mappings are sometimes called maps or functions; 
we shall generally reserve the latter name for the case when Y is <C or some 
subset thereof. 

If f : X -t Y and g : Y -t Z are mappings, we denote by go f their composition: 

go f :  X -t Z, go f(x) == g (f(x) ) . 

If D c X and E c Y, we define the image of D and the inverse image of E 
under a mapping f : X -t Y by 

f(D) == {f(x) :x E D}, f- 1 (E) == { x : f(x) E E}. 
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It is easily verified that the map f-1 : P(Y) -t P( X) defined by the second formula 
commutes with union, intersections, and complements : 

f-1 ( U Ea) = U f-1(Ea), f-1 ( n Ea) = n f-1(Ea), 
nEA nEA nEA nEA 

(The direct image mapping f : P(X) -t P(Y) commutes with unions, but in general 
not with intersections or complements .) 

Iff : X -t Y is a mapping, X is called the domain of f and f(X) is called the 
range of f. f is said to be injective if j(x1) = j(x2) only when x1 = x2, surjective 
if f(X) = Y, and bijective if it is both injective and surjective. If f is bijective, it 
has an inverse f-1 : Y -t X such that f-1 of and f o f-1 are the identity mappings 
on X and Y, respectively. If A c X, we denote by JIA the restriction of f to A: 

(! lA) : A -t Y, (fiA)(x) = f(x) for x EA. 

A sequence in a set X is a mapping from N into X. (We also use the term finite 
sequence to mean a map from {1, . . . , n} into X where n E N.) If f : N -t X is a 
sequence and g : N -t N satisfies g(n) < g(m) whenever n < m, the composition 
fog is called a subsequence of f . It is common, and often convenient, to be careless 
about distinguishing between sequences and their ranges, which are subsets of X 
indexed by N. Thus, if f(n) = Xn, we speak of the sequence {xn}! ; whether we 
mean a mapping from N to X or a subset of X will be clear from the context. 

Earlier we defined the Cartesian product of two sets . Similarly one can define the 
Cartesian product of n sets in terms of ordered n-tuples. However, this definition 
becomes awkward for infinite families of sets, so the following approach is used 
instead. If { Xn} nEA is an indexed family of sets, their Cartesian product TinEA Xn 
is the set of all maps f : A-t UnEA Xn such that f(n) E Xn for every n E A. (It 
should be noted, and then promptly forgotten, that when A = {1, 2} ,  the previous 
definition of X 1 X x2 is set-theoretically different from the present definition of 
Tii X j. Indeed, the latter concept depends on mappings, which are defined in terms 
of the former one. )  If X = TinEA Xn and n E A, we define the nth projection or 
coordinate map 7rn :X -t Xn by 7rn(f) = f(n). We also frequently write x and 
Xn instead of f and f ( n) and call Xn the nth coordinate of x. 

If the sets Xn are all equal to some fixed set Y, we denote TinEA Xn by YA : 

Y A = the set of all mappings from A to Y. 

If A = { 1, . . . , n} , Y A i s denoted by yn and may be identified with the set of ordered 
n-tuples of elements of Y .  

0.2 ORDERINGS 

A partial ordering on a nonempty set X is a relation R on X with the following 
properties: 



• if xRy and yRz, then xRz; 
• if xRy and yRx, then x == y; 

• xRx for all x. 
If R also satisfies 

• if x, y E X, then either xRy or yRx, 

ORDERINGS 5 

then R is called a linear (or total) ordering. For example, if E is any set, then P( E) 
is partially ordered by inclusion, and IR is linearly ordered by its usual ordering. 
Taking this last example as a model, we shall usually denote partial orderings by 
< , and we write x < y to mean that x < y but x =/= y. We observe that a partial 
ordering on X naturally induces a partial ordering on every nonempty subset of X. 
Two partially ordered sets X and Y are said to be order isomorphic if there is a 
bijection f :  X -t Y such that x1 < x2 iff j(x1 ) < j(x2 ) .  

If X is partially ordered by < , a maximal (resp. minimal) element of X is an 
element x E X such that the only y E X satisfying x < y (resp. x > y) is x itself. 
Maximal and minimal elements may or may not exist, and they need not be unique 
unless the ordering is linear. If E c X, an upper (resp. lower) bound for E is an 
element x E X such that y < x (resp. x < y) for all y E E. An upper bound for E 
need not be an element of E, and unless E is linearly ordered, a maximal element of 
E need not be an upper bound for E. (The reader should think up some examples.) 

If X is linearly ordered by < and every nonempty subset of X has a (necessarily 
unique) minimal element, X is said to be well ordered by < , and (in defiance of the 
laws of grammar) < is called a well ordering on X. For example, N is well ordered 
by its natural ordering. 

We now state a fundamental principle of set theory and derive some consequences 
of it. 

0.1 The Hausdorff Maximal Principle. Every partially ordered set has a maximal 
linearly ordered subset. 

In more detail , this means that if X is partially ordered by <, there is a set E c X 
that is linearly ordered by < , such that no subset of X that properly includes E is 
linearly ordered by <. Another version of this principle is the following: 

0.2 Zorn's Lemma. If X is a partially ordered set and every linearly ordered subset 
of X has an upper bound, then X has a maximal element. 

Clearly the Hausdorff maximal principle implies Zorn's lemma: An upper bound 
for a maximal linearly ordered subset of X is a maximal element of X. It is also not 
difficult to see that Zorn's lemma implies the Hausdorff maximal principle . (Apply 
Zorn's lemma to the collection of linearly ordered subsets of X, which is partially 
ordered by inclusion.) 

0.3 The Well Ordering Principle. Every nonempty set X can be well ordered. 
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Proof. Let W be the collection of well orderings of subsets of X, and define a 
partial ordering on W as follows. If < 1 and <2 are well orderings on the subsets 
E1 and E2 , then < 1 precedes <2 in the partial ordering if (i) <2 extends < 1 , i .e . ,  
E1 c E2 and < 1 and <2 agree on E1 , and (ii) if x E E2 \ E1 then y <2 x for all 
y E E1 . The reader may verify that the hypotheses of Zorn's lemma are satisfied, so 
that W has a maximal element. This must be a well ordering on X itself, for if < is 
a well ordering on a proper subset E of X and x0 E X\ E, then < can be extended 
to a well ordering on E U { x0} by declaring that x < xo for all x E E. 1 

0.4 The Axiom of Choice. If { Xn}nEA is a nonempty collection ofnonempty sets, 
then TinEA Xn is nonempty. 

Proof. Let X = UnEA Xn. Pick a well ordering on X and, for a E A, let f (a) 
be the minimal element of Xn. Then f E TinEA Xn. 1 

0.5 Corollary. If {X n} nEA is a disjoint collection of nonempty sets, there is a set 
Y C UnEA Xn such that Y n Xn contains precisely one element for each a E A. 

Proof. Take Y = f(A) where f E TinEA Xn. I 
We have deduced the axiom of choice from the Hausdorff maximal principle; in 

fact, it can be shown that the two are logically equivalent. 

0.3 CARDINALITY 

If X and Y are nonempty sets, we define the expressions 

card(X) < card(Y), card(X) = card(Y), card(X) > card(Y) 

to mean that there exists f X --+ Y which is injective, bijective, or surjective , 
respectively. We also define 

card(X) < card(Y), card(X) > card(Y) 

to mean that there is an injection but no bijection, or a surjection but no bijection, 
from X to Y. Observe that we attach no meaning to the expression "card( X)" when 
it stands alone; there are various ways of doing so, but they are irrelevant for our 
purposes (except when X is finite - see below) . These relationships can be extended 
to the empty set by declaring that 

card(0) <card( X) and card( X) > card(0) for all X=/= 0. 

For the remainder of this section we assume implicitly that all sets in question are 
nonempty in order to avoid special arguments for 0. Our first task is to prove that 
the relationships defined above enjoy the properties that the notation suggests. 



0.6 Proposition. card (X) < card (Y) (ff card (Y) > card (X). 
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Proof. If f : X -t Y is injective, pick xo E X and define g : Y -t X by 
g (y) = f- 1 (y) if y E f(X) ,  g (y) = x0 otherwise. Then g is surjective . Conversely, 
if g : Y -t X is surjective, the sets g- 1 ( { x})  (x E X) are nonempty and disjoint, so 
any f E llxEX g- 1 ( { x} )  is an injection from X to Y. 1 

0.7 Proposition. For any sets X andY, either card (X) < card (Y) or card (Y) < 
card (X) .  

Proof. Consider the set :J of all injections from subsets of X to Y. The members 
of :J can be regarded as subsets of X x Y, so :J is partially ordered by inclusion. It is 
easily verified that Zorn's lemma applies, so :J has a maximal element f, with (say) 
domain A and range B. If x0 E X \ A and y0 E Y \ B, then f can be extended 
to an injection from AU { xo } to Y U {yo } by setting f(x0 ) = y0 , contradicting 
maximality. Hence either A = X, in which case card ( X) < card (Y) , or B =  Y, in 
which case f- 1 is an injection from Y to X and card (Y) < card ( X) . 1 

0.8 The Schroder-Bernstein Theorem. If card (X) < card (Y) and card (Y) < 
card ( X) then card ( X) = card (Y). 

Proof. Let f : X -t Y and g : Y -t X be injections. Consider a point x E X: 
If x E g(Y) ,  we form g- 1 (x) E Y; if g- 1 (x) E f(X) ,  we form f- 1 (g- 1 (x) ) ;  and 
so forth. Either this process can be continued indefinitely, or it terminates with an 
element of X \ g (Y) (perhaps x itself), or it terminates with an element of Y \ f(X) .  
In these three cases we say that x is in X00, Xx , or Xy; thus X is the disjoint union 
of X oo , X x,  and X y. In the same way, Y is the disjoint union of three sets Y oo , Y x ,  
and Yy. Clearly f maps Xoo onto Y 00 and Xx onto Yx , whereas g maps Yy onto 
Xy. Therefore, if we define h :  X -t Y by h (x) = f(x) if X E Xoo U Xx and 
h (x) = g- 1 (x) if x E Xy, then h is bijective . 1 

0.9 Proposition. For any set X, card ( X) < card (P(X) ) . 

Proof. On the one hand, the map f(x) = {x} is an injection from X to P(X) . 
On the other, if g: X -t P(X) ,  let Y = {x E X :  x � g(x) } .  Then Y � g(X) ,  for 
if Y = g (x0 ) for some x0 E X, any attempt to answer the question "Is xo E Y?" 
quickly leads to an absurdity. Hence g cannot be surjective . 1 

A set X is called countable (or denumerable) if card (X) < card (N) . In 
particular, all finite sets are countable, and for these it is convenient to interpret 
"card ( X)"  as the number of elements in X: 

card ( X) = n iff card ( X) = card( { 1 ,  . . .  , n} ) .  

If X is countable but not finite, we say that X is countably infinite. 
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0.10 Proposition. 

a. If X andY are countable, so is X x Y. 
b . If A is countable and X a. is countable for every a E A, then Ua.EA X a. is 

countable. 
c. If X is countably infinite, then card ( X) = card (N). 

Proof. To prove (a) it suffices to prove that N2 is countable. But we can define 
a bijection from N to N2 by listing, for n successively equal to 2, 3, 4, . . .  , those 
elements (j, k) E N2 such that j + k = n in order of increasing j, thus : 

( 1 ,  1 ) , ( 1 , 2), (2, 1 ) , ( 1 , 3) ,  (2, 2), (3 , 1 ) , ( 1 , 4), (2, 3) , (3 , 2), (4, 1 ) , . . .  

As for (b) , for each a E A there is a surjective fa. : N ---t Xa. , and then the map 
f : N x A ---t Ua.EA X a. defined by f ( n, a) = fa. ( n) is surjective; the result therefore 
follows from (a) .  Finally, for (c) it suffices to assume that X is an infinite subset 
of N. Let f ( 1 )  be the smallest element of X, and define f ( n) inductively to be the 
smallest element of E \ {! ( 1  ), . . .  , f (  n - 1 )  } .  Then f is easily seen to be a bijection 
from N to X. 1 

0.11 Corollary. Z and Q are countable. 

Proof. Z is the union of the countable sets N, {-n : n E N}, and {0} ,  and one 
can define a surjection f : Z2 ---t Q by f ( m, n) = m / n if n =I= 0 and f ( m, 0) = 0. 1 

A set X is said to have the cardinality of the continuum if card (X) = card (IR) . 
We shall use the letter c as an abbreviation for card (IR) : 

card (X) = c iff card (X) = card (IR) . 

0.12 Proposition. card (P(N) ) = c. 

Proof. If A C N, define f(A) E lR to be l:nEA 2-n if N \ A is infinite and 
1 + l:nEA 2-n if N \ A  is finite. (In the two cases, f (A) is the number whose base-2 
decimal expansion is O.a1a2 · · · or 1 . a1a2 · · ·, where an = 1 if n E A and an = 0 
otherwise.) Then f : P(N) ---t lR is injective. On the other hand, define g : P(Z) ---t lR 
by g (A) = log(l:nEA 2-n) if A is bounded below and g (A) = 0 otherwise .  Then 
g is surjective since every positive real number has a base-2 decimal expansion. 
Since card (P(Z) ) = card (P(N) ) ,  the result follows from the Schroder-Bernstein 
theorem. 1 

0.13 Corollary. If card ( X) > c, then X is uncountable. 

Proof. Apply Proposition 0.9. I 
The converse of this corollary is the so-called continuum hypothesis, whose va

lidity is one of the famous undecidable problems of set theory; see §0 . 7 .  
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0.14 Proposition. 

a. lfcard (X) < c andcard (Y) < c, thencard (X x Y) < c. 
b. lfcard (A) < c and card (Xa ) < cfor all a E A, then card (UaEA Xa ) < c. 
Proof. For (a) it suffices to take X = Y = P(N) . Define ¢, 'ljJ : N -t N by 

¢(n) = 2n and 'l/J(n) = 2n - 1 . It is then easy to check that the map f : P(N) 2 -t 

P(N) defined by f (A, B) == ¢(A) u 'ljJ(B) is bijective . (b) follows from (a) as in the 
proof of Proposition 0. 1 0. 1 

0.4 MORE ABOUT WELL ORDERED SETS 

The material in this section is optional ; it is used only in a few exercises and in some 
notes at the ends of chapters . 

Let X be a well ordered set. If A c X is nonempty, A has a minimal element, 
which is its maximal lower bound or infimum; we shall denote it by inf A .  If A is 
bounded above, it also has a minimal upper bound or supremum, denoted by sup A. 
If x E X, we define the initial segment of x to be 

lx = {y E X  : Y < X}. 
The elements of Ix are called predecessors of x. 

The principle of mathematical induction is equivalent to the fact that N is well 
ordered. It can be extended to arbitrary well ordered sets as follows : 

0.15 The Principle of Transfinite Induction. Let X be a well ordered set. If A is 
a subset of X such that x E A whenever Ix C A, then A == X. 

Proof. If X =/= A, let x = inf(X \ A) .  Then Ix C A but x � A. I 

0.16 Proposition. If X is well ordered and A C X, then UxEA Ix is either an initial 
segment or X itself. 

Proof. Let J = UxEA Ix. If J =/= X, let b = inf(X \ J) . If there existed y E J 
with y > b, we would have y E Ix for some x E A and hence b E Ix, contrary to 
construction. Hence J c Ib, and it is obvious that Ib c J. 1 

0.17 Proposition. If X and Y are well ordered, then either X is order isomorphic 
to Y, or X is order isomorphic to an initial segment in Y, or Y is order isomorphic 
to an initial segment in X. 

Proof. Consider the set 1' of order isomorphisms whose domains are initial 
segments in X or X itself and whose ranges are initial segments in Y or Y itself. 
1' is nonempty since the unique f : {inf X} -t { inf Y} belongs to 1', and :J is 
partially ordered by inclusion (its members being regarded as subsets of X x Y). 
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An application of Zorn's lemma shows that 1' has a maximal element f ,  with (say) 
domain A and range B. If A =  Ix and B = Iy , then A U  {x} and B U {y} are 
again initial segments of X and Y, and f could be extended by setting f ( x) = y, 
contradicting maximality. Hence either A = X or B = Y (or both), and the result 
follows. 1 

0.18 Proposition. There is an uncountable well ordered set 0 such that Ix is count
able for each X E 0. lfO' is another set with the same properties, then 0 and 0' are 
order isomorphic. 

Proof. Uncountable well ordered sets exist by the well ordering principle; let X 
be one. Either X has the desired property or there is a minimal element x0 such that 
Ix0 is uncountable, in which case we can take 0 = Ix0• If 0' is another such set, 0' 
cannot be order isomorphic to an initial segment of 0 or vice versa, because 0 and 
0' are uncountable while their initial segments are countable, so 0 and 0' are order 
isomorphic by Proposition 0. 17 . 1 

The set n in Proposition 0. 1 8, which is essentially unique qua well ordered set, is 
called the set of countable ordinals. It has the following remarkable property: 

0.19 Proposition. Every countable subset ofO has an upper bound. 

Proof. If A c 0 is countable, UxEA Ix is countable and hence is not all of 0. 
By Proposition 0. 1 6, there exists y E 0 such that UxEA Ix = ly , and y is thus an 
upper bound for A. 1 

The set N of positive integers may be identified with a subset of 0 as follows. Set 
f(l) = inf 0, and proceeding inductively, set f( n) = inf(O \ {f(l ) , ... , f( n -1)} ) . 
The reader may verify that f is an order isomorphism from N to Iw, where w is the 
minimal element of 0 such that Iw is infinite .  

It is sometimes convenient to add an extra element w1 to 0 to form a set 0* = 
fl U {WI} and tO extend the ordering On 0 tO 0* by declaring that X < WI for all 
X E 0. WI is called the first uncountable ordinal. (The usual notation for WI is 0, 
since WI is generally taken to be the set of countable ordinals itself. )  

0.5 TH E EXTENDED REAL NUMBER SYSTEM 

It is frequently useful to adjoin two extra points oo (= +oo) and -oo to 1R to form the 
extended real number system 1R = lR u {-oo, oo} , and to extend the usual ordering 
on 1R by declaring that -oo < x < oo for all x E JR. The completeness oflR can then 
be stated as follows : Every subset A of lR has a least upper bound, or supremum, 
and a greatest lower bound, or infimum, which are denoted by sup A and inf A. If 
A =  {a I, ... an } , we also write 

max(ai, ... , an ) = sup A, min( a I, ... , an ) = inf A. 
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From completeness it follows that every sequence { xn } in 1R has a limit superior 
and a limit inferior: 

lim sup Xn == inf (sup xn) , k>l n >k 
lim inf Xn == sup ( inf xn) . 

k>l n >k 

The sequence { Xn } converges (in JR) iff these two numbers are equal (and finite) , in 
which case its limit is their common value. One can also define lim sup and l im inf 
for functions f : 1R � JR, for instance: 

lim sup f(x) == inf ( sup f(x )) . 
x�a 8>0 O<jx-aj<8 

The arithmetical operations on 1R can be partially extended to JR: 

x ± oo == ±oo (x E JR), oo + oo == oo, -oo - oo == -oo,  

x · (±oo) == ±oo (x > 0), x · (±oo) == =foo (x < 0). 

We make no attempt to define oo - oo, but we abide by the convention that, unless 
otherwise stated, 

0 · (±oo) == 0. 

(The expression 0 · oo turns up now and then in measure theory, and for various 
reasons its proper interpretation is almost always 0.) 

We employ the following notation for intervals in JR: if -oo < a < b < oo, 

(a , b) == { x : a < x < b} , 
(a, b] == { x : a < x < b} , 

[a, b] == { x : a < x < b} , 
[a, b) == { x : a < x < b} . 

We shall occasionally encounter uncountable sums of nonnegative numbers . If X 
is an arbitrary set and f : X � [0, oo ] , we define L:xEX f(x) to be the supremum 
of its finite partial sums : 

L f(x) = sup{ L f(x): F C X, F finite} · 
xEX xEF 

(Later we shall recognize this as the integral of f with respect to counting measure 
on X .) 

0.20 Proposition. Given f : X � [0, oo] , let A = {x : f(x) > 0}. If A is 
uncountable, then l:xEX f ( x) == oo. If A is countably infinite, then l:xEX f ( x) == 

2:� f(g(n)) where g : N � A is any bijection and the sum on the right is an 
ordinary infinite series. 

Proof. We have A == U� An where An == {x : f(x) > 1/n}. If A is 
uncountable, then some An must be uncountable, and l:xEF f(x) > card(F)/n for 
F a finite subset of An ; it follows that L:xEX f ( x) == oo. If A is countably infinite ,  
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g : N -t A is a bijection, and B N = g(  { 1, . . .  , N}), then every finite subset F of A 
is contained in some B N . Hence 

N 

L f(x) < L f(g (n) ) < L f(x) . 
xEF  1 xEX 

Taking the supremum over N, we find 
00 

L f(x) < L f(g (n) ) < L f(x) , 
xEF 1 xEX 

and then taking the supremum over F, we obtain the desired result. 1 
Some terminology concerning (extended) real-valued functions : A relation be

tween numbers that is applied to functions is understood to hold pointwise. Thus 
f < g means that f(x) < g(x) for every x, and max(/, g) is the function whose 
value at x is max(f(x) , g (x) ) .  If X c 1R and f: X -t IR, f is called increasing 
if f (x) < f(y) whenever x < y and strictly increasing if f (x) < f(y) whenever 
x < y; similarly for decreasing. A function that is either increasing or decreasing is 
called monotone. 

If f : 1R -t 1R is an increasing function, then f has right- and left-hand limits at 
each point: 

f (a+) = lim f (x) = inf f (x) , x�a  x>a f(a-) = lim f(x) = sup f(x) . x/a x<a  

Moreover, the limiting values ! ( oo) = supaElR f(x) and f (-oo) = infaElR f (x) 
exist (possibly equal to ±oo ) .  f is  called right continuous if f (a) == f (a+) for all 
a E 1R and left continuous if f (a) = f(a-) for all a E JR. 

For points x in 1R or C, l x l  denotes the ordinary absolute value or modulus of x, 
Ia  + ibl = J a2 + b2 . For points X in ]Rn or en ' l xl denotes the Euclidean norm: 

n 1 /2 
l xl = [L l xj l 2] · 

1 
We recall that a set U c 1R is open if, for every x E U, U includes an interval 

centered at x. 

0.21 Proposition. Every open set in 1R is a countable disjoint union of open intervals. 

Proof. If U is open, for each x E U consider the collection j x of al l open 
intervals I such that x E I c U. It is easy to check that the union of any family 
of open intervals containing a point in common is again an open interval, and hence 
lx = UJE:Jx I is an open interval ; it is the largest element of J x· If x, y E U then 
either J x = J y or J x n J y = 0, for otherwise J x u J y would be a larger open interval 
than lx in J X ·  Thus if a = { lx : X E U}, the (distinct) members of a are disjoint, 
and u = UJE8 J. For each J E a, pick a rational number f(J) E J. The map 
f : a -t Q thus defined is injective, for if J =I= J' then J n J' = 0; therefore a is 
countable. 1 
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A metric on a set X is a function p : X x X -t [0, oo) such that 

e p( X, y) = 0 iff X == y; 

• p ( x, y) = p(y, x) for all x, y E X; 

• p(x, z) < p(x, y) + p(y, z) for all x, y ,  z EX. 

(Intuitively, p( x, y) is to be interpreted as the distance from x to y.) A set equipped 
with a metric is called a metric space. Some examples : 

i .  The Euclidean distance p(x, y) = !x - Yl is a metric on JRn. 

i i .  Pl(f,g) = f0
1
lf(x) - g(x)l dx and Poo(f,g) = SUPo<x<l l f(x) - g(x)l are 

metrics on the space of continuous functions on [0, 1 ] .- -

111. If p is a metric on X and A c X, then pi(A x A) is a metric on A. 

iv. If (Xl, Pl) and (X2, P2) are metric spaces, the product metric p on xl X x2 
is given by 

Other metrics are sometimes used on X1 x X2, for instance, 

These, however, are equivalent to the product metric in the sense that we shall 
define at the end of this section . 

Let (X, p) be a metric space. If x E X and r > 0, the (open) ball of radius r 

about x is 
B(r,x) = {y EX: p(x,y) < r } . 

A set E c X is open if for every x E E there exists r > 0 such that B(r, x) c E, 
and closed if its complement is open. For example, every ball B(r, x) is open, for 
if y E B(r, x) and p(x, y) = s then B(r - s, y) c B(r, x) . Also, X and 0 are 
both open and closed. Clearly the union of any family of open sets is open, and 
hence the intersection of any family of closed sets is closed. Also, the intersection 
(resp. union) of any finite family of open (resp. closed) sets is open (resp. closed) . 
Indeed, if ul' ... u n are open and X E n� uj' for each j there exists r j > 0 such that 
B(rJ, x) c Uj , and then B(r, x) c n� UJ where r = min(r1, . . .  , rn), son� Uj is 
open. 

If E c X, the union of all open sets U c E is the largest open set contained in E; 
it is called the interior of E and is denoted by E0• Likewise, the intersection of all 
closed sets F :) E is the smallest closed set containing E; it is called the closure of 
E and is denoted by E. E is said to be dense in X if E = X , and nowhere dense if 
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E has empty interior. X is called separable if it has a countable dense subset. (For 
example, Qn is a countable dense subset oflRn .) A sequence {xn } in X converges 
to x E X (symbolical ly :  Xn -t x or lim Xn == x) if limn__.00 p(xn , x) == 0. 

0.22 Proposition. If X is a metric space, E C X, and x E X, the following are 
equivalent: 

a. x E E. 
b. B(r, x) n E =/= 0 for all r > 0. 

c. There is a sequence { Xn } in E that converges to x. 

Proof. If B(r, x) n E == 0, then B(r, x) c is a closed set containing E but not 
x, so x f/:. E. Conversely, if x f/:. E, since (E) c is open there exists r > 0 such 
that B(r, x) c (E) c c Ec . Thus (a) is equivalent to (b) . If (b) holds, for each 
n E N there exists Xn E B(n- 1 , x) n E, so that Xn -t x. On the other hand, if 
B(r, x) n E == 0, then p(y ,  x) > r for all y E E, so no sequence of E can converge 
to x. Thus (b) is equivalent to (c) . 1 

If (X 1 , P1 ) and (X 2 , P2 ) are metric spaces, a map f : X 1 -t X 2 is called contin
uous at x EX if for every E > 0 there exists 8 > 0 such that P2 (f (y) , f(x) ) < E 
whenver p1 (x , y) < 8 - in other words, such that f- 1 (B(E ,j(x) ) )  � B(8, x) . The 
map f is called continuous if it is continuous at each x E X 1 and uniformly contin
uous if, in addition, the 8 in the definition of continuity can be chosen independent 
of x. 

0.23 Proposition. f: X1 -t X2 is continuous iff f- 1 (U) is open in X1 for every 
open u c x2. 

Proof. If the latter condition holds, then for every x E X 1 and E > 0, the set 
f- 1 ( B ( E, f ( x) ) )  is open and contains x, so it contains some ball about x; this means 
that f is continuous at x .  Conversely, suppose that f is continuous and U is open 
in X 2 • For each y E U there exists Ey > 0 such that B ( Ey , y) c U, and for each 
x E f- 1 ( {y} )  there exists 8x > 0 such that B(8x , x) C f- 1 (B(Ey , y) ) C f- 1 (U) . 
Thus f- 1 (U) == UxEJ-l(U) B(8x , x) is open. 1 

A sequence { Xn } in a metric space (X, p) is called Cauchy if p( Xn , Xm ) -t 0 
as n, m -t oo. A subset E of X is called complete if every Cauchy sequence in 
E converges and its limit is in E. For example, IRn (with the Euclidean metric) is 
complete, whereas Qn is not. 

0.24 Proposition. A closed subset of a complete metric space is complete, and a 
complete subset of an arbitrary metric space is closed. 

Proof. If X is complete, E c X is closed, and { xn } is a Cauchy sequence in E, 
{xn} has a limit in X. By  Proposition 0. 22, x E E = E. If E C X is complete and 
x E E, by Proposition (0. 22) there is a sequence { xn } in E converging to x. { xn } 
is Cauchy, so its limit lies in E; thus E = E. 1 
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In a metric space (X, p) we can define the distance from a point to a set and the 
distance between two sets. Namely, if x EX and E, F c X, 

p(x ,  E) = inf{p(x ,  y) : y E E}, 
p(E, F) = inf {p(x, y) : x E E, y E F} = inf{p(x, F) : x E E} . 

Observe that, by Proposition 0 .22, p(x, E) == 0 iff x E E. We also define the 
diameter of E c X to be 

diam E == sup{p(x, y) : x ,  y E E} . 
E is called bounded if diam E < oo. 

If E C X and {Va}aEA is a family of sets such that E C UaEA Va, {Va}aEA 
is called a cover of E, and E is said to be covered by the Va 's .  E is called totally  
bounded if, for every E > 0, E can be covered by finitely many balls of radius E. 
Every totally bounded set is bounded, for if x , y  E u� B(E,Zj), say X E B(t:,z1) 
and y E B( E, z2), then 

p(x, y ) < p(x, z1) + p(z1, z2) + p(z2, y) < 2E + max{p(zj, zk) : 1 < j, k < n } . 
(The converse is false in general .) If E is totally bounded, so is E, for it is easily  
seen that if E c u� B( E, Zj ) , then E c u� B(2E, Zj ). 

0.25 Theorem. If E is a subset of the metric space (X, p), the following are equiv
alent: 

a. E is complete and totally bounded. 
b. (The Bolzano-Weierstrass Property) Every sequence in E has a subsequence 

that converges to a point of E. 
c. (The Heine-Bore] Property) If {Va}aEA is a cover of E by open sets, there 

is a finite set F C A such that {Va}aEF covers E. 

Proof. We shall show that (a) and (b) are equivalent, that (a) and (b) together 
imply (c), and finally that (c) implies (b) . 

(a) implies (b) : Suppose that (a) holds and { xn} is a sequence in E. E can be 
covered by finitely many balls of radius 2-1, and at least one of them must contain Xn 
for infinitely many n: say, Xn E B1 for n E N1. E n  B1 can be covered by finitely 
many balls of radius 2-2, and at least one of them must contain Xn for infinitely many 
n E N1: say, Xn E B2 for n E N2. Continuing inductively, we obtain a sequence 
of balls Bj of radius 2-j and a decreasing sequence of subsets Nj of N such that 
Xn E Bj for n E Nj. Pick n1 E N1, n2 E N2, . . . such that n1 < n2 < · · · . 

Then { Xni} is a Cauchy sequence, for p(xni, Xnk) < 21-j if k > j, and since E is 
complete, it has a limit in E. 

(b) implies (a) : We show that if either condition in (a) fails, then so does (b) . If 
E is not complete, there is a Cauchy sequence { xn} in E with no limit in E. No 
subsequence of { xn} can converge in E, for otherwise the whole squence would 
converge to the same limit. On the other hand, if E is not totally bounded, let E > 0 
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be such that E cannot be covered by finitely many balls of radius E. Choose Xn E E 
inductively as follows . Begin with any x1 E E, and having chosen x1, . . . , Xn , 
pick Xn+l E E \ u� E(E, Xj)· Then p(xn,Xm) > E for all n,m, so {xn} has no 
convergent subsequence. 

(a) and (b) imply (c) : It suffices to show that if (b) holds and {Va}aEA is a cover 
of E by open sets, there exists E > 0 such that every ball of radius E that intersects 
E is contained in some Va, for E can be covered by finitely many such balls by (a) . 
Suppose to the contrary that for each n E N there is a ball En of radius 2-n such 
that En n E -=/= 0 and En is contained in no Va. Pick Xn E En n E; by passing to a 
subsequence we may assume that {xn} converges to some x E E. We have x EVa 
for some a, and since Va is open, there exists E > 0 such that E( E ,  x) c Va. But if \ 
n is large enough so that p(xn, x) < E/3 and 2-n < E/3, then En C E(E, x) C Va, 
contradicting the assumption on En . 

(c) implies (b) : If { Xn} is a sequence in E with no convergent subsequence, for 
each x E E there is a ball Ex centered at x that contains Xn for only finitely many n 
(otherwise some subsequence would converge to x). Then { Ex}xEE is a cover of E 
by open sets with no finite subcover. 1 

A set E that possesses the properties (a)-( c) of Theorem 0.25 is called compact. 
Every compact set is closed (by Proposition 0.24) and bounded; the converse is false 
in general but true in lRn. 

0.26 Proposition. Every closed and bounded subset oflRn is compact. 

Proof Since closed subsets of IRn are complete, it suffices to show that bounded 
subsets of �n are totally bounded. Since every bounded set is contained in some 
cube 

Q = [-R,R]n = {x E IRn: max(lx1 !, . . .  , lxnl) < R}, 

it is enough to show that Q is totally  bounded. Given E > 0, pick an integer 
k > R-..jTijE, and express Q as the union of kn congruent subcubes by dividing the 
interval [-R, R] into k equal pieces . The side length of these subcubes is 2R/ k and 
hence their diameter is -JTi(2R/ k) < 2 E, so they are contained in the balls of radius 
E about their centers . 1 

Two metrics P1 and p2 on a set X are called equivalent if 

C Pl < P2 < C' P1 for some C, C' > 0. 

It is easily verified that equivalent metrics define the same open, closed, and compact 
sets , the same convergent and Cauchy sequences, and the same continuous and uni
formly continuous mappings. Consequently, most results concerning metric spaces 
depend not on the particular metric chosen but only on its equivalence class. 

0.7 NOTES AN D REFERENCES 

§ §0 . 1-0.4: The best exposition of set theory for beginners is Halmos [63 ] ,  and 
Smullyan and Fitting [ 1 35] is a good text on a more advanced level . Kelley [83] 
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also contains a concise account of of basic axiomatic set theory. All of these books 
present a deduction of the Hausdorff maximal principle from the axiom of choice, as 
does Hewitt and Stromberg [76] . 

The axiom of choice (or one of the propositions equivalent to it) is generally taken 
as one of the basic postulates in the axiomatic formulations of set theory. Some 
mathematicians of the intuitionist or constructivist persuasion reject it on the grounds 
that one has not proved the existence of a mathematical object until one has shown 
how to construct it in some reasonably explicit fashion, whereas the whole point of 
the axiom of choice is to provide existence theorems when constructive methods fail 
(or are too cumbersome for comfort) . People who are seriously bothered by such 
objections belong to a minority that does not include the present writer; in this book 
the axiom of choice is used sparingly but freely. 

The continuum hypothesis is the assertion that if card(X) < c, then X is 
countable. (Since it follows easily from the construction of 0, the set of countable 
ordinals, that card(O) < card(X) for any uncountable X, an equivalent assertion 
is that card(O) = c.) It is known, thanks to Godel and Cohen, that the continuum 
hypothesis and its negation are both consistent with the standard axioms of set theory 
including the axiom of choice, assuming that those axioms are themselves consistent. 
(An exposition of the consistency and independence theorems for the axiom of choice 
and the continuum hypothesis can be found in Smullyan and Fitting [ 1 35] .) Some 
mathematicians are wil ling to accept the continuum hypothesis as true, seemingly as 
a matter of convenience, but Godel [56] and Cohen [26, p. 15 1 ]  have both expressed 
suspicions that it should be false, and as of this writing no one has found any reall y  
compelling evidence on one side or the other. My own feeling, subject to revision 
in the event of a major breakthrough in set theory, is that if the answer to one 's 
question turns out to depend on the continuum hypothesis, one should give up and 
ask a different question. 

§0 .6 :  A more detailed discussion of metric spaces can be found in Loomis and 
Sternberg [95] and DePree and Swartz [32] . 





Measures 

In this chapter we set forth the basic concepts of measure theory, develop a general 
procedure for constructing nontrivial examples of measures, and apply this procedure 
to construct measures on the real line. 

1 .1 I NTRODUCTION 

One of the most venerable problems in geometry is to determine the area or volume 
of a region in the plane or in 3 -space. The techniques of integral calculus provide a 
satisfactory solution to this problem for regions that are bounded by "nice" curves or 
surfaces but are inadequate to handle more complicated sets, even in dimension one. 
Ideally, for n E N we would like to have a function J-l that assigns to each E c IRn 

a number J-L (E) E [0, oo] , the n-dimensional measure of E, such that J-L(E) is given 
by the usual integral formulas when the latter apply. Such a function J-l should surely 
possess the following properties: 

1. If E1 , E2 , 0 0 0 is a finite or infinite sequence of disjoint sets, then 

J-L ( E 1 U E2 U · · · ) = J-L ( E1 ) + J-L ( E2 ) + · · · . 

i i .  If E is congruent to F (that is, if E can be transformed into F by translations, 
rotations, and reflections), then J-L(E) = J-L(F) . 

111. J-L( Q) = 1 ,  where Q is the unit cube 

Q = { x E JRn : 0 < Xj < 1 for j == 1 ,  0 0 0, n }0 
19 
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Unfortunately, these· conditions are mutually inconsistent. Let us see why this is 
true for n = 1 .  (The argument can easily be adapted to higher dimensions .) To begin 
with, we define an equivalence relation on [0 , 1 )  by declaring that x rv y iff x - y 

is rational . Let N be a subset of [0 , 1 )  that contains precisely one member of each 
equivalence class . (To find such an N, one must invoke the axiom of choice.) Next, 
let R == Q n [0 , 1 ) ,  and for each r E R let 

Nr == { x + r :  x E N  n [0 , 1 - r) } U { x + r - 1 : x E N  n [1 - r, 1 )  }. 

That is, to obtain Nr , shift N to the right by r units and then shift the part that sticks 
out beyond [0 , 1 ) one unit to the left. Then Nr c [0 , 1 ) , and every x E [0 , 1 )  belongs 
to precisely one Nr . Indeed, if y is the element of N that belongs to the equivalence 
class of x, then x E Nr where r == x - y if x > y or r = x - y + 1 if x < y; on 
the other hand, if x E Nr n N8 , then x - r (or x - r + 1) and x - s (or x - s + 1) 
would be distinct elements of N belonging to the same equivalence class, which is 
impossible. 

Suppose now that 1-l : P(JR) -t [0 , oo] satisfies (i), (ii), and (iii) . By  (i) and (ii), 

J.-t(N) == J.-t(N n [0 , 1 - r) ) + J.-t(N n [1 - r, 1 ) )  = J.-t(Nr )  

for any r E R. Also, since R is countable and [0 , 1 )  is the disjoint union of the Nr 's ,  

J.-t( [O , 1 ) )  = L J.-t(Nr) 
rER 

by (i) again. But J.-t( [O , 1 ) )  == 1 by (iii), and since J.-t(Nr) = J.-t(N) ,  the sum on the 
right is either 0 (if J.-t( N) = 0) or oo (if J.-t( N) > 0) . Hence no such 1-l can exist. 

Faced with this discouraging situation, one might consider weakening (i) so that 
additivity is required to hold only for finite sequences . This is not a very good idea, 
as we shall see : The additivity for countable sequences is what makes al l the limit 
and continuity results of the theory work smoothly. Moreover, in dimensions n > 3, 
even this weak form of (i) is inconsistent with (ii) and (iii) . Indeed, in 1924 Banach 
and Tarski proved the following amazing result: 

Let U and V be arbitrary bounded open sets in IRn, n > 3. There exist k E N 
and subsets E1 , . . . , Ek, F1 , . . . , Fk of IRn such that 

- the EJ 's are disjoint and their union is U; 

- the Fj 's are disjoint and their union is V ;  

- EJ is congruent to Fj for j == 1 ,  . .. , k. 

Thus one can cut up a ball the size of a pea into a finite number of pieces and 
rearrange them to form a ball the size of the earth ! Needless to say, the sets EJ and Fj 
are very bizarre . They cannot be visualized accurately, and their construction depends 
on the axiom of choice. But their existence clearly precludes the construction of any 
JL : P(IRn) -t [0 , oo] that assigns positive, finite values to bounded open sets and 
satisfies (i) for finite sequences as well as (ii) .  
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The moral of these examples is that ffi.n contains subsets which are so strangely put 
together that it is impossible to define a geometrically reasonable notion of measure 
for them, and the remedy for the situation is to discard the requirement that 1-l should 
be defined on all subsets of ffi.n . Rather, we shall content ourselves with constructing 
J.-l on a class of subsets of ffi.n that includes all the sets one is l ikely to meet in practice 
unless one is deliberately searching for pathological examples . This construction 
will be carried out for n = 1 in § 1 .5 and for n > 1 in §2.6 . 

It is worthwhile, and not much extra work, to develop the theory in much greater 
general ity. The conditions (ii) and (iii) are directly related to Euclidean geometry, 
but set functions satisfying (i ), called measures, arise also in a great many other 
situations. For example, in a physics problem involving mass distributions, J.-t (E) 
could represent the total mass in the region E. For another example, in probability 
theory one considers a set X that represents the possible outcomes of an experiment, 
and for E c X, J.-t(E) is the probability that the outcome lies in E. We therefore 
begin by studying the theory of measures on abstract sets . 

1 .2 a-ALGEB RAS 

In this section we discuss the families of sets that serve as the domains of measures. 
Let X be a nonempty set. An algebra of sets on X is a nonempty collection A 

of subsets of X that is closed under finite unions and complements ; in other words, 
if E1 , . . .  , En E A, then U� Ej E A; and if E E A, then Ec E A. A u-algebra is 
an algebra that is closed under countable unions� (Some authors use the terms field 
and u-field instead of algebra and a-algebra.) 

We observe that since nj Ej = (Uj Ej)c , algebras (resp. a-algebras) are also 
closed under finite (resp. countable) intersections. Moreover, if A is an algebra, then 
0 E A and X E A, for if E E A we have 0 = E n Ec and X = E U Ec . 

It is worth noting that an algebra A is a a-algebra provided that it is closed under 
countable disjoint unions. Indeed, suppose { Ej} 1 c A. Set 

k- 1 k- 1 
H = Ek \ [ U EJ] = Ek n [ U EJ r 

1 1 

Then the Fk 's belong to A and are disjoint, and U� Ej = U� Fk . This device of 
replacing a sequence of sets by a disjoint sequence is worth remembering; it will be 
used a number of times below. 

Some examples : If X is any set, P(X) and {0 , X} are a-algebras . If X is 
uncountable, then 

A = { E c X : E is countable or Ec is countable } 

is a a-algebra, called the u-algebra of countable or co-countable sets. (The point 
here is that if { Ej} 1 c A, then U� Ej is countable if all Ej are countable and is 
co-countable otherwise.) 
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It is trivial to verify that the intersection of any family of a-algebras on X is again 
a a-algebra. It fol lows that if £ is any susbset of P( X), there is a unique smallest 
a-algebra J\1( £)  containing £, namely, the intersection of all a-algebras containing 
£. (There is always at least one such, namely, P (X ) .) M( £)  is called the a-algebra 
generated by £ .  The following observation is often useful : 

1 .1  Lemma. If£ c J\1(9=') then M( £) c M(9=') .  

Proof. J\1(9=') is a a-algebra containing £; it therefore contains J\1( £) . 1 
If X is any metric space, or more generally any topological space (see Chapter 

4 ) , the a-algebra generated by the family of open sets in X (or, equivalen,tly, by the 
family of closed sets in X) is called the Borel u-algebra on X and is denoted by 
'B x .  Its members are called Borel sets. 'B x thus includes open sets, closed sets, 
countable intersections of open sets, countable unions of closed sets, and so forth . 

There is a standard terminology for the levels in this hierarchy. A countable 
intersection of open sets is called a G6 set; a countable union of closed sets is called 
an F u set; a countable union of G 8 sets is called a G 6cr set; a countable intersection of 
Fa sets is called an F u6 set; and so forth. ( 8 and a stand for the German Durchschnitt 
and Summe, that is, intersection and union.) 

The Borel a-algebra on 1R will play a fundamental role in what follows . For future 
reference we note that it can be generated in a number of different ways: 

1.2 Proposition. 'BJR is generated by each of the following: 
a. the open intervals: £1 == { (a, b) : a < b }, 
b. the closed intervals: £2 == { [a, b] : a < b }, 
c. the half-open intervals: £3 == { (a, b] : a < b} or £4 == { [a, b) : a < b}, 

d. the open rays: £5 == { (a, oo) : a E JR} or £6 == { (-oo, a) : a E lR}, 
e. the closed rays: £7 == { [a, oo) : a E JR} or £s == { (-oo, a] : a E JR}. 

Proof. The elements of £j for j =/= 3 , 4 are open or closed, and the elements of £3 
and £4 are G8 sets - for example, (a, b] == n� (a, b + n-1 ) .  All of these are Borel 
sets, so by Lemma 1 . 1 , J\1 ( £ j )  c 23IR for all j .  On the other hand, every open set in 1R 
is a countable union of open intervals, so by Lemma 1 . 1  again, 23IR c M( £1) .  That 
'BIR c M( Gj ) for j > 2 can now be established by showing that all open intervals lie 
in M( £j ) and applying Lemma 1 . 1 .  For example, (a, b) == U� [a + n-1, b - n-1] E 
M(£2 ) .  Verification of the other cases is left to the reader (Exercise 2) . 1 

Let { Xa}aEA be an indexed collection of nonempty sets, X == TinEA X a, and 
7r0 : X � X a the coordinate maps. If Ma is a a-algebra on Xa for each a ,  the 
product u-algebra on X is the a-algebra generated by 

We denote this a-algebra by ®aEA M0 • (If A ==  { 1 ,  . . .  , n} we also write ®� Mj 
or JY( 1 G0 · · · @ Mn .) The significance of this definition will become clearer in §2 . 1 ;  
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for the moment we give an alternative, and perhaps more intuitive, characterization 
of product a-algebras in the case of countably many factors . 

1.3 Proposition. If A is countable, then ®aEA Ma is the a-algebra generated by 
{JlaEA Ea : Ea E Ma}· 

Proof. If Ea E Ma , then 7r0 1 (Ea ) = Jl,aEA E,a where E,a = X  for {3 =/= a;  

on the other hand, TinEA Ea == naEA 7rQ 1 (Ea ) .  The result therefore follows from 
Lemma 1 . 1 .  1 

1.4 Proposition. Suppose that Ma is generated by Ga, a E A. Then ®aEA Ma is 
generated by 1'1 = {7r0 1 (Ea ) : Ea E G0 , a E A}. If A is countable and Xa E G0 
for all a, ®aEA Ma is generated by 1'2 = {JlaEA Ea : Ea E G0 }. 

Proof. Obviously M(�1 ) C ®aEA M0 • On the other hand, for each a, the 
collection {E C Xa : 7r0 1 (E) E M(1'1 ) }  is easily seen to be a a-algebra on Xa 
that contains £0 and hence M0•  In other words, 7r0 1 (E) E M(1'1 ) for all E E Ma, 
a E A, and hence ®aEA Ma c M(1'1 ) .  The second assertion follows from the first 
as in the proof of Proposition 1 .3 .  1 

1.5 Proposition. Let X1 , . . . , Xn be metric spaces and let X = Jl� Xi, equipped 
with the product metric. Then ®� 23 Xj c 23 X. If the xj 's are separable, then 
®� 23xj = 'Bx. 

Proof. By Proposition 1 .4, ®� 23xj is generated by the sets 7rj 1 (Uj ) ,  1 < j < 
n, where Ui is open in Xi . Since these sets are open in X, Lemma 1 . 1  implies that 
®� 'Bxj c 'Bx . Suppose now that Ci is a countable dense set in Xj , and let £i be 
the col lection of balls in Xi with rational radius and center in Cj . Then every open 
set in X j is a union of members of £ j - in fact, a countable union since £ J itself is 
countable . Moreover, the set of points in X whose jth coordinate is in CJ for al l j 
i s  a countable dense subset of X, and the balls of radius r in X are merely products 
of balls of radius r in the XJ 's .  It follows that 23 xj is generated by Gj and 23 x is 
generated by {Jl� EJ : Ei E £j } · Therefore 23x = ®� 23xj by Proposition 1 .4. 1 

1.6 Corollary. 23JRn = ®� 23JR. 

We conclude this se�tion with a technical result that will be needed later. We 
define an elementary family to be a collection £ of subsets of X such that 

• 0 E £, 

• if E, F E  £ then E n F E  £, 

• if E E £ then Ec is a finite disjoint union of members of £ .  

1.7 Proposition. If £ is an elementary family, the collection A of finite disjoint 
unions of members of £ is an algebra. 
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Proof. If A,  B E £ and Be == U{ cj (Cj E £,  disjoint) , then A \ B == 
Ui (A n Cj ) and A u B = (A \ B) u B, where these unions are disjoint, so 
A \ B E A and A U  B E A. It now follows by induction that if A1 . . . , An E £ , then 
U� Aj E A;  indeed, by inductive hypothesis we may assume that A1 , . . .  , An- 1 are 
disjoint, and then U� Aj == An u U�- 1 (Aj \ An ) ,  which is a disjoint union . To see 

J . 
that A is closed under complements, suppose A1 , . . .  An E £ and A� == Uj Tn1 B?n 
with B!n , . . .  , B�rn disjoint members of £ .  Then 

n n Jm 
( U A ) c = n ( U Bj ) == U{Bj1 n · . ·nBJn : 1 < J. < J 1 < m < n} m m 1 n - m - m , - - ' 

m=1 m=1 j=1 
which is in A. I 

Exercises 
1. A family of sets 9( c P( X) is called a ring if it is closed under finite unions 
and differences (i .e . , if E1 , . . .  , En E 9(, then U� Ej E 9(, and if E, F E 9(, then 
E \ F E 9{) . A ring that is closed under countable unions is called a u-ring. 

a. Rings (resp. a-rings) are closed under finite (resp. countable) intersections. 
b. If 9t is a ring (resp. a-ring), then 9t is an algebra (resp. a-algebra) iff X E 9(. 
c. If 9( is a a-ring, then { E c X : E E 9( or Ec E 9(} is a a-algebra. 
d. If 9( is a a-ring, then { E c X : E n  F E 9( for all F E  9(} is a a-algebra. 

2. Complete the proof of Proposition 1 .2 .  

3. Let M be an infinite a-algebra. 
a. M contains an infinite sequence of disjoint sets . 
b. card(M) > c. 

4. An algebra A is a a-algebra iff A is closed under countable increasing unions 
(i .e . ,  if { Ej }1 c A and E1 c E2 c · · · , then U� Ej E A) . 

5. If J\1 is the a-algebra generated by £, then J\1 is the union of the a-algebras 
generated by � as 1' ranges over all countable subsets of £ .  (Hint: Show that the 
latter object is a a-algebra.) 

1 .3 M EASURES 

Let X be a set equipped with a a-algebra M. A measure on M (or on (X, J\1) ,  or 
simply on X if M is understood) is a function 1-" : M ---+ [0 ,  oo] such that 

i .  JL(0) = 0, 

i i .  if { Ej }1 is a sequence of disjoint sets in M, then f.-L(U� Ej ) == 2:� f.-L(Ej ) .  

Property (ii) is called countable additivity . It implies finite additivity : 
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i i' . if E1 , . . . En are disjoint sets in M, then JL(U� Ej ) = 2:� JL (Ej ) ,  

because one can take Ei = 0 for j > n .  A function JL that satisfies (i) and (ii' ) but 
not necessari ly ( i i) is called a finitely additive measure. 

If X is a set and M c P(X) is a a-algebra, (X, M) is called a measurable space 
and the sets in M are called measurable sets. If JL is a measure on (X, M) ,  then 
(X, M ,  1-l) is called a measure space. 

Let (X, M ,  J.-l) be a measure space. Here is some standard terminology concerning 
the "size" of 1-l· If J.-t(X ) < oo (which implies that J.-t(E) < oo for all E E J\1 since 
J.-t(X ) = J.-t(E) + J.-t(Ec) ) , JL is cal led finite. If X = U� Ei where Ei E J\1 and 
J.-t( Ei ) < oo for all j, 1-l is called a-finite. More generally, if E = U� Ei where 
Ej E Jv( and J.-t( Ej ) < oo for all j, the set E is said to be a-finite for 1-l· (It would 
be correct but more cumbersome to say that E is of a-finite measure .) If for each 
E E M with J.-t(E) == oo there exists F E J\1 with F c E and 0 < J.-t(F) < oo, 1-l is 
called semifinite. 

Every a-finite measure is semifinite (Exercise 1 3 ), but not conversely. Most mea
sures that arise in parctice are a-finite, which is fortunate since non-a-finite measures 
tend to exhibit pathological behavior. The properties of non-a-finite measures will 
be explored from time to time in the exercises . 

Let us examine a few examples of measures. These examples are of a rather trivial 
nature, although the first one is of practical importance. The construction of more 
interesting examples is a task to which we shall tum in the next two sections. 

• Let X be any nonempty set, M = P(X) ,  and f any function from X to [0 , oo ] . 
Then f determines a measure J.-l on M by the formula J.-t(E) = L: xEE f (x ) . 
(For the definition of such possibly uncountable sums, see §0.5 .) The reader 
may verify that 1-l is semifinite iff f(x) < oo for every x E X, and 1-l is a-finite 
iff 1-l is semi finite and { x : f ( x) > 0} is countable . Two special cases are of 
particular significance : If f ( x) = 1 for all x, 1-l is called counting measure; 
and if, for some xo E X, f is defined by f(xo ) = 1 and f(x) = 0 for x =/= xo , 
1-l is called the point mass or Dirac measure at x0 • (The same names are also 
applied to the restrictions of these measures to smaller a-algebras on X.) 

• Let X be an uncountable set, and let M be the a-algebra of countable or co
countable sets . The function 1-l on M defined by J.-t( E) == 0 if E is countable 
and J.-t(E) = 1 if E is co-countable is easily seen to be a measure. 

• Let X be an infinite set and M = P(X) . Define J.-t(E) = 0 if E is finite, 
J.-t( E) == oo if E is infinite. Then 1-l is a finitely additive measure but not a 
measure. 

The basic properties of measures are summarized in the following theorem. 

1 .8 Theorem. Let (X, J\1, J.-t) be a measure space. 
a. (Monotonicity) if E, F E J\1 and E C F, then J.-t(E) < J.-t (F). 
b. (Subadditivity) if { Ei }1 c M, then J.-t(U� Ei ) < 2:� J.-t(Ei ) . 
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c. (Continuity from below) lf {Ei }1  c M and E1 C E2 C · · · , then 
JL(U� Ei ) = limj__.oo JL(EJ ) . 

d. (Continuity from above) /f {Ei }1 C M, E1 ::) E2 ::) · · · , and JL(E1 ) < oo, 
then JL(n� EJ ) == limJ__.oo JL(EJ ) . 

Proof. (a) If E c F, then JL (F) == JL(E) + JL(F \ E) > JL(E) . 
(b) Let F1 == E1 and Fk = Ek \ (U�-

1 Ei ) for k > 1 .  Then the Fk 's are disjoint 
and U� Fi == U� EJ for all n. Therefore, by (a), 

00 00 00 00 
�L (UEj) = �L (U Fj) = I>(Fj )  < 'L_�L(Ej ) ·  

1 1 1 1 

(c) Setting Eo == 0, we have 

(d) Let Fi = E1 \ Ei ; then F1 c F2 c · · · ,  JL(E1 ) = JL(Fj )  + JL(Ei ) , and 
U� FJ = E1 \ (n� EJ ) · By (c) , then, 

00 00 
JL(Ei ) = JL (n Ei) + i�� JL(Fj )  = JL (n Ei) + i�� [JL(Ei ) - JL(Ei ) ] . 

1 1 

Since JL(E1 )  < oo, we may subtract it from both sides to yield the desired result. 1 
We remark that the condition JL(E1 ) < oo in part (d) could be replaced by 

Jl( En ) < oo for some n > 1, as the first n - 1 EJ ' s can be discarded from the 
sequence without affecting the intersection. However, some finiteness assumption 
is necessary, as it can happen that JL(EJ )  == oo for all j but JL(n� Ei ) < oo. (For 
example, let JL be counting measure on (N, P(N) ) and let EJ = { n : n > j } ; then 
n� Ej = 0.) 

If (X,  J\1, JL) is a measure space, a set E E J\1 such that JL(E) = 0 is called a null 
set. By subadditivity, any countable union of nul l sets is a null set, a fact which we 
shall use frequently. If a statement about points x E X is true except for x in some 
nul l  set, we say that i t i s  true almost everywhere (abbreviated a.e.) , or for almost 
every x .  (If more precision is needed, we shall speak of a J..L-null set, or J..L-almost 
everywhere) . 

If J-L(E) == 0 and F c E, then JL(F) == 0 by monotonicity provided that F E M, 
but in general it need not be true that F E M. A measure whose domain includes 
all subsets of null sets is called complete. Completeness can sometimes obviate 
annoying technical points, and it can always be achieved by enlarging the domain of 
JL, as follows. 

1.9 Theorem. Suppose that (X, M, JL) is a measure space. Let :N = {N E M :  
JL(N) = 0} and M == {E U F :  E E M  and F C N for some N E :N} . Then M is 
a a-algebra, and there is a unique extension JL of JL to a complete measure on M. 
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Proof. Since M and N are closed under countable unions, so is M. If E U F  E M 
where E E M and F c N E N, we can assume that E n N == 0 (otherwise, replace 
F and N by F \ E and N \ E) .  Then E u F = (E u N) n (Nc u F) , so 
(E u F) c == (E u N) c u (N \ F) . But (E u N)c E M and N \ F c N, so that 
(E U F) c E M. Thus M is a a-algebra. 

If E u F E M as above, we set J.-t (E u F) = J.-t(E) . This is well defined, 
since if E1 U F1 == E2 U F2 where Fj c Nj E N, then E1 c E2 U N2 and so 
J.-t(E1 ) < J.-t (E2 ) + J.-t(N2 ) = J.-t(E2) ,  and likewise J.-t(E2 ) < J.-t(E1 ) .  It is�asil y  
verified that 1-l is a complete measure on M, and that 1-l i s  the only measure on M that 
extends J.-t; details are left to the reader (Exercise 6). 1 

The measure 1-l in Theorem 1 .  9 is called the completion of J.-l, and J\1 is called the 
completion of J\1 with respect to 1-l · 

Exercises 

6. Complete the proof of Theorem 1 .  9. 

7. If /-ll , . . .  , J.-ln are measures on (X, M) and a1 , . . . , an E [0 , oo ), then 2::� aj /-lj 
is a measure on (X , J\1) . 

8. If (X, M,  J.-t) is a measure space and {Ej }1 c M, then J.-t(lim inf Ej ) < 
lim inf J.-t (Ej ) .  Also, J.-t (lim sup Ej ) > lim sup J.-t(Ej )  provided that J.-t(U� Ej ) < 
00 .  

9. If (X, M, J.-t) is a measure space and E, F E M, then J.-t (E) +J.-t(F) = J.-t (E u F) + 
J.-t(E n F) . 

10. Given a measure space (X, J\1,  J.-t) and E E M, define J.-lE (A) = J.-t (A n E) for 
A E M. Then 1-l E is a measure. 

11 . A finitely additive measure 1-l is a measure iff it is continuous from below as in 
Theorem 1 .8c. If J.-t(X) < oo, 1-l is a measure iff i t  is continuous from above as in 
Theorem 1 .  8d. 

12. Let (X, M, 1-l) be a finite measure space. 
a. If E, F E J\1 and J.-t (E�F) = 0, then J.-t(E) = J.-t(F) .  
b. Say that E "' F if J.-t(E�F) = 0; then "' is an equivalence relation on M. 
c. For E, F E M, define p(E, F) = J.-t(E�F) . Then p(E, G) < p(E, F) + 
p(F, G) , and hence p defines a metric on the space M/ "' of equivalence classes. 

13. Every a-finite measure is semifinite. 

14. If 1-l i s  a semifinite measure and J.-t (E) = oo, for any C > 0 there exists F c E 
with C < J.-t(F) < oo. 

15. Given a measure 1-l on (X, J\1) , define J.-to on M by J.-to (E) = sup{J.-t(F) : F C 
E and J.-t(F) < oo } .  

a. J.-to is a semifinite measure . It is called the semifinite part of 1-l· 
b. If 1-l is semifinite, then J.-l == /-lO · (Use Exercise 14.) 
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c. There is a measure v on M (in general , not unique) which assumes only the 
values 0 and oo such that 1-" == J-lo + v .  

16. Let (X, M, 1-") be a measure space. A set E c X is called locally measurable 
,._, 

if E n  A E J\1 for all A E M such that f.-l(A) < oo. Let J\1 be the collection of all 
,._, ,._, 

locally measurable sets . Clearly M c M; if M = M, then 1-" is called saturated . 
a. I! 1-" is a-finite, then 1-" is saturated. 
b. M is a a-algebra. 

,._, 

c. Define ii on J\1 by ii(E) = J-L(E) if E E M and ii(E) = oo otherwise. Then 
,._, 

ii is a saturated measure on M, called the saturation of 1-"· 
d. If 1-" is complete, so is M· 

,._, 

e. Suppose that 1-" is semifinite. For E E J\1, define f.-L(E) = sup{f.-L(A) : A E 
,._, 

M and A c E} . Then 1-" is a saturated measure on M that extends 1-"· 
f. Let X 1 , X2 be disjoint uncountable sets, X = X  1 U X2 , and JV( the a-algebra 
of countable or co-countable sets in X. Let 1-"o be counting measure on P(X1 ) ,  
and define 1-" on J\1 by 1-" (E) = 1-"o ( E n X 1 ) .  Then 1-" is a measure on M, 

,._, 

J\1 = P(X) ,  and in the notation of parts (c) and (e),_ ii =I= 1-"· 

1 .4 OUTER MEASURES 

In this section we develop the tools we shall use to construct measures. To motivate 
the ideas, it may be useful to recall the procedure used in calculus to define the area 
of a bounded region E in the plane JR2 . One draws a grid of rectangles in the plane 
and approximates the area of E from below by the sum of the areas of the rectangles 
in the grid that are subsets of E, and from above by the sum of the areas of the 
rectangles in the grid that intersect E. The limits of these approximations as the grid 
is taken finer and finer give the "inner area" and "outer area" of E, and if they are 
equal , their common value is the "area" of E. (We shall discuss these matters in more 
detail in §2.6.) The key idea here is that of outer area, since if R is a large rectangle 
containing E, the inner area of E is just the area of R minus the outer area of R \ E. 

The abstract generalization of the notion of outer area is as follows. An outer 
measure on a nonempty set X is a function 1-"* : P(X) � [0 , oo] that satisfies 

• 1-"* (0) = 0, 

• 1-"* (A) < 1-"* (B) if A c B, 

The most common way to obtain outer measures is to start with a family £ of 
"elementary sets" on which a notion of measure is defined (such as rectangles in the 
plane) and then to approximate arbitrary sets "from the outside" by countable unions 
of members of £ .  The precise construction is as follows. 
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1 .10 Proposition. Let £ C P(X) and p : £ � [0 , oo] be such that 0 E £, X E £, 
and p(0) = 0. For any A C X, define 

00 00 
,u* (A) = inf {L ,u(Ej ) : Ei E £ and A C U Ei } ·  

Then J.-l* is an outer measure. 

1 1 

Proof. For any A c X there exists {EJ }1 c £ such that A c U� EJ (take 
EJ = X for all j) so the definition of 1-l* makes sense . Obviously 1-l* (0) = 0 (take 
Ei == 0 for all j), and J.-t* (A) < J.-t* (B) for A c B because the set over which 
the infimum is taken in the definition of 1-l* (A) includes the corresponding set in the 
definition of 1-l* (B). To prove the countable subadditivi ty, suppose { AJ }1 c P(X) 
and E > 0 .  For each j there exists { Ej }r 1 c £ such that Aj c u� 1 Ej and 
2:� 1 p(Ej ) < J.-l* (Aj ) + E2 -

j . But then if A =  u� Aj , we have A c u�k==1 Ej 
and L:J,k p(Ej )  < L:J J.-t* (AJ ) + E, whence J.-t* (A) < L:J J.-t* (AJ ) + E. Since E is 
arbitrary, we are done . 1 

The fundamental step that leads from outer measures to measures is as fol lows. If 
1-l* is an outer measure on X, a set A c X is called J..L* -measurable if 

J.-t* (E) = J.-t* (E n A) + J.-t* (E n A c) for all E c X. 

Of course, the inequality 1-l* (E) < 1-l* (E n  A) + 1-l* (E n  A c) holds for any A and E, 
so to prove that A is J.-l* -measurable, it suffices to prove the reverse inequality. The 
latter is trivial if J.-t* (E) == oo, so we see that A is J.-t* -measurable iff 

Some motivation for the notion of 1-l* -measurability can be obtained by referring 
to the discussion at the beginning of this section. If E is a "well-behaved" set such 
that E � A, the equation 1-l * (E) = J-l * ( E n A) + 1-l * ( E n A c) says that the outer 
measure of A, J.-t* (A) , is equal to the "inner measure" of A, J.-t* (E) - J.-t* (E n A c) . 
The leap from "well-behaved" sets containing A to arbitrary subsets of X a large 
one, but it is justified by the following theorem. 

1 .11  Caratheodory's Theorem. If J.-l* is an outer measure on X, the collection M 
of J.-l* -measurable sets is a a-algebra, and the restriction of J.-l* to M is a complete 
measure. 

Proof. First, we observe that M is closed under complements since the definition 
of J.-t* -measurability of A is symmetric in A and A c . Next, if A, B E M  and E c X, 

1-l * (E) == 1-l * ( E n A) + 1-l * ( E n A c) 
= J.-t* (E n A n  B) + J.-t* (E n A n  Be) + J.-t* (E n Ac n B) + J.-t* (E n Ac n Be). 

But (A u B) = (A n B) u (A n Be) u (Ac n B), so by subadditivity, 

J.-t* (E n A n  B) + J.-t* (E n A n Be) + J.-t* (E n Ac n B) > J.-t* (E n (A u  B)), 
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and hence 
�* (E) > �* (E n (A u B) ) + �* (E n (A u B)e ) .  

It follows that A U B E M, so M is an algebra. Moreover, if A ,  B E M and 
A n B == 0, 

�* (A u B) == �* ( (A u B) n A) + �* ( (A u B) n A e) ==  �* (A) + �* (B) , 

so �* is finitely additive on M. 
To show that JV( is  a a-algebra, it will suffice to show that JV( is closed under 

countable disjoint unions. If { Aj }1 is a sequence of disjoint sets in M, let En == 
U� Aj and B == U� Aj . Then for any E c X, 

�* (E n En ) ==  �* (E n En n An ) + �* (E n En n A�) 

== �* (E n An ) +  �* (E n Bn-1 ) ,  

so a simple induction shows that �* (E n En ) == I:? �* (E n Aj ) .  Therefore, 

n 
�* (E) == �* (E n En ) +  �* (E n B� ) > L �* (E n Aj ) + �* (E n Be ) ,  

1 

and letting n � oo we obtain 

00 00 

J-L* (E) > L J-L* (E n Aj ) + J-L* (E n Be) > J-L* (U (E n Aj )) + J-L* (E n Be) 
1 1 

== �* (E n B) + �* (E n Be ) > �* (E) . 

All the inequalities in this last calculation are thus equali ties . It follows that B E M 
and - taking E == B - that �* (B) == I:� �* (Aj ) ,  so �* is countably additive on 
M. Finally, if �* (A) == 0, for any E c X we have 

so that A E M. Therefore �* IM is a complete measure . I 
Our first applications of Caratheodory's theorem will be in the context of extending 

measures from algebras to a-algebras . More precisely, if A c P(X) is an algebra, a 
function �o : A --7 [0 , oo ] will be called a premeasure if 

• �o (0)  == 0, 

• if { Aj } 1 is a sequence of disjoint sets in A such that U� Aj E A, then 
�o (U� Aj ) == I:� �o (Aj ) . 

In particular, a premeasure is finitely additive since one can take Aj == 0 for j large. 
The notions of finite and a-finite pre measures are defined just as for measures. If �0 
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is a premeasure on A c P(X) ,  it induces an outer measure on X in accordance with 
Proposition 1 . 1 0, namely, 

( 1 . 1 2) 
00 00 

J-L* (E) = inf{L J-Lo (AJ ) : AJ E A , E c U AJ } · 
1 1 

1.13 Proposition. If J.-to is a premeasure on A and J.-l* is defined by ( 1 . 12), then 
a. J.-l * I A == J.-to ; 
b. every set in A is 1-l * measurable. 

Proof. (a) Suppose E E A. If E c U� A1 with A1 E A, let En == E n 
(An \ U�- 1 A1 ) .  Then the En ' s are disjoint members of A whose union is E, so 
J.-to (E) == 2:� J.-to (Ej )  < 2:� J.-to (A1 ) .  It follows that J.-to (E) < J.-t* (E) ,  and the 
reverse inequality is obvious since E c U� Aj where A1 == E and Aj == 0 for 
j > 1 . 

(b) If A E A, E c X, and E > 0, there is a sequence {Ej }1 c A with 
E c u� Ej and 2:� /-lO (Ej )  < 1-l* (E) + E. Since /-lO is additive on A, 

00 00 
1-l* (E) + E > L J.-to (Ej n A) + L J.-to (Ej n A c ) > 1-l* (E n A) + 1-l* (E n A c ) . 

1 1 
Since E is arbitrary, A is 1-l * -measurable. I 

1 .14 Theorem. Let A c P(X) be an algebra, J.-to a premeasure on A, and M the 
a-algebra generated by A. There exists a measure 1-l on M whose restriction to A is 
J.-to - namely, J.-l = J.-l* IM where J.-l* is given by ( 1. 12). Ifv is another measure on M 
that extends J-lo, then v( E) < J-l( E) for all E E M, with equality when J.-t( E) < oo. 
If J.-to is a-finite, then J.-l is the unique extension of J.-to to a measure on M. 

Proof. The first assertion follows from Caratheodory's theorem and Proposition 
1 . 1 3 since the a-algebra of 1-l* -measurable sets includes A and hence M. As for 
the second assertion , if E E M and E c U� A1 where Aj E A, then v(E) < 
2:� v(A1 )  == 2:� J.-to (Aj ) , whence v(E) < J.-t(E) . Also, if we set A =  U� A1 , we 
have 

n n 

v(A) = J�� v (UAj) = J��J-L (U Aj ) = J-L(A) . 
1 1 

If J.-t(E) < oo, we can choose the Aj ' s so that J.-t(A) < J.-t(E) + E, hence J.-t(A \E) < E, 
and 

J.-t(E) < J.-t(A) = v(A) == v(E) + v(A \ E) < v(E) + J.-t(A \ E) < v(E) + E. 
Since E is arbitrary, J.-t(E) = v(E) . Finally, suppose X = u� Aj with J.-to (Aj )  < 00 ,  
where we can assume that the Aj 's are disjoint. Then for any E E M, 

so v = 1-l · 

00 00 
J.-t(E) == L J.-t(E n Aj ) = L v(E n Aj ) == v(E) , 

1 1 
I 
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The proof of thi s theorem yields more than the statement. Indeed, J.-to may be 
extended to a measure on the algebra M* of all J.-l* -measurable sets . The relation 
between M and M* is explored in Exercise 22 (along with Exercise 20b, which 
ensures that the outer measures induced by J.-to and 1-l are the same). 

Exercises 
17. If J.-l* is an outer measure on X and { Aj }1 is a sequence of disjoint 1-l* 
measurable sets , then J.-t* (E n (U� Aj ) )  == E� J.-t* (E n A1 ) for any E c X. 

18. Let A c P (X) be an algebra, Aa the collection of countable unions of sets 
in A, and Aa8 the collection of countable intersections of sets in Aa . Let J.-to be a 
pre measure on A and 1-l * the induced outer measure. 

a. For any E c X and E > 0 there exists A E Aa with E c A and J.-t* (A) < 
J.-t* (E) + E. 
b. If J.-t* (E) < oo, then E is J.-t* -measurable iff there exists B E Aa8 with E C B 
and J.-l* (B \ E) == 0. 
c. If J.-to is a-finite, the restriction J.-l* (E) < oo in (b) is superfluous . 

19. Let J.-l* be an outer measure on X induced from a finite premeasure J-lo . If 
E c X, define the inner measure of E to be J.-t* (E) == J.-to (X) - 1-l* (Ec ) .  Then E 
is J.-t* -measurable iff J.-t* (E) == J.-t* (E) . (Use Exercise 1 8 .) 

20. Let 1-l* be an outer measure on X, M* the a-algebra of 1-l* -measurable sets , 
1-l == 1-l* IM* , and 1-l+ the outer measure induced by 1-l as in ( 1 . 1 2) (with 1-l and M* 
replacing J.-to and A). 

a. If E c X, we have 1-l * (E) < 1-l+ (E) , with equality iff there exists A E M* 
with A � E and 1-l * (A) = 1-l * (E) . 
b. If J.-l* is induced from a premeasure, then 1-l* == 1-l+ . (Use Exercise 1 8a.) 
c.  If X == { 0, 1 } ,  there exists an outer measure 1-l * on X such that 1-l * =/= 1-l + . 

21. Let J.-l* be an outer measure induced from a premeasure and 1-l the restriction of 
J.-l* to the J.-l* -measurable sets. Then J.-l is saturated. (Use Exercise 1 8 .) 

22. Let (X, M, J.-t) be a measure space, 1-l* the outer measure induced by 1-l according 
to ( 1 . 1 2), M* the a-algebra of J.-t* -measurable sets, and J.-l == J.-t* IM* . 

a. If 1-l is a-finite, then 1-l is the completion of 1-l· (Use Exercise 1 8 .) 
b. In general , 1-l is the saturation of the completion of 1-l· (See Exercises 1 6  and 
2 1 . ) 

23. Let A be the collection of finite unions of sets of the form (a , b] n <Q where 
-oo < a < b < oo. 

a. A i s  an algebra on <Q. (Use Proposition 1 .7 . )  
b. The a-algebra generated by A i s  P(<Q) . 
c. Define J.-to on A by J.-to (0) == 0 and J.-to (A) == oo for A =/= 0 .  Then J.-to is a 
premeasure on A, and there is more than one measure on P(<Q) whose restriction 
to A is J.-to . 
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24. Let 1-l be a finite measure on (X, M) , and let J.-l* be the outer measure induced by 
J-l· Suppose that E c X satisfies J.-t* (E) == J-l* (X) (but not that E E M). 

a. If A ,  B E M and A n E = B n E, then J.-t(A) == J.-t (B ) . 
b. Let ME = {A n E :  A E M} , and define the function v on ME defined by 
v(A n E) == J.-t(A) (which makes sense by (a)). Then ME is a a-algebra on E 
and v is a measure on ME . 

1 .5 BOREL MEASURES ON TH E REAL LINE 

We are now in a position to construct a definitive theory for measuring subsets of JR. 
based on the idea that the measure of an interval is its length. We begin with a more 
general (but only slightly more complicated) construction that yields a large family 
of measures on JR. whose domain is the Borel a-algebra 13JR ; such measures are called 
Borel measures on JR.. 

To motivate the ideas, suppose that J-l is a finite Borel measure on JR., and let 
F(x) == J.-t( (-oo, x] ) . (F is sometimes called the distribution function of J.-t.) 
Then F is increasing by Theorem 1 . 8a and right continuous by Theorem 1 . 8d since 
( -oo, x] == n� (-oo , Xn ] whenever Xn � X . (Recall the discussion of increasing 
functions in §0.5 .) Moreover, if b > a, (-oo, b] == ( -oo, a] U (a , b] , so J.-t( (a , b] ) == 
F (b) - F (a) . Our procedure will be to turn this process around and construct a 
measure J-l starting from an increasing, right-continuous function F. The special case 
F( x) == x will yield the usual "length" measure . 

The building blocks for our theory will be the left-open, right-closed intervals in 
JR. - that is, sets of the form (a , b] or (a , oo) or 0, where -oo < a < b < oo. In 
this section we shall refer to such sets as h-intervals (h for "half-open"). Clearly the 
intersection of two h-intervals is an h-interval, and the complement of an h-interval 
i s  an h-interval or the disjoint union of two h-intervals .  By  Proposition 1 .7 ,  the 
collection A of finite disjoint unions of h-intervals is an algebra, and by Proposition 
1 .2, the a-algebra generated by A is 13JR. 

1.15 Proposition. Let F : JR. � JR. be increasing and right continuous. If ( aj , bj ] 
( j == 1 ,  . . .  , n) are disjoint h- intervals, let 

n n 

�-to (U(aj , bJ J) = L[F(bj ) - F(aj ) ] , 
1 1 

and let J.-to ( 0) == 0. Then J.-to is a premeasure on the algebra A. 

Proof. First we must check that J.-to is well defined, since elements of A can be 
represented in more than one way as disjoint unions of h-intervals. If { ( aj , bj ] }  1 
are disjoint and u� ( aj ' bj ] == (a , b] ' then , after perhaps relabeling the index j '  we 
must have a == a1 < b1 == a2 < b2 == . . .  < bn == b, so E� [F(bj )  - F(aj ) ]  == 
F(b) - F(a) .  More generally, if {Ji }1 and {Jj }1 are finite sequences of disjoint 
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h-intervals such that U� Ii == U� Jj ,  this reasoning shows that 

L J.Lo (Ii ) == LJ.Lo (Ii n Jj )  == L J.Lo (Jj ) · 
� i ,j J 

Thus J.Lo is well defined, and it is finitely additive by construction. 
It remains to show that if { Ij }1 is a sequence of disjoint h-intervals with U� Ij E 

A then J.Lo (U� Ij ) == 2:� J.Lo ( Ij ) .  Since U� Ij is a finite union of h-intervals, the 
sequence { Ij } 1 can be parti tioned into finitely many subsequences such that the 
union of the intervals in each subsequence is a single h-interval . By considering each 
subsequence separately and using the finite additivity of J.Lo , we may assume that 
U� 11 is an h-interval I == (a , b] . In this case, we have 

n n n n 

J-Lo (J) = J-Lo (U Ii) + J-Lo (I \ U Ii) > J-Lo (U Ii) = L J-Lo (Jj ) . 
1 1 1 1 

Letting n � oo, we obtain J.Lo (I) > I:� J.L(lj ) . To prove the reverse inequality, 
let us suppose first that a and b are finite, and let us fix E > 0. Since F is right 
continuous, there exists 8 > 0 such that F( a + 8) - F( a) < E, and if Ij == ( aj , bj ] ,  
for each j there exists 8j > 0 such that F(bj + 8j ) - F(bj ) < E2-j . The open 
intervals ( aj , bj + 8j ) cover the compact set [a + 8, b] , so there is a finite subcover. 
By discarding any ( aj , bj + 8j ) that is contained in a larger one and relabeling the 
index j ,  we may assume that 

• the intervals (a1 , b1 + 81 ) ,  . . . , (aN , bN + 8N) cover [a + 8, b] , 
• bj + 8j E (aj+ 1 , bj+l + 8j+l ) for j == 1 , . . .  , N - 1 .  

But then 

J.Lo (I) < F(b) - F(a + 8) + E 
< F(bN + 8N ) - F(a1 ) + E 

N- 1 
== F(bN + 8N) - F(aN ) + L [F(aj+1 ) - F(aj ) ] + E 

1 
N- 1 

< F(bN + 8N) - F(aN ) + L [F(bj + 8j ) - F(aj ) ] + E 
1 

N 
< L[F(bj ) + E2-j - F(aj ) ] + E  

1 
00 

Since E is arbitrary, we are done when a and b are finite. If a == -oo, for any 
M < oo the intervals ( aj bj + 8j ) cover [-M, b] , so the same reasoning gives 
F(b) - F( -M) < I:� J.Lo (Ij ) + 2E, whereas if b == oo, for any M < oo we 
likewise obtain F(M) - F(a) < I:� J.Lo (Ij )  + 2t:. The desired result then follows 
by letting E --7 0 and M � oo. 1 
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1 .16 Theorem. IfF : � --7 � is any increasing, right continuous function, there is 
a unique Borel measure f.-tF on � such that J.-tF ( (a , b] ) == F(b) - F( a) for all a , b. If 
G is another such function, we have f.-tF == J.-tc iff F - G is constant. Conversely, if 
J.-t is a Borel measure on � that is finite on all bounded Borel sets and we define 

F(x) == 
�-t( (O , x] ) 
0 
-J.-t( (  -x, 0] ) 

ifx > 0, 
ifx = 0, 
ifx < 0, 

then F is increasing and right continuous, and J.-t == 1-tF· 

Proof. Each F induces a pre measure on A by Proposition 1 . 1 5 . It is clear that F 
and G induce the same premeasure iff F - G is constant, and that these premeasures 
are a-finite (since � = Uoo 00 (j, j + 1 ] ) . The first two assertions therefore follow from 
Theorem 1 . 1 4. As for the last one, the monotonicity of 1-t implies the monotonicity 
of F, and the continuity of J.-t from above and below implies the right continuity of F 
for x > 0 and x < 0. It is evident that J.-t == /-tF on A, and hence J.-t == /-tF on 13JR by 
the uniqueness in Theorem 1 . 14 . 1 

Several remarks are in order. First, this theory could equally well be developed 
by using intervals of the form [a , b) and left continuous functions F. Second, if 
J.-t is a finite Borel measure on �' then 1-t == /-tF where F(x) == �-t( (-oo , x] )  is the 
cumulative di stribution function of J.-t; this differs from the F specified in Theorem 
1 . 1 6 by the constant �-t( (-oo,  0] ) .  Third, the theory of § 1 .4 gives, for each increasing 
and right continuous F, not only the Borel measure /-tF but a complete measure J.-t F 
whose doll!ain includes 13JR .  In fact, J.-t F is just the completion of /-tF (Exercise 22a 
or Theorem 1 . 1 9 below) , and one can show that its domain is always strictly larger 
than 13JR. We shall usually denote this complete measure also by /-tF ; it is called the 
Lebesgue-Stieltjes measure associated to F. 

Lebesgue-Stieltjes measures enjoy some useful regularity properties that we now 
investigate . In this discussion we fix a complete Lebesgue-Stieltjes measure J.-t on � 
associated to the increasing, right continuous function F, and we denote by MJ.L the 
domain of J.-t. Thus, for any E E MJ.L, 

00 00 

J-L(E) = inf {l )F(bj ) - F(aJ )] : E C U(aj , bj ] } 
1 1 

00 00 

= inf {L J-L ( (aj ' bj l ) : E c u( aj ' bj ] } . 
1 1 

We first observe that in the second formula for J.-t( E) we can replace h-intervals by 
open h-intervals: 

1.17 Lemma. For any E E MJ.L, 
00 00 

J-L(E) = inf {L J-L ((aj , bJ ) ) : E C U(aj , bj ) } ·  
1 1 
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Proof. Let us call the quantity on the right v(E) . Suppose E c U� ( aj , bj ) .  
Each ( aj , bj ) is a countable disjoint union of h-intervals Ij (k == 1 ,  2 ,  . . .  ) ;  specifi-
cally, Ij == ( cj , cj+1 ] where { Cj } i s  any sequence such that c} == aj and cj increases 
to bj as k � oo. Thus E c U.rk= 1 Ij , so 

00 00 

L JL((aj , bj ) ) == L JL(Ij ) > JL(E) , 
1 j ,k=1 

and hence v(E) > JL(E) . On the other hand, given E > 0 there exists { (aj ,  bj ] }1 
with E c U� (aj ,  bj ] and E� JL( (aj ,  bj ] )  < JL(E) + E, and for each j there exists 
8j > 0 such that F(bj + Dj ) - F(bj )  < E2-j . Then E c U�(aj ,  bj + 8j ) and 

00 00 

L JL ( (aj ,  bj + Dj ) ) < L JL ( (aj ,  bj ] ) + E < JL(E) + 2E, 
1 1 

so that v(E) < JL(E) . 

1.18 Theorem. If E E MIL, then 

JL(E) == inf{JL(U) : U � E and U is open} 

== sup{JL(K) : K C E and K is compact} .  

I 

Proof. By Lemma 1 . 1 7, for any E > 0 there exist intervals ( aj , bj ) such that 
E C U� (aj ,  bj ) and JL(E) < E� JL( (aj ,  bj ) ) + E . If U == U�(aj ,  bj ) then U is 
open, U � E, and JL(U) < JL(E) + E. On the other hand, JL(U) > JL(E) whenever 
U � E, so the first equality is val id. For the second one, suppose first that E is 
bounded. If E is closed, then E is compact and the equality is obvious. Otherwise, 
given E > 0 we can choose an open U � E \ E such that JL(U) < JL(E \ E) +  E. Let 
K == E \ U. Then K is compact, K c E, and 

JL(K) == JL(E) - JL(E n U) == JL(E) - [JL(U) - JL(U \ E)] 
> JL(E) - JL(U) + JL(E \ E) > JL(E) - E. 

If E is unbounded, let Ej == E n (j , j + 1] .  By the preceding argument, for 
any E > 0 there exist compact Kj c Ej with JL(Kj )  > JL(Ej )  - E2-j . Let 
Hn == un n Kj . Then Hn is compact, Hn c E, and JL(Hn) > JL(Un n Ej ) - E. 
Since JL(E) == limn__.oo JL(Un n Ej ) , the result follows . 1 

1.19 Theorem. If E C JR, the following are equivalent. 
a. E E MIL. 
b. E == V \ N1 where V is a G8 set and JL(N1 ) == 0. 
c. E == H U N2 where H is an Fa set and JL(N2 ) == 0. 
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Proof. Obviously (b) and (c) each imply (a) since J.L i s  complete on MIL. Suppose 
E E MIL and J.L(E) < oo. By Theorem 1 . 1 8 , for j E N we can choose an open 
Ui � E and a compact Ki c E such that 

J.L(Ui )  - 2-
i < J.L(E) < J.L(Ki )  + 2-

i
. 

Let V == n� Ui and H = U� Ki . Then H c E c V and J.L(V) == J.L(H) 
J.L(E) < oo, so J.L(V \ E) = J.L(E \ H) == 0. The result is thus proved when 
J.L(E) < oo; the extension to the general case is left to the reader (Exercise 25) . 1 

The significance of Theorem 1 . 1 9  is that all Borel sets (or, more generally, all sets 
in MJ-L) are of a reasonably simple form modulo sets of measure zero. This contrasts 
markedly with the machinations necessary to construct the Borel sets from the open 
sets when null sets are not excepted; see Proposition 1 .23 below. Another version 
of the idea that general measurable sets can be approximated by "simple" sets is 
contained in the following proposition, whose proof is left to the reader (Exercise 
26): 

1 .20 Proposition. If E E MIL and J.L(E) < oo, then for every E > 0 there is a set A 
that is a .finite union of open intervals such that J.L(E�A) < E. 

We now examine the most important measure on JR, namely, Lebesgue measure: 
This is the complete measure J.L F associated to the function F ( x ) = x, for which the 
measure of an interval is simply its length. We shall denote it by m. The domain of 
m is called the class of Lebesgue measurable sets , and we shall denote it by £ .  We 
shall also refer to the restriction of m to 13JR as Lebesgue measure . 

Among the most significant properties of Lebesgue measure are its invariance 
under translations and simple behavior under di lations. If E c 1R and s ,  r E JR, we 
define 

E + s = {X + s :  X E E } , r E == { rx : x E E} . 
1.21 Theorem. If E E £, then E + s E £ and rE E £for all s ,  r E JR. Moreover, 
m(E + s ) = m(E) and m(rE) = l r lm(E). 

Proof. Since the collection of open intervals is invariant under translations and 
dilations, the same is true of 13JR. For E E 13JR, let ms (E) == m(E + s ) and 
mr (E) == m(rE) . Then ms and mr clearly agree with m and l r lm on finite unions 
of intervals, hence on 13JR by Theorem 1 . 1 4. In particular, if E E 13JR and m( E) = 0, 
then m(E + s) = m(r E) = 0, from which it follows that the class of sets of 
Lebesgue measure zero is preserved by translations and di lations. It follows that £ 
(the members of which are a union of a Borel set and a Lebesgue null set) is preserved 
by translation and dilations and that m(E + s) == m(E) and m(rE) == lr lm (E) for 
all E E £ .  I 

The relation between the measure-theoretic and topological properties of subsets 
of R is delicate and contains some surprises . Consider the following facts . Every 
singleton set in 1R has Lebesgue measure zero, and hence so does every countable 
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set. In particular, m( Q) == 0. Let { r 1 }  1 be an enumeration of the rational numbers 
in [0 , 1 ] , and given E > 0, let 11 be the interval centered at r1 of length E2-j . Then 
the set u == (0 , 1 )  n u� Ij is open and dense in [0 , 1] , but m(U) < E� E2-j == E ; 
its complement K == [0 , 1 ]  \ U is closed and nowhere dense, but m(K) > 1 - E . 
Thus a set that i s  open and dense, and hence topologically "large," can be measure
theoretical ly small ,  and a set that is nowhere dense, and hence topologically "small," 
can be measure-theoretically large. (A nonempty open set cannot have Lebesgue 
measure zero, however.) 

The Lebesgue null sets include not only all countable sets but many sets having 
the cardinality of the continuum. We now present the standard example, the Cantor 
set, which is also of interest for other reasons. 

Each x E [0 , 1 ] has a base-3 decimal expansion x == E� a1 3-1 where a1 == 0, 1 ,  
or 2. This expansion is unique unless x is of the form p3 -k for some integers p, k, in 
which case x has two expansions: one with a1 == 0 for j > k and one with aj == 2 for 
j > k. Assuming p is not divisible by 3 ,  one of these expansions will have ak == 1 
and the other will have ak == 0 or 2. If we agree always to use the latter expansion , 
we see that 

1 " ff 1 2 a1 == 1 3 < x < 3 '  

_J_ 1 d 1 .ff 1 2 7 8 a1 r an a2 == 1 9 < x < 9 or 9 < x < 9 ,  

and so forth. It will also be useful to observe that if x == E aj 3-j and y == E b1 3-j , 
then x < y iff there exists an n such that an == bn and aj == bj for j < n. 

The Cantor set C is the set of all x E [0 , 1 ]  that have a base-3 expansion 
x == E aj 3-j with aj -/= 1 for all j .  Thus C is obtained from [0, 1 ]  by removing the 
open middle third ( � , � ) ,  then removing the open middle thirds ( � , � )  and ( � , � )  of 
the two remaining intervals, and so forth. The basic properties of C are summarized 
as follows: 

1 .22 Proposition. Let C be the Cantor set. 
a. C is compact, nowhere dense, and totally disconnected (i. e. , the only connected 

subsets of C are single points). Moreover, C has no isolated points. 
b. rn ( C) == 0. 
c. card (C) == c. 

Proof. We leave the proof of (a) to the reader (Exercise 27) . As for (b), C is 
obtained from [0 , 1 ]  by removing one interval of length � , two intervals of length � ,  
and so forth. Thus 

00 2j 1 1 m( C) == 1 - � 3J+ l = 1 - 3 · 
1 - (2/3) = O. 

Lastly, suppose x E C, so that x == E� aj 3-j where aj == 0 or 2 for all j .  
Let f(x) == E� bj 2-j where bj == aj /2. The series defining f(x) i s  the base-2 
expansion of a number in [0, 1 ] ,  and any number in [0, 1 ]  can be obtained in this way. 
Hence f maps C onto [0, 1 ] ,  and (c) follows. 1 
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Let us examine the map f in the preceding proof more closely. One readily sees 
that if x ,  y E C and x < y, then f(x) < f(y) unless x and y are the two endpoints 
of one of the intervals removed from [0, 1 ]  to obtain C.  In this case f (x) == p2-k for 
some integers p, k, and f ( x) and f (y) are the two base-2 expansions of this number. 
We can therefore extend f to a map from [0, 1 ]  to itself by declaring it to be constant 
on each interval missing from C. This extended f is still increasing, and since its 
range is all of [0, 1 ]  it cannot have any jump discontinuities; hence it is continuous. 
f is cal led the Cantor function or Cantor-Lebesgue function. 

The construction of the Cantor set by starting with [0, 1 ]  and successively removing 
open middle thirds of intervals has an obvious generalization. If I is a bounded 
interval and a E ( 0 ,  1 ) ,  let us call the open interval with the same midpoint as I and 
length equal to a times the length of I the "open middle ath" of I .  If { aj }1 is 
any sequence of numbers in (0, 1 ) , then, we can define a decreasing sequence { Kj } 
of closed sets as follows : K0 == [0 , 1] , and Kj is obtained by removing the open 
middle aj th from each of the intervals that make up Kj- 1 · The resulting limiting 
set K == n� KJ is cal led a generalized Cantor set. Generalized Cantor sets all 
share with the ordinary Cantor set the properties (a) and (c) in Proposition 1 .22. As 
for their Lebesgue measure, clearly m(Kj ) == ( 1 - aj )m(Kj-1 ) ,  so m(K) is the 
infinite product TI� (1 - aj ) == limn-H)o TI� (1 - aj ) .  If the aj are all equal to a fixed 
a E (0 ,  1 ) (for example, a ==  � for the ordinary Cantor set) , we have m(K) == 0. 
However, if aj � 0 sufficiently rapidly as j � oo, m(K) will be positive, and for 
any {3 E (0 , 1 ) one can choose aj so that m(K) will equal {3; see Exercise 32 . This 
gives another way of constructing nowhere dense sets of positive measure . 

Not every Lebesgue measurable set is a Borel set. One can display examples of 
sets in ,C \ 23R by using the Cantor function ;  see Exercise 9 in Chapter 2. Alternatively, 
one can observe that since every subset of the Cantor set is Lebesgue measurable, we 
have card(,C) == card(P(IR)) > c, whereas card(23R) == c. The latter fact follows 
from Proposition 1 .23 below. 

Exercises 

25. Complete the proof of Theorem 1 . 1 9. 

26. Prove Proposition 1 .20. (Use Theorem 1 . 1 8 .) 

27. Prove Proposition 1 .22a. (Show that if x, y E C and x < y, there exists z tt C 
such that x < z < y.)  

28. Let F be increasing and right continuous, and let /--lF be the associated measure . 
Then /--lF ( {a} ) == F ( a) - F ( a- ) , J-lF ( [a , b) ) == F(b-) - F ( a-) ,  f.-lF ( [a ,  b] ) == 
F(b) - F(a-) ,  and J-lF ( (a, b) ) == F(b-) - F(a) . 

29. Let E be a Lebesgue measurable set. 
a. If E c N where N is the nonmeasurable set described in § 1 . 1 ,  then m( E) == 
0. 
b. If m( E) > 0, then E contains a nonmeasurable set. (It suffices to assume 
E C [0 , 1] . In the notation of § 1 . 1 ,  E == UrER E n  Nr.) 
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30. If E E £ and m(E) > 0, for any a < 1 there is an open interval I such that 
m(E n I) > am( I) . 

31. If E E £ and m(E) > 0, the set E - E == {x - y :  x , y E E} contains an 
interval centered at 0. (If I is as in Exercise 30 with a > ! , then E - E contains 
( - �m(I) , �m(I) ) .) 

32. Suppose { aj }1 c (0 ,  1 ) . 
a. !1� (1 - aj ) > 0 iff 2:� aj < oo. (Compare L:� log( 1 - aj ) to L: aj .) 
b. Given f3 E (0 ,  1 ) ,  exhibit a sequence {aj } such that !1� (1 - aj ) == {3. 

33. There exists a Borel set A c [0 , 1 ]  such that 0 < m( A n I) < m( I) for every 
subinterval I of [0 , 1] . (Hint : Every subinterval of [0 , 1] contains Cantor-ty'pe sets of 
positive measure. )  

1 .6 NOTES AN D REFERENCES 

The history of 1neasure theory is intimately connected with the history of integration 
theory, comments on which will be made in §2. 7 .  

§ 1 . 1 :  The Banach-Tarski paradox appeared first in [ 1 1 ] ,  but the following variant 
goes back to Hausdorff [68] : 

The unit sphere in JR3, { x E JR3 : l x l  == 1 } ,  i s  the disjoint union of four sets 
E1 , . . .  , E4 such that (a) E1 is countable and (b) the sets E2 , E3 , E4, and 
E3 U E4 are all images of each other under rotations. 

An elementary exposition of the Banach-Tarski paradox and Hausdorff's result can 
be found in Stromberg [ 146] . 

§ 1 .2 : Our characterization of the a-algebra J\1(  £)  generated by a family £ c 
P(X) is nonconstructive , and one might ask how to obtain J\1( £) explicitly from £ .  
The answer is rather complicated. One can begin as follows: Let £ 1 == £ U { Ec : 
E E £} ,  and for j > 1 define £ j to be the collection of all sets that are countable 
unions of sets in t:j- 1  or complements of such. Let C:w == U� £j : is C:w == M( £)?  
In general, no. C:w i s  closed under complements, but if Ej E £j \ Gj-1  for each j ,  
there i s  no reason for U� Ej to be in  C:w .  So one must start all over again. More 
precisely, one must define C:a for every countable ordinal a by transfinite induction : 
If a has an immediate predecesor {3, C:a is  the collection of sets that are countable 
unions of sets in £!3 or complements of such ; otherwise, C:a == Uf3<a £!3 . Then : 

1.23 Proposition. M(E) == UaEn Ga, where n is the set of countable ordinals. 

Proof Transfinite induction shows that C:a c M(E) for all a E 0, and hence 
UaEn C:a C M(E) . The reverse inclusion follows from the fact that any sequence in 
0 has a supremum in 0 (Proposition 0. 1 9) :  If Ej E C:aj for j E N and f3 == sup{ ai } ,  
then Ej E C:a for all j and hence U� Ej E £!3 where f3 i s  the successor of a. 1 
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Combining this with Proposition 0. 14, we see that if card(N) < card(£) < c,  
then card(M( £)) == c .  (Cf. Exercise 3 .) 

§ 1 . 3 :  Some authors prefer to take the domains of measures to be a-rings rather 
than a-algebras (see Exercise 1 ) . The reason is that in dealing with "very large" 
spaces one can avoid certain pathologies by not attempting to measure "very large" 
sets . However, this point of view also has technical disadvantages, and it is no longer 
much in favor. 

§ 1 .4: Caratheodory 's theorem appears in his treatise [22] . Theorem 1 . 14 has 
been attributed in the literature to Hahn, Caratheodory, and E. Hopf, but it is orig
inally due to Frechet [54] . The proof via Caratheodory's theorem was discovered 
independently by Hahn [60] and Kolmogorov [85] . 

See Konig [86] for a deeper study of the problem of constructing measures from 
more primitive data. 

§ 1 .5 :  Lebesgue originally defined the outer measure m* (E) of a set E c lR in 
terms of countable coverings by intervals, as we have done. He then defined a bounded 
set E to be measurable if m * (E) + m * ( (a , b) \ E) == b - a, where (a , b) is an interval 
containing E, and an unbounded set to be measurable if its intersection with any 
bounded interval is measurable . Caratheodory 's characterization of measurability, 
which is technically eaiser to work with, came later. For the equivalence of the two 
definitions, see Exercise 1 9. 

One should convince oneself that the remarkably fussy proof of Proposition 1 . 1 5 
is  necessary by contemplating the complicated ways in which an h-interval can be 
decomposed into a disjoint union of h-subintervals. In any such decomposition the 
collection of right endpoints of the subintervals, when ordered from right to left, is 
a well ordered set, but it can be order isomorphic to any initial segment of the set of 
countable ordinals . 

Lebesgue measure can be extended to a translation-invariant measure on a
algebras that properly include .C ;  see Kakutani and Oxtoby [8 1 ] .  Of course, such 
a-algebras can never contain the nonmeasurable set discussed in § 1 .  However, 
Lebesgue measure can be extended to a translation-invariant finitely additive mea
sure on P'(JR) , and its 2-dimensional analogue (see §2 .6) can be extended to a finitely 
additive measure on P(IR2 ) that is invariant under translations and rotations; see 
Banach [8 ] .  The Banach-Tarski paradox prevents this result from being extended to 
higher dimensions. 

In connection with the existence of nonmeasurable sets, Solovay [ 1 38] has proved 
a remarkable theorem which says in effect that it is impossible to prove the existence 
of Lebesgue nonmeasurable sets without using the axiom of choice. (The precise 
statement of the theorem involves to technical points of axiomatic set theory, which 
we shall not discuss here.) From the point of view of the working analyst, the effect of 
Solovay 's theorem is to reaffirm the adequacy of the Lebesgue theory for all practical 
purposes. 

See Rudin [ 1 24] for a terse solution of Exercise 33 .  





Integration 

In the classical theory of integration on IR, J: f ( x) dx i s  defined as a limit of Rie
mann sums, which are integrals of functions that approximate f and are constant on 
subintervals of [a , b] . Similarly, on any measure space there is an obvious notion 
of integral for functions that are, in a suitable sense, locally constant, and it can be 
extended to an integral for more general functions. In this chapter, we develop the 
theory of integration on abstract measure spaces, paying particular attention to the 
Lebesgue integral on 1R and its generalization to lRn. 

2.1  M EASU RABLE FU NCTIONS 

We begin our study of integration theory with a discussion of measurable mappings, 
which are the morphisms in the category of measurable spaces. 

We recall that any mapping f : X --4 Y between two sets induces a mapping 
f- 1 : P(Y) --4 P(X) ,  defined by f- 1 (E) == {x E X : f(x) E E} ,  which 
preserves unions, intersections, and complements . Thus, if N is a a-algebra on Y, 
{f- 1 (E) : E E N} is a a-algebra on X. If (X, M) and (Y, N) are measurable 
spaces, a mapping f : X --4 Y is called (M, N) -measurable, or just measurable 
when M and N are understood, if f- 1 (E) E M  for all E E N. 

It is obvious that the composition of measurable mappings is measurable; that is , 
if f : X --4 Y is (M, N)-measurable and g : Y --4 Z is (N, 0) -measurable, then 
g o f is (J\1, 0) -measurable. 

2.1 Proposition. IJN is generated by £, then f : X --4 Y is (M, N) -measurable iff 
f- 1 (E) E Mfor all E E £. 

43 
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Proof. The "only if" implication is trivial . For the converse, observe that { E c 
Y : f- 1  (E) E M} is a a-algebra that contains £ ;  it therefore contains N. 1 

2.2 Corollary. If X and Y are metric (or topological) spaces, every continuous 
f : X --4 Y is (23 x , 23y ) -measurable. 

Proof. f is continuous iff f- 1 (U) is open in X for every open U c Y. 1 
If (X, M) is a measurable space, a real- or complex-valued function f on X wil l  be 

cal led M-measurable, or just measurable, if it is (M, 23R) or (M , 23c) measurable. 
23R or 23c is always understood as the a-algebra on the range space unless otherwise 
specified. In particular, f : JR --4 <C is Lebesgue (resp. Borel) measurable if it is 
( .C ,  23c) (resp. ( 23R , 23c ) ) measurable; likewise for f : JR --4 JR. 

Warning: If / , g : JR --4 JR are Lebesgue measurable, it does not fol low that f o g  
is Lebesgue measurable, even if g is assumed continuous. (If E E 23R we have 
f- 1 (E) E £, but unless f- 1 (E) E 23R there is no guarantee that g- 1 (f- 1 (E) )  wil l  
be in £ .  See Exercise 9.) However, if f is Borel measurable, then f o g  is Lebesgue 
or Borel measurable whenever g is. 

2.3 Proposition. If (X, M) is a measurable space and f : X --4 JR, the following 
are equivalent: 

a. f is M-measurable. 
b. f- 1 ( (a , oo)) E M for all a E JR. 
c. f- 1 ( [a, oo))  E Mfor all a E JR. 
d. f- 1 ( (-oo , a) ) E Mfor all a E JR. 
e. f- 1 ( (-oo , a] ) E Mfor all a E JR. 

Proof. This follows from Propositions 1 .2 and 2 . 1 .  1 
Sometimes we wish to consider measurability on subsets of X. If (X, M) is a 

measurable space , f is a function on X, and E E M, we say that f is measurable on 
E if f- 1  (B) n E E M for al l Borel sets B. (Equivalently, f iE is ME-measurable , 
where ME == {F n E :  F E M} .) 

Given a set X, if { (Ya , Na ) }aEA is a family of measurable spaces ,  and f : 
X --4 Ya is a map for each a E A, there is a unique smallest a-algebra on X with 
respect to which the fa 's are all measurable, namely, the a-algebra generated by the 
sets J;;1 (Ea )  with Ea E Na and a E A. It is called the a-algebra generated by 
{!a }aEA · In particular, if X == TinEA Ya , we see that the product a-algebra on X, 
as defined i n  § 1 .2, is the a-algebra generated by the coordinate maps 1r a : X --4 Ya . 

2.4 Proposition. Let (X, M) and (Ya , Na ) (a E A) be measurable spaces, Y == 
TinEA Ya, N == ®aEA Na, and 1ra : Y --4 Ya the coordinate maps. Then f : X  --4 
Y is (M, N) -measurable iff fa == 7r0 o f  is (M , N0) -measurablefor all a. 

Proof. If f is measurable , so is each fa since the composition of measurable 
maps is measurable. Conversely, if each fa is measurable , then for all Ea E N0 , 
f- 1  ( 1r a 1 (Ea ) )  == /;;1 (Ea ) E M, whence f is measurable by Proposition 2. 1 .  1 
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2.5 Corollary. A function f X � C is M-measurable iff Re f and Im f are 
M-measurable. 

Proof. This follows since 23c == 23R2 = 23R Q9 23R by Proposition 1 .5 .  1 
It is sometimes convenient to consider functions with values in the extended real 

number system 1R = [oo , oo] . We define Borel sets in lR by 23R = {E c 1R : 
E n 1R E 23R} .  (This coincides with the usual definition of the Borel a-algebra 
if we make 1R into a metric space with metric p(x , y) == IA (x) - A(y) l , where 
A(x) == arctan x.) It is easily verified as in Proposition 2.3 that 23R is generated by 
the rays (a , oo] or [-oo ,  a) (a E JR), and we define f :  X �  lR to be M-measurable 
if it is (J\1 , 23R) -measurable. See Exercise 1 .  

We now establish that measurability is preserved under the familiar algebraic and 
limiting operations. 

2.6 Proposition. Iff, 9 : X �  C are M-measurable, then so are f + 9 and !9· 
Proof. Define F : X � C x C, ¢ : C x C � C, and 'ljJ : C x C � C by 

F(x) == (J(x) ,  9 (x) ) ,  ¢(z , w) == z + w, 7/J(z, w) = zw. Since 23c xc == 23c ® 23c by 
Proposition 1 .5 ,  F is (J\1 , 23c xc) -measurable by Proposition 2.4, whereas ¢ and 'ljJ 
are (Ccxc , 23c)-measurable by Corollary 2.2. Thus f + 9 = ¢ o F  and f 9 = 'ljJ o F  
are J\1-measurable . 1 

Proposition 2.6 remains valid for ffi.-valued functions provided one takes a little 
care with the indeterminate expressions oo - oo and 0 · oo. (Recall , however, that by 
convention we always define 0 · oo to be 0 . )  See Exercise 2. 

2. 7 Proposition. If { /j } is a sequence oflR-valued measurable functions on (X, M), 
then the functions 

91 (x) = s�p fj (x) ,  93 (x) = liJ? sup /j (x) ,  
J J�OO 

92 (X) = i�f /j (X) , J 

are all measurable. If f(x) = limj�oo f(x) exists for every x E X, then f is 
measurable. 

Proof. We have 

00 00 
91 1 ( (a, oo] ) == U f j- 1 ( (a , oo] ) , 92 1 ( [-oo ,  a) ) == U /j- 1 ( [-oo,  a) ) , 

1 1 
so 91 and 92 are measurable by Proposition 2 .3 .  More generally, if hk ( x) 
supj>k /j (x) then hk is measurable for each k, so 93 == infk hk is measurable, 
and likewise for 94 . Finally, if f exists then f == 93 == 94 , so f is measurable . 1 
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2.8 Corollary. If f, g X --4 lR are measurable, then so are max(f, g) and 
min(/ , g). 

2.9 Corollary. If {fj }  is a sequence of complex-valued measurable functions and 
f(x) == limj�oo fi (x) exists for all x, then f is measurable. 

Proof. Apply Corollary 2.5 . I 
For future reference we present two useful decompositions of functions. First, if  

f : X --4 IR, we define the positive and negative parts of f to be 

j+ (x) == max (f(x) , 0) , f- (x) == max(-f(x) , 0) . 

Then f == f+ - f- . If f is measurable, so are J+ and f- , by Corollary 2 .8 .  Second, 
if f : X --4 C, we have its polar decomposition : 

f == (sgn f) I f I , where sgn z == { oz/ l z l if z =I= O, 
if z == 0. 

Again, if f is measurable, so are I f I and sgn f. Indeed, z � I z I is continuous on 
<C, and z � sgn z is continuous except at the origin .  If U c C is open, sgn - 1 ( U) 
is either open or of the form V U {0} where V is open, so sgn is Borel measurable. 
Therefore I f I == I · I o f and sgn f == sgn of are measurable. 

We now discuss the functions that are the building blocks for the theory of inte
gration. Suppose that (X, J\1) is a measurable space. If E c X, the characteristic 
function XE of E (sometimes called the indicator function of E and denoted by 
lE)  is defined by { 1 if X E E, XE (x) = 0 if x ¢:c E. 

It is easily checked that XE is measurable iff E E J\1. A simple function on X is a 
finite linear combination, with complex coefficients, of characteristic functions of sets 
in J\1. (We do not allow simple functions to assume the values ±oo.) Equivalently, 
f : X --4 C is simple iff f is measurable and the range of f is a finite subset of C. 
Indeed, we have n 

f == L ZjXEj , where Ej == f- 1 ( {zj } )  and range(!) ==  {z1 , . . .  , zn } · 
1 

We call this the standard representation of f . It exhibits f as a l inear combination, 
with distinct coefficients, of characteristic functions of disjoint sets whose union is 
X. Note: One of the coefficients Zj may well be 0, but the term Zj XEj is sti l l  to be 
envisioned as part of the standard representation, as the set Ej may have a role to 
play when f interacts with other functions. 

It is clear that if f and g are simple functions, then so are f + g and f g. We 
now show that arbitrary measurable functions can be approximated in a nice way by 
simple functions. 
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2.10 Theorem. Let (X, M) be a measurable space. 
a. Iff : X --4 [0 , oo] is measurable, there is a sequence { ¢n } of simple functions 

such that 0 < ¢1 < ¢2 < · · · < f, ¢n --4 f pointwise, and ¢n --4 f uniformly 
on any set on which f is bounded. 

b. Iff : X ---4 <C is measurable, there is a sequence { ¢n } of simple functions such 
that 0 < I ¢1 1 < I ¢2 1 < · · · < I f j , ¢n --4 f pointwise, and ¢n --4 f uniformly 
on any set on which f is bounded. 

Proof. (a) For n == 0 , 1 ,  2 , . . .  and 0 < k < 22n - 1 ,  let 

and define 
22n _ 1  

cPn == L k2-nXE� + 2nXFn . 
k=O 

(This formula is messy in print but easily understood graphically; see Figure 2 . 1 .) It 
is easily checked that ¢n < ¢n+ 1 for all n, and 0 < f - ¢n < 2-n on the set where 
f < 2n . The result therefore follows. 

(b) If f == g + ih, we can apply part (a) to the positive and negative parts of g 
and h, obtaining sequences 7/J:}; , 'l/Jn , (;t , (;; of nonnegative simple functions that 
increase to g+ , g- , h+ , h- . Let ¢n == 'l/;:}; - 'l/Jn + i (  (;t - (n ) ; it is then a simple 
exercise to verify that ¢n has the desired properties. 1 

If 1-l is a measure on (X, M) , we may wish to except J.-t-null sets from consideration 
in studying measurable functions. In this respect, life is a bit simpler if 1-l is complete . 

2. 11 Proposition. The following implications are valid iff the measure J.-l is complete: 
a. Iff is measurable and f == g J.-t-a. e. , then g is measurable. 
b. Iff n is measurable for n E N and f n --4 f J.-t-a. e. , then f is measurable. 

The proof is left to the reader (Exercise 1 0) . 
On the other hand, the following result shows that one is unlikely to commit any 

serious blunders by forgetting to worry about completeness of the measure . 

I 

�- - ·  . . . . . . . .  · · · · · r-------___, I 

Fig. 2. 1 The functions ¢0 (left) and ¢1 (right) in the proof of Theorem 2. 1 Oa. 
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2.12 Proposition. Let (X, M, J.-t) be a measure space and let (X, M, J.-t) be its com
pletion. Iff is an M-measurable function on X, there is an M-measurable function 
g such that f == g J.-t-almost everywhere. 

Proof. This is obvious from the definition of J.-l if f == XE where E E JYC, 
and hence if f is an M-measurable simple function. For the general case, choose 
a sequence { ¢n } of M-measurable simple functions that converge pointwise to f 
according to Theorem 2 . 1 0, and for each n let 7/Jn be an M-measurable simple 
function with 7/Jn == ¢n except on a set En E JY( with J.-t( En) == 0. Choose N E JY( 
such that J.-t (N) == 0 and N � U� En, and set g == lim XX\N'¢n · Then g is 
M-measurable by Corollary 2.9, and g == f on Nc . 1 

Exercises 
In Exercises 1-7, (X, M) is a measurable space. 

1. Let f : X � ffi. and Y == f- 1 (IR) . Then f is measurable iff f- 1 ( { -oo} )  E M, 
f- 1 ( { oo}) E M, and f is measurable on Y. 

2. Suppose f, g : X � lR are measurable. 
a. f g is measurable (where 0 · ( ±oo) == 0). 
b. Fix a E 1R and define h(x) == a if f(x) == -g(x) == ±oo and h(x) == 

f ( x) + g ( x) otherwise .  Then h is measurable. 

3. If {fn } is a sequence of measurable functions on X, then {x : lim fn (x) exists} 
is a measurable set. 

4. If f : X � 1R and f- 1 ( (r, oo]) E JY( for each r E <Q, then f is measurable. 

5. If X == A U B where A, B E M, a function f on X is measurable iff f is 
measurable on A and on B. 

6. The supremum of an uncountable family of measurable ffi.-valued functions on 
X can fail to be measurable (unless the a-algebra JY( is very special) .  

7. Suppose that for each a E lR we are given a set Ea. E JY( such that Ea. c Ef3 
whenever Q < {3, Uo.ER Ea. == X, and no.ER Ea. == 0. Then there is a measurable 
function f : X � 1R such that f(x) < a on Ea. and f(x) > a on E� for every a.  

(Use Exercise 4.) 

8. If f : lR � lR is monotone, then f is Borel measurable. 

9. Let f : [0 , 1] � [0 ,  1] be the Cantor function (§ 1 .5) , and let g(x) == f(x) + x. 
a. g is a bijection from [0 ,  1] to [0 , 2] , and h == g- 1 is continuous from [0,2] to 
[0, 1 ] .  
b. If C is the Cantor set, m (g (C) ) == 1 .  
c. By Exercise 29 of Chapter 1 ,  g (  C) contains a Lebesgue nonmeasurable set 
A. Let B == g- 1 (A) .  Then B is Lebesgue measurable but not Borel . 
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d. There exist a Lebesgue measurable function F and a continuous function G 
on 1R such that F o G is not Lebesgue measurable. 

10. Prove Proposition 2 . 1 1 . 

11 .  Suppose that f is a function on 1R x JRk such that f( x, · ) is Borel measurable 
for each x E 1R and f ( · , y) is continuous for each y E 1R k . For n E N, define f n as 
follows. For i E Z let ai == i/n, and for ai < x < ai+l let 

Then fn is Borel measurable on IR x JRk and fn � f pointwise; hence f is Borel 
measurable on 1R x IRk . Conclude by induction that every function on IRn that is 
continuous in each variable separately is Borel measurable. 

2.2 I NTEG RATION OF NONNEGATIVE FUNCTIONS 

In this section we fix a measure space (X, M, J.-t) , and we define 

L + == the space of all measurable functions from X to [0 , oo] . 
If ¢ is a simple function in L + with standard representation ¢ == 2:� aj XE1 , we 
define the integral of ¢ with respect to J.-l by 

n J ¢ dp, = L ajp,(EJ ) 
1 

(with the convention, as always, that 0 · oo == 0). We note that f ¢ dJ.-t may equal oo. 
When there is no danger of confusion, we shall also write f ¢ for f ¢ dJ.-t. Also, it is 
sometimes convenient to display the argument of ¢ explicitly, especially when ¢( x) is 
given by a formula in terms of x or when there are other variables involved; in this case 
we shall use the notation f ¢(x) dJ.-t(x) . (Some authors prefer to write f ¢(x) J.-t(dx) 
instead.) Finally, if A E M, then ¢XA is also simple (viz. , ¢XA == 2: aiXAnE1 ), and 
we define fA ¢ dJ.-t (or fA ¢ or fA ¢(x) dJ.-t(x)) to be f ¢XA dJ.-t. The same notational 
conventions will also apply to the inegrals of more general functions to be defined 
below. To summarize : 

2.13 Proposition. Let ¢ and 'ljJ be simple functions in L +. 
a. If c > 0, f c¢ == c f ¢. 
b. f ( ¢ + 'ljJ) == J ¢ + f 'ljJ. 
c. If¢ < 7/J, then f ¢ < J V;. 
d. The map A �----* fA dJ.-t is a measure on M. 

f = L · 



50 INTEGRATION 

Proof. (a) is trivial . For (b), let E� ajXEj and E� bkXFk be the standard 
representations of ¢ and 'lj;. Then Ej = u; 1 (Ej n Fk) and Fk = U� (Ej n Fk) 
since U� Ej = U� Fk = X, and these unions are disjoint. Hence the finite additivity 
of 1-l implies that 

and the same reasoning show that the sum on the right equals f ( ¢ + 'ljJ) . Moreover, 
if ¢ < 'l/J, then aj < bk whenever Ej n Fk =I= 0, so 

J ¢ = L aJJ-L(EJ n Fk) < L bkJ-L(EJ n Fk) = J 1/;,  
j ,k j ,k 

which proves (c). Finally, if { Ak } is a disjoint sequence in J\1 and A == U� Ak, 

which establi shes (d). 

We now extend the integral to all functions f E L + by defining 

j f dJ-L = sup {/ ¢ dJ-L :  0 < ¢ < f, ¢ simple} . 

I 

By Proposition 2 . 1 3c, the two definitions of f f agree when f is simple, as 
the family of simple functions over which the supremum is taken includes f itself. 
Moreover, it is obvious from the definition that 

j f < j g whenever f < g , and j cf = c j f for all c E [0 , oo) . 

The next step is to establish one of the fundamental convergence theorems . 

2.14 The Monotone Convergence Theorem. If {fn } is a sequence in L + such that 
fj < fj+ l for all j, and f == limn-H)o fn (== supn fn), then f f == limn-H)o f fn· 

Proof. {f fn } is an increasing sequence of numbers, so its limit exists (possibly 
equal to oo). Moreover, f fn < f f for all n, so lim f fn < f f. To establish the 
reverse inequality, fix a E ( 0 ,  1 ) ,  let ¢ be a simple function with 0 < ¢ < f, and let 
En == {x : fn (x) > a¢(x) } . Then {En} is an increasing sequence of measurable 
sets whose union is X, and we have f fn > fEn fn > a fEn ¢. By Proposition 
2 . 13d and Theorem 1 .8c , lim fEn ¢ ==  J ¢, and hence lim J fn > a J ¢. Since this 
is true for all a < 1 ,  i t remains true for a == 1, and taking the supremum over all 
simple ¢ < f, we obtain lim J fn > J f. 1 
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The monotone convergence theorem is an essential tool in many situations, but 
its immediate significance for us is as follows. The definition of J f involves the 
supremum over a huge (usually uncountable) family of simple functions, so it may 
be difficult to evaluate J f directly from the definition. The monotone convergence 
theorem, however, assures us that to compute J f it is enough to compute lim J ¢n 
where { ¢n } is any sequence of simple functions that increase to f, and Theorem 
2 . 1 0  guarantees that such sequences exist. As a first application, we establish the 
additivity of the integral . 

2. 15 Theorem. If {fn}  is a .finite or infinite sequence in L + and f == Ln fn, then 
J f == Ln J fn· 

Proof. First consider two functions f1 and /2 . By Theorem 2. 10 we can find 
sequences { ¢j } and { 'l/Jj } of nonnegative simple functions that increase to /1 and /2 · 
Then { ¢) + 'l/;j } increases to /1 + /2 , so by the monotone convergence theorem and 
Theorem 2. 1 3b, 

Hence, by induction, J L� fn == L� J fn for any finite N. Letting N --+ oo 
and applying the monotone convergence theorem again, we obtain J L� fn 
L� f h·  I 

2.16 Proposition. Iff E L +, then J f == 0 iff f == 0 a. e. 

Proof. This is obvious if f is simple: if f == L� aj XEj with aj > 0, then 
J f == 0 iff for each j either aj == 0 or J.-t( Ej ) == 0. In general, if f == 0 a.e. and ¢ 
is simple with 0 < ¢ < f, then ¢ == 0 a.e . ,  hence J f == supq,<J J ¢ == 0. On the 
other hand, {x : f(x) > 0} == U� En where En == {x : f(x) > n- 1 } ,  so if it is 
false that f == 0 a.e. , we must have J.-t(En) > 0 for some n. But then f > n- 1 XEn ' 
so J f > n- 1!-l(En )  > 0 .  I 

2. 17 Corollary. If {fn }  C £+, f E £+, and fn (x) increases to f(x) for a. e. x, 
then J f == lim J fn· 

Proof. If fn (x) increases to f(x) for x E E where J.-t(Ec) == 0, then f-IXE == 0 
a.e. and fn - fnXE == 0 a.e. , so by the monotone convergence theorem, J f == 
f fXE == lim f fnXE == lim f fn · I 

The hypothesis that the sequence {fn }  be increasing, at least a.e. , is essential 
for the monotone convergence theorem. For example, if X is 1R and J.-l is Lebesgue 
measure, we have X(n ,n+1) --+ 0 and nx(o , 1 jn) --+ 0 pointwise, but J X(n ,n+1 ) == 
J nx(o , 1 ;n) == 1 for all n. As one sees by sketching the graphs, the trouble in these 
examples is that the area under the graph "escapes to infinity" as n --+ oo, so the 
area in the limit is less than one would expect. This is typical of the cases when the 
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integral of the limit is not the limit of the integrals, but in this situation there is still 
an inequality that remains valid. We deduce it from the following general result. 

2.18 Fatou's Lemma. If {fn } is any sequence in £+, then 

I (lim inf fn ) < lim inf I fn · 
Proof. For each k > 1 we have infn>k  f n < fj for j > k, hence J infn>k  f n < 

J fj for j > k, hence J infn>k fn < infj>k J fj · Now let k � oo and apply the 
monotone convergence theorem: 

l(lim inf fn ) = lim I ( inf fn) < lim inf l fn · k-HX> n>k 

I 

2.19 Corollary. If {fn } C L +, f E L +, and fn � f a. e. , then J f < lim inf J fn · 
Proof. If fn � f everywhere, the result is immediate from Fatou's lemma, 

and this can be achieved by modifying f n and f on a null set without affecting the 
integrals, by Proposition 2 . 1 6. 1 

2.20 Proposition. Iff E L + and J f < oo, then { x : f ( x) = oo} is a null set and 
{ x : f ( x ) > 0} is a -finite. 

The proof is left to the reader (Exercise 12) .  

Exercises 

12. Prove Proposition 2.20. (See Proposition 0.20, where a special case is proved. )  

13. Suppose {f n } c L + , f n � f pointwise, and f f = lim f f n < oo. Then 
JE f = lim JE fn for all E E M. However, this need not be true if J f = lim J fn = 
00. 

14. If f E L + , let ..\ (E) = JE f dJ.-t for E E M. Then ,\ is a measure on M, and for 
any g E L + ,  J g d..\ = J f g dJ.-t. (First suppose that g is simple.) 

15. If {fn } C L +, fn decreases pointwise to f, and J f1 < oo, then J f = lim J fn · 
16. If f E L + and J f < oo, for every E > 0 there exists E E M such that 
J.-t(E) < oo and fE f > (f f) - E .  

17. Assume Fatou's lemma and deduce the monotone convergence theorem from it. 

2.3 I NTEG RATION OF COM PLEX FU NCTIONS 

We continue to work on a fixed measure space (X, M, J.-t) . The integral defined in the 
previous section can be extended to real-valued measurable functions f in an obvious 
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way; namely, if J+ and f- are the positive and negative parts of f and at least one 
of J J+ and J f- is finite, we define 

We shall be mainly concerned with the case where J J+ and J f- are both finite; we 
then say that f is integrable . Since I l l  = J+ + f- , it is clear that f is integrable iff 
f I f !  < oo. 

2.21 Proposition. The set of integrable real-valued functions on X is a real vector 
space, and the integral is a linear functional on it. 

Proof. The first assertion follows from the fact that l af + bg l  < l a l l f l  + l b l l g l ,  
and it i s  easy to check that J af = a J f for any a E JR. To show additivity, suppose 
that f and g are integrable and let h == f + g . Then h+ - h- == J+ - f- + g+ - g- , 
so h+ + f- + g- == h- + J+ + g+ . By Theorem 2. 15 ,  

J h+ + J !- + J g- = J h- + J J+ + J g+ , 
and regrouping then yields the desired result: 

I 
Next, if f is a complex-valued measurable function, we say that f is integrable if 

J I f !  < oo. More generally, if E E M, f is integrable on E if JE I f !  < oo. S ince I f I < I Re ! I + I Im / I < 2 1/ l , f is integrable iff Re f  and Im f are both integrable, 
and in this case we define 

It follows easily that the space of complex-valued integrable functions is a complex 
vector space and that the integral is a complex-linear functional on it. We denote this 
space - provisionally - by L1 (p) (or L1 (X, p) , or L1 (X) ,  or simply £1 , depending 
on the context) . The superscript 1 is standard notation, but it will not assume any 
significance for us until Chapter 6 .  

2.22 Proposition. If f E L1 , then I J ! I < J I f ! . 
Proof. This is trivial if J f = 0 and almost trivial if f is real , since 

If f is complex-valued and J f =/= 0, let a ==  sgn(J f) . Then I J ! I == a  J f == J a f. 
In particular, J af is real , so 

j 1 = Ref a! = j Re(af) < f ! Re(af) ! < f !af ! = j lf ! . 

I 
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2.23 Proposition. 

a. Iff E £1 , then {x : f(x) =/= 0} is a-finite. 
b. /ff, g E L1 , then iE J == IE gfor all E E M if!I If - g i == O if!f == g a.e. 
Proof. (a) and the second equivalence in (b) follow from Propositions 2 .20 and 

2. 1 6. If I If - g I == 0, then by Proposition 2.22, for any E E M, 

so that IE f == IE g. On the other hand, if u == Re (f - g) ,  v == Im(f - g) , and it 
is false that f == g a.e . ,  then at least one of u+ , u- , v+ , and v- must be nonzero on 
a set of positive measure. If, say, E == { x : u+ ( x) > 0} has positive measure, then 
Re(IE f - IE g) == IE u+ > 0 since u- == 0 on E; l ikewise in the other cases. 1 

This proposition shows that for the purposes of integration it makes no difference 
if we alter functions on null sets. Indeed, one can integrate functions f that are only 
defined on a measurable set E whose complement is null simply by defining f to be 
zero (or anything else) on Ec. In this fashion we can treat JR-valued functions that 
are finite a. e. as real-valued functions for the purposes of integration . 

With this in mind, we shall find it more convenient to redefine £1 (J.-t) to be the 
set of equivalence classes of a.e . -defined integrable functions on X, where f and g 
are considered equivalent iff f == g a. e. This new £1 (J.-t) is still a complex vector 
space (under pointwise a.e. addition and scalar multiplication). Although we shall 
henceforth view £1 (J.-t) as a space of equivalence classes, we shall still employ the 
notation "f E £1 (J.-t) " to mean that f is an a.e.-defined integrable function . This  
minor abuse of notation is commonly accepted and rarely causes any confusion .  

The new definition of £1 (J.-t) has two further advantages. First, if J.-l i s  the comple
tion of f.-l, Proposition 2 . 1 2  yields a natural one-to-one correspondence between £1 (J.-t) 
and £1 (J.-t) , so we can (and shall) identify these spaces . Second, £1 is a metric space 
with distance function p(f, g) == I If - g l .  (The triangle inequality is easily verified, 
and obviously p(f, g) == p(g , f) ;  but to obtain the condition that p(f, g) == 0 only 
when f == g, one must identify functions that are equal a.e. , according to Proposition 
2.23 b.) We shall refer to convergence with respect to this metric as convergence in 
L1 ; thus fn --4 f in L1 iff I l fn - f l --4 0. 

We now present the last of the three basic convergence theorems (the other two 
being the monotone convergence theorem and Fatou's lemma) and derive some useful 
consequences from it. In the context of integration on ffi. with Lebesgue measure as 
in the discussion preceding Fatou' s lemma, the idea behind this theorem is that if 
f n --4 f a.e. and the graph of I fn I is confined to a region of the plane with finite area 
so that the area beneath it cannot escape to infinity, then J f n --4 J f. 
2.24 The Dominated Convergence Theorem. Let {fn } be a sequence in L1 such 
that (a) fn --4 f a. e. , and (b) there exists a nonnegative g E £1 such that I fn i < g 
a. e. for all n. Then f E L1 and J f == limn-H)() I f n· 
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Proof. f is measurable (perhaps after redefinition on a null set) by Propositions 
2 . 1 1  and 2 . 1 2, and since I ! I  < g a .  e. , we have f E £1 . By taking real and imaginary 
parts it suffices to assume that f n and f are real-valued, in which case we have 
g + fn > 0 a.e. and g - fn > 0 a.e. Thus by Fatou's lemma, 

J g + J f < lim inf J (g + f n) = J g + lim inf J f n , 
j g - j f < lim inf j(g - fn) = j g - lim sup j fn · 

Therefore, lim inf J fn > J f > lim sup J fn , and the result follows. I 

2.25 Theorem. Suppose that {fj }  is a sequence in L1 such that E� J l fj I < oo. 
Then E� /j converges a. e. to a function in L1 , and J E� /j = E� J fj · 

Proof. By Theorem 2. 1 5 , J E� l fj I = E� J l fj I < oo, so the function g = 

E� I /j I is in £1 . In particular, by Proposition 2 .20, E� l fj ( x) I is finite for a.e . 
x, and for each such x the series E� /j ( x) converges .  Moreover, I E� /j I < g for 
all n, so we can apply the dominated convergence theorem to the sequence of partial 
sums to obtain J E� /j = E� J /j . 1 

2.26 Theorem. If f E £1 (J.-t) and E > 0, there is an integrable simple function 
¢ = E aj XEi such that J If - ¢1 dJ.-t < E. (That is, the integrable simple functions 
are dense in L1 in the L1 metric. ) If 1-l is a Lebesgue-Stieltjes measure on lR, the sets 
Ej in the definition of¢ can be taken to be finite unions of open intervals; moreover, 
there is a continuous function g that vanishes outside a bounded interval such that 
J I f - g l dJ.-t < E. 

Proof. Let { ¢n } be as in Theorem 2. 1 0b; then J l¢n - f l < E for n sufficiently 
large by the dominated convergence theorem, since l ¢n - ! I < 2 1 / 1 .  If ¢n = 

E ajXE1 where the Ej are disjoint and the aj are nonzero, we observe that J.-t (Ej ) = 

l aj l - 1 JE ·  l¢n l < l aj j - 1 J 1 ! 1 < oo. Moreover, if E and F are measurable sets, 
J 

we have J.-t(Et:. F) == J IXE - XF I · Thus if J.-l is a Lebesgue-Stieltjes measure on JR, 
by Proposition 1 .20 we can approximate XEj arbitrarily closely in the £1 metric by 
finite sums of functions XIk where the Ik 's are open intervals .  Finally, if Ik = (a , b) 
we can approximate XIk in the £1 metric by continuous functions that vanish outside 
(a , b) . (For example, given E > 0, take g to be the continuous function that equals 
0 on (- oo ,  a] and [b , oo ) ,  equals 1 on [a + E , b - E] , and is linear on [a , a + E] and 
[b - E , b] . ) Putting these facts together, we obtain the desired assertions. 1 

The next theorem gives a criterion, less restrictive than those found in most 
advanced calculus books, for the validity of interchanging a limit or a derivative with 
an integral . 
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2.27 Theorem. Suppose that f : X x [a , b] � CC (-oo < a < b < oo) and that 
f ( - , t) : X  --4 CC is integrable for each t E [a, b] . Let F(t) = fx f(x , t) df.-t(x) . 

a. Suppose that there exists g E £1 (!-l) such that l f (x , t) l < g (x) for all x, t. 
If limt�to f(x , t) = f (x , to ) for every x, then limt�to F(t) = F(to ) :  in 
particular, if f(x , · ) is continuous for each x, then F is continuous. 

b. Suppose that a fIat exists and there is a g E L 1 (f.-l) such that I (a fIat) (X ' t) I < 
g (x) for all x, t. Then F is differentiable and F' (x) = J(aj lat) (x , t) df.-t (x) . 

Proof For (a), apply the dominated convergence theorem to fn (x) == f (x , tn ) 
where { tn } is any sequence in [a , b] converging to to . For (b) , observe that 

a
a
f (x , to )  = lim hn (x) where hn (x) = f (x , tn) - f (x , to ) ' t tn - to 

{ tn } again being any sequence converging to to .  It follows that a f I 8t is measurable, 
and by the mean value theorem, 

l hn (x) l < sup 
a
a
j (x , t) < g(x) , 

tE [a , b] t 
so the dominated convergence theorem can be invoked again to give 

1 ) • F ( tn ) - F (to ) . J ( ) ( J 8 f ) ( F (to = hm = hm hn x df.-t x) = -a (x , t df.-t x) .  tn - to t 
I 

The device of using sequences converging to to in the preceding proof is technical ly 
necessary because the dominated convergence theorem deals only with sequences of 
functions. However, in such situations we shall usually just say "let t � t0" with the 
understanding that sequential convergence is underlying the argument. 

It is important to note that in Theorem 2.27 the interval [a ,  b] on which the 
estimates on f or a fIat hold might be a proper subinterval of an open interval I 
(perhaps 1R itself) on which f ( x ,  · ) is defined. If the hypotheses of (a) or (b) hold 
for all [a , b] c I, perhaps with the dominating function g depending on a and b, one 
obtains the continuity or differentiability of the integrated function F on all of I, as 
these properties are local in nature. 

In the special case where the measure 1-l is Lebesgue measure on ffi., the integral 
we have developed is called the Lebesgue integral. At this point it is appropriate 
to study the relation between the Lebesgue and Riemann integrals on JR. We shall 
use Darboux 's characterization of the Riemann integral in terms of upper and lower 
sums, which we now recall .  

Let [a , b] be a compact interval . By  a partition of [a , b] we shall mean a finite 
sequence P == { tj }0 such that a = t0 < t1 < · · · < tn = b. Let f be an arbitrary 
bounded real-valued function on [a ,  b] . For each partition P we define 

n 
Spf = L Mj (tj - tj- 1 ) ,  

1 

n 
spf = L mj (tj - tj- 1 ) ,  

1 
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where Mj and mj are the supremum and infimum of f on [tj_ 1 , tj ] .  Then we define 

I� (f) = sup spf, p 

where the infimum and supremum are taken over al l partitions P. If 1: (f) = I� (f) , 
their common value is the Riemann integral I: f(x) dx, and f is called Riemann 
integrable. 

2.28 Theorem. Let f be a bounded real-valued function on [a , b] . 
a. If f is Riemann integrable, then f is Lebesgue measurable (and hence inte

grable on [a , b] since it is bounded), and J: f(x) dx = f[a ,b] f dm. 
b. f is Riemann integrable iff { x E [a , b] : f is discontinuous at x} has Lebesgue 

measure zero. 

Proof. Suppose that f is Riemann integrable. For each partition P let 

n 
Gp = L MjX(tj - l ,tj ] ' 

1 

n 
gp = L ffijX(tj - l , tj ]  

1 
(with the same notation as above) , so that Spf = I Gp dm and spf = I gp dm. 
There is a sequ�nce { Pk} of partitions whose mesh (i .e . ,  maxj ( tj - t J - 1 )) tends to 
zero, each of which includes the preceding one (so that gpk increases with k while 
Gpk decreases) , such that Spk f and spk f  converge to I: f(x) dx. Let G = lim Gpk 
and g = lim g pk . Then g < f < G, and by the dominated convergence theorem, 
I G dm = I  g dm = I: f(x) dx . Hence I(G - g) dm = 0, so G = g a.e. by 
Proposition 2. 1 6, and thus G = f a.e. Since G is measurable (being the limit of a 
sequence of simple functions) and m is complete, f is measurable and �a ,b] f dm = 
I G dm = I: f(x) dx. This proves (a), and the proof of (b) is outl ined in Exercise 
23 . I 

The (proper) Riemann integral is thus subsumed in the Lebesgue integral . Some 
improper Riemann integrals (the absolutely convergent ones) can be interpreted 
directly as Lebesgue integrals, but others still require a limiting procedure . For 
example, if f is Riemann integrable on [0 , b] for all b > 0 and Lebesgue integrable 
on [0 , oo ) , then fro,=) f dm = limb_,= J� f(x) dx (by the dominated convergence 
theorem) , but the l imit on the right can exist even when f is not integrable . (Example : 
f = L� n- 1 (- l )nX(n ,n+ 1J . ) Henceforth we shall generally use the notation 
I: f ( x) dx for Lebesgue integrals .  

A few remarks comparing the construction of the Lebesgue and Riemann integrals 
may be helpful . Let f be a bounded measurable function on [a , b] , and for simplicity 
let us assume that f > 0. To compute the Riemann integral of f, one parti tions 
the interval [a , b] into subintervals and approximates f from above and below by 
functions that are constant on each subinterval . To compute the Lebesgue integral of 
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f, one picks a sequence of simple functions that increase to f. In particular, if one 
picks the sequence constructed in the proof of Theorem 2. 1 0a (see Figure 2 . 1 ), one 
is in effect partitioning the range of f into subintervals Ij and approximating f by a 
constant on each of the sets f- 1 ( Ij ) .  This procedure requires a more sophisticated 
theory of measure to begin with since the sets f- 1 ( Ij ) can be complicated, even when 
f is continuous; but it is better adapted to the particular f under consideration and 
therefore more flexible - and more susceptible to generalization. (In the Lebesgue 
theory, the assumption that f is measurable removes the necessity of considering 
both upper and lower approximations ;  however, the latter point of view can also be 
made to work in the abstract setting. See Exercise 24.) 

The Lebesgue theory offers two real advantages over the Riemann theory. First, 
much more powerful convergence theorems, such as the monotone and dominated 
convergence theorems, are available. These not only yield results previously unob
tainable but also reduce the labor in proving classical theorems. Second, a wider 
class of functions can be integrated. For example, if R is the set of rational numbers 
in [0 , 1] , XR is not Riemann integrable, being everywhere discontinuous on [0 , 1 ] , 
but it is Lebesgue integrable , and J XR dm == 0. (Actually, this is in some sense a 
trivial example since XR agrees a.e. with the constant function 0. For a more inter
esting example, see Exercise 25 .) Of course, virtually al l functions that one meets in 
classical analysis are (locally) Riemann integrable, so this added generality is rarely 
used in computing specific integrals .  However, it has the crucial effect that various 
metric spaces of functions whose metrics are defined in terms of integrals are com
plete when Lebesgue integrable functions are used but not when one considers only 
Riemann integrable functions. We shall investigate this situation more thoroughly 
later, especially in Chapter 6. (We have already proved the completeness of £1 (f.-l ) , 
disguised as Theorem 2.25 . To remove the disguise, see Theorem 5 . 1 .) 

We conclude this section by introducing the most ubiquitous of the higher tran
scendental functions, the gamma function r, which will play a role in a number of 
places later on. If z E C and Re z  > O, define fz : (O , oo) --4 <C by fz (t) = tz-1 e-t . 
(Here tz- 1 = exp [ (z - 1)  log t] . )  Since l tz - 1 1 = tRe z- 1 , we have lfz (t) l < tRe z- 1 , 
and also liz (t) I < Cze-t/2 for t > 1 .  (The precise value of Cz can easily be found 
by maximizing tRe z- 1 e-tf2 , but it is of no importance here.) Since J01 ta dt < oo 

for a > -1 and Jto e-t/2 dt < oo, we see that fz E £1 ( (0 ,  oo ) )  for Re z > 0, and 
we define 

Since 

(Re z > 0) . 

iN N 

£ ee-t dt = -ee-t l� + z 1 e-l e-t dt 

by integration by parts, by letting E --4 0 and N --4 00 we see that for Re z > 0, r 
satisfies the functional equation 

r (z + 1 )  = zr (z ) . 

This equation can then be used to extend r to (almost) the entire complex plane. 
Namely, for - 1  < Re z < 0 we can define r (z) to be r (z + 1) I z, and by induction, 
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having defined r ( z ) for Re z > -n, we define r ( z ) for Re z > -n - 1 to be 
r ( z + 1 )  / z .  The result is a function defined on al l of <C except for singularities at the 
non positive integers where the algorithm just described involves division by zero. 

We have f( l )  == J0
00 e-t dt == - e-t lo == 1 ,  so an n-fold application of the 

functional equation shows that f( n + 1 )  == n! . (Another proof of this fact is outlined 
in Exercise 29.) Many of the applications of the gamma function involve the fact that 
it provides an extension of the factorial function to nonintegers . 

Exercises 

18. Fatou's lemma remains valid if the hypothesis that f n E L + is replaced by the 
hypothesis that f n is measurable and f n > -g where g E L + n £1 . What is the 
analogue of Fatou' s lemma for nonpositive functions? 

19. Suppose {fn} C £1 ( J.-t) and fn --4 f uniformly. 
a. If J.-t (X) < oo, then f E L1 (J.-t) and J fn --4 J f. 
b. If J.-t (X) = oo, the conclusions of (a) can fail .  (Find examples on lR with 
Lebesgue measure.) 

20. (A generalized Dominated Convergence Theorem) If fn , 9n , f, g E £1 , fn --4 f 
and 9n --4 g a.e . ,  I fn i < 9n, and J 9n --4 J g, then J fn --4 J f. (Rework the proof 
of the dominated convergence theorem.) 

21. Suppose fn , f E L1 and fn --4 f a.e. Then J l fn - f l --4 0 iff J I fn i --4 J l f l . 
(Use Exercise 20.) 

22. Let 1-l be counting measure on N. Interpret Fatou's lemma and the monotone and 
dominated convergence theorems as statements about infinite series. 

23. Given a bounded function f : [a , b] --4 IR, let 

H(x) == lim s up f(y) , 
<5�o jy-x j <<5 

h ( x) = lim inf f ( y) . 
<5�0 j y-x j <<5 

Prove Theorem 2.28b by establishing the following lemmas : 
a. H(x) = h(x) iff f is continuous at x. 
b. In the notation of the proof of Theorem 2.28a, H == G a. e. and h = g -b a. e . Hence H and h are Lebesgue measurable, and fra,b] H dm == I a (f) and 
Ira,b] h dm == I� (f) . 

24. Let (X, M, J.-t) be a measure space with J.-t (X) < oo, and let (X, J\1, J.-t) be its 
completion . Suppose f : X -t lR is bounded. Then f is J\1-measurable (and 
hence in £1 (J.-t) ) iff there exist sequences { ¢n } and { 1/Jn } of J\1-measurable simple 
functions such that ¢n < f < 1/Jn and J ( 1/Jn - cPn) dJ.-t < n - 1 . In this case, 
lim J <Pn dJ.-t = lim J 1/Jn dJ.-t = J f rlji. 
25. Let f(x) == x- 112 if 0 < x < 1 ,  f(x) == 0 otherwise. Let {rn }1 be an 
enumeration of the rationals, and set g(x) == I:� 2-n f (x - rn ) ·  

a. g E £1 ( m) ,  and in particular g < oo a. e. 
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b. 9 is discontinuous at every point and unbounded on every interval , and it 
remains so after any modification on a Lebesgue null set. 
c. 92 < oo a.e . ,  but 92 is not integrable on any interval . 

26. If f E L1 (m) and F(x) == Jx 
00 f(t) dt, then F is continuous on JR. 

27. Let fn (x) == ae-nax - be-nbx where 0 < a < b. 
a. E� fo00 l fn (x) l dx == oo. 

b. E� f000 fn (x) dx == 0. 
c. E� fn E L1 ( [0, oo ) , m) , and f000 E� fn (x) dx == log(b/a) . 

28. Compute the following limits and justify the calculations: 
a. limn�oo J000 ( 1  + (x/n) ) -n sin(x/n) dx. 
b. limn�oo J01 ( 1  + nx2 ) ( 1 + x2 ) -n dx. 
c. limn�oo J000 n sin(x/n) [x ( 1  + x2 ) ] -l dx. 
d. limn�oo fa

oo n( 1 + n2x2 ) - 1 dx. (The answer depends on whether a > 0, 
a == 0, or a < 0. How does this accord with the various convergence theorems?) 

29. Show that J000 xne-x dx == n! by differentiating the equation J000 e-tx dx == 

1 /t. Similarly, show that J0000 x
2ne-x2 dx == (2n) !J1f /4nn! by differentiating the 

equation f00
00 e-tx2 dx == Mt (see Proposition 2.53) . 

30. Show that limk�oo J0k xn ( 1 - k- 1x) k dx == n! .  
31. Derive the following formulas by expanding part of the integrand into an infinite 
series and justifying the term-by-term integration. Exercise 29 may be useful . (Note: 
In (d) and (e), term-by-term integration works, and the resulting series converges , 
only for a > 1 , but the formulas as stated are actually valid for all a > 0.) 

a. For a > 0, J0000 e-x2 cos ax dx == J1fe-a2 14 • 

b. For a >  - 1 ,  J01 xa ( 1 - x) - 1 log x dx == E�(a + k)-2 • 
c. For a >  1 ,  fo00 xa- 1 (ex - 1) - 1 dx == r(a)( (a) , where ( (a) == E� n-a . 
d. For a > 1 ,  J000 e-axx- 1 sin x dx == arctan(a- 1 ) . 
e. For a > 1 ,  J000 e-ax lo (x) dx == ( s2 + 1 ) - 1 12 , where 
lo (x) == E�(- 1 )nx2n /4n (n! ) 2 is the Bessel function of order zero. 

2.4 MODES OF CONVERGENCE 

If {fn } is a sequence of complex-valued functions on a set X, the statement "fn -t f 
as n -t oo" can be taken in many different senses, for example, pointwise or uniform 
convergence. If X is a measure space, one can also speak of a.e .  convergence or 
convergence in L1 . Of course, uniform convergence implies pointwise convergence, 
which in turn implies a.e .  convergence (and not conversely, in general), but these 
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modes of convergence do not imply L 1 convergence or vice versa. It will be useful 
to keep in mind the following examples on 1R (with Lebesgue measure) : 

i . fn = n- 1X(O ,n) · 
i i .  f n = X(n ,n+ l ) · 

111. fn = nX[O , l /n] · 

tv. !1 = X[O , I J , !2 = X[O , l /2] , f3 = X[l/2 , 1] , !4 = X[O , l /4] , !s = X[l /4 , 1 / 2] , 
!6 = X[l/2 ,3/4] , !1 == X[3/4 , 1 ] , and in general , f n = X[j ;2k , (j+ l ) ;2k ] where 
n = 2k + j with 0 < j < 2k . 

In ( i) ,  (ii), and (iii), f n -t 0 uniformly, pointwise, and a. e. , repectively, but 
fn � 0 E L1 (in fact J I fn i = J fn = 1 for all n). In (iv), fn -t 0 in L1 since 
J I fn i = 2-k for 2k < n < 2k+l , but fn (x) does not converge for any x E [0 , 1 ] 
since there are infinitely many n for which f n ( x) == 0 and infinitely many for which 
fn (x) == 1 .  

On the other hand, if f n -t f a.e. and I fn I < g E L1 for all n, then f n -t f in L1 . 
(This is clear from the dominated convergence theorem since l fn - f l < 2g .) Also, 
we shall see below that if f n -t f in L1 then some subsequence converges to f a. e. 

Another mode of convergence that is frequently useful is convergence in measure . 
We say that a sequence {fn }  of measurable complex-valued functions on (X, M, J.-t) 
is Cauchy in measure if for every E > 0, 

J.-t (  { x : l fn (x) - fm (x) l  > E} )  -t 0 as m, n -t oo, 

and that {! n} converges in measure to f if for every E > 0, 
J.-t ( { x : l fn (x) - f(x) l  > E } )  -t 0 as n -t oo. 

For example, the sequences (i), (iii), and (iv) above converge to zero in measure, but 
(ii) is not Cauchy in measure. 

2.29 Proposition. If fn -t f in L1 , then fn -t f in measure. 

Proof Let En , t: = {x : l fn (x) -f(x) l > E} . Then f l fn -f l > JE l fn -f l > n , e  
EJ.-t(En, t: ) , S O  J.-t(En ,t: ) < E- 1 J l fn - J l -t 0. I 

The converse of Proposition 2 .29 is false, as examples (i) and (iii) show. 

2.30 Theorem. Suppose that {fn} is Cauchy in measure. Then there is a measurable 
function f such that fn -t f in measure, and there is a subsequence {fn1 } that 
converges to f a. e. Moreover, if also f n -t g in measure, then g = f a. e. 

Proof. We can choose a subsequence {gj }  = {fn1 } of {fn }  such that if Ej = 
{x : l 9i (x) - gi+l (x) l > 2-i } , then J.-t(Ej )  < 2-i . If Fk = U� k Ei , then 
J..L (Fk ) < I:r 2-i = 2 1-k , and if x tf:. Fk , for i > j > k we have 

(2 .3 1 )  
i- 1 i- 1 

l 9j (x) - gi (x ) l < L 1 9Z+ I (x) - gz (x) l < 2: 2-l < 2 1-i . 
l=j l=j 
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Thus {gi } is pointwise Cauchy on Fk. Let F == n� Fk == lim sup Ei . Then 
J-l(F) == 0, and if we set f (x) == lim gj (x) for x � F and f(x) == 0 for x E F, 
then f is measurable (see Exercises 3 and 5) and 9j --4 f a. e. Also, (2 .3 1 )  shows 
that l 9i (x ) - f(x) J < 21 -i for x � Fk and j > k. Since J-l(Fk ) --4 0 as k --4 oo, it 
follows that 9i --4 f in measure. But then f n --4 f in measure, because 

{x : l fn (x) -f (x) l > E} C {x : l fn (x) -gj (x) l > � E}U {x : l 9j (x) -f(x) l > � E} , 

and the sets on the right both have small measure when n and j are large. Likewise, 
if f n --4 g in measure, 

{x : IJ (x) - g(x) l > E } C {x : I J(x) - fn (x) l > � E} U {x : l fn (x) - g (x) l > � E} 

for all n, hence J..L ( { x : I f ( x) - g( x) I > E} ) == 0 for all E. Letting E tend to zero 
through some sequence of values, we conclude that f == g a. e. 1 

2.32 Corollary. If fn --4 f in L1 , there is a subsequence {fni } such that fni --4 I 
a. e. 

Proof. Combine Proposition 2.29 and Theorem 2.30. I 

If In --4 I a. e . ,  it does not follow that In --4 I in measure, as example (ii) shows . 
However, this conclusion does hold on a finite measure space, where something 
considerably stronger is true . 

2.33 Egoroff's Theorem. Suppose that J..L (X) < oo, and 11 , 12 , . . .  and I are mea
surable complex-valued functions on X such that In --4 I a. e. Then for every E > 0 
there exists E C X such that f.-L(E) < E and In --4 I uniformly on Ec. 

Proof. Without loss of general ity we may assume that In --4 I everywhere on 
X. For k , n E N let 

00 

En (k) == U {X : l lm (x) - l(x) l > k-1 } . 
m=n 

Then, for fixed k, En ( k) decreases as n increases, and n� 1 En ( k) == 0, so since 
f.-L(X) < oo we conclude that f.-L(En (k) ) --4 0 as n --4 oo. Given E > 0 and k E N, 
choose nk so large that f.-L(Enk (k) ) < E2- k and let E = u� 1 Enk (k ) .  Then 
f.-l(E) < E, and we have l ln (x) - l(x) l < k- 1 for n > nk and x � E. Thus In --4 I 
uniformly on Ec . 1 

The type of convergence involved in the conclusion of Egoroff's theorem is some
times called almost uniform convergence. It is not hard to see that almost uniform 
convergence implies a.e. convergence and convergence in measure (Exercise 39). 
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32. Suppose J-L(X) < oo. If f and g are complex-valued measurable functions on 
X, define 

J I J - g l 
p(f, g) = 

1 + I f - g J dp,. 

Then p is a metric on the space of measurable functions if we identify functions that 
are equal a. e . ,  and f n --4 f with respect to this metric iff f n --4 f in measure . 
33. If fn > 0 and fn --4 f in measure, then J f < lim inf J fn · 
34. Suppose I fn i < g E £1 and fn --4 f in measure . 

a. J f = lim J fn · 
b. f n --4 f in L 1 . 

35. f n --4 f in measure iff for every E > 0 there exists N E N such that J-L( { x : 
l fn (x) - f(x) l > E} ) < E for n > N. 

36. If J-L(En )  < oo for n E N and XEn --4 f in £1 , then f is (a.e. equal to) the 
characteristic function of a measurable set. 
37. Suppose that fn and f are measurable complex-valued functions and ¢ : CC -t CC. 

a. If ¢ is continuous and f n � f a. e. , then ¢ o f n --4 ¢ o f a. e. 
b. If ¢ is uniformly continuous and f n --4 f uniformly, almost uniformly, or 
in measure, then ¢ o f n -t ¢ o f uniformly, almost uniformly, or in measure, 
respectively. 
c. There are counterexamples when the continuity assumptions on ¢ are not 
satisfied. 

38. Suppose f n -t f in measure and 9n -t g in measure . 
a. fn + 9n -t f + g in measure. 
b. fn9n -t fg in measure if J-L(X) < oo, but not necessarily if J-L(X) = oo. 

39. If f n -t f almost uniformly, then f n --4 f a. e. and in measure. 

40. In Egoroff's theorem, the hypothesis "J-L(X) < oo" can be replaced by " l fn l < g 
for all n, where g E £1 (J-l) ." 
41. If J-L is a -finite and f n --4 f a.e . ,  there exist measurable E1 , E2 , . . . C X such 
that J-L( (U� Ej ) c ) = 0 and f n --4 f uniformly on each Ej . 
42. Let J-L be counting measure on N. Then f n --4 f in measure iff f n --4 f uniformly. 

43. Suppose that J-L( X) < oo and f : X x [0 , 1] -t CC is a function such that f ( · ,  y) 
is measurable for each y E [0 , 1] and f ( x, · ) is continuous for each x E X.  

a. If O < E , 8 < 1 then E€ ,8 = {x : l f (x , y) - f(x, O) I < E for all y < 8}  is 
measurable. 
b. For any E > 0 there is a set E c X such that J-L(E) < E and ! ( · , y) --4 !( - , 0 ) 
uniformly on Ec as y -t 0. 
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44. (Lusin's Theorem) If f : [a , b] -t <C is Lebesgue measurable and E > 0, there is 
a compact set E c [a , b] such that J.-L(Ec) < E and f iE is continuous . (Use Egoroff's 
theorem and Theorem 2.26.) 

2.5 PRO DUCT MEASURES 

Let (X, J\1, JL) and (Y, N, v) be measure spaces. We have already discussed the 
product a-algebra JV( Q9 N on X x Y; we now construct a measure on J\1 Q9 N that is, 
in an obvious sense, the product of JL and v. 

To begin with, we define a (measurable) rectangle to be a set of the form A x B 
where A E J\1 and B E N. Clearly 

(A x B) n (E x F) = (A n E) x (B n F) , 
Therefore, by Proposition 1 .7 ,  the collection A of finite disjoint unions of rectangles 
is an algebra, and of course the a-algebra it generates is M Q9 N. 

Suppose A x B is a rectangle that is a (finite or countable) disjoint union of 
rectangles Aj x Bj . Then for x E X  and y E Y, 

If we integrate with respect to x and use Theorem 2. 15 ,  we obtain 

J.L(A)xB (Y) = J XA (x)xB (Y) dJ.L(x) = L J XAj (x)xBj (y) dJ.L(x) 

= L JL(Aj )XBj (y) . 

In the same way, integration in y then yields 

J.-L(A)v(B) = L JL(Aj )v(Bj ) .  
It follows that if E E A is the disjoint union of rectangles A1 x B1 , . . .  , An x En, 
and we set 

n 
1r(E) = L J.-L(Aj )v(Ej )  

1 
(with the usual convention that 0 · oo = 0), then 1r is well defined on A (since any 
two representations of E as a finite disjoint union of rectangles have a common 
refinement) , and 1r is a premeasure on A. According to Theorem 1 . 14, therefore, 1r 
generates an outer measure on X x Y whose restriction to J\1 x N is a measure that 
extends 1r. We call this measure the product of JL and v and denote it by JL x v. 
Moreover, if JL and v are a-finite - say, X = U� AJ and Y = U� Bk with JL(AJ ) < 
oo and v (Bk ) < oo - then X x Y = Uj,k Aj x Bk, and JL x v(Aj x Bk ) < oo, so 
JL x v is also a-finite. In this case, by Theorem 1 . 14, JL x v is the unique measure on 
M Q9 N such that J.-L x v (A x B) = JL(A)v(B) for all rectangles A x B. 
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The same construction works for any finite number of factors. That is, suppose 
(X1 , M1 , /-lj ) are measure spaces for j == 1 ,  . . . , n. If we define a rectangle to be 
a set of the form A1 x · · · x An with A1 E M1, then the collection A of finite 
disjoint unions of rectangles is an algebra, and the same procedure as above produces 
a measure /-l1 x · · · x /-ln on M 1 Q9 • • • 0 Mn such that 

n 
/-l1 X · · · X f.-ln (A1 X · · ·  X An) ==  II /-lj (Aj ) · 

1 

Moreover, if the /-lj ' s  are a-finite so that the extension from A to ®� M1 is uniquely 
determined, the obvious associativity properties hold . For example, if we identify 
x1 X x2 X x3 with (X1 X X2) X X3, we have J\11 ®M2 ®J\13 == (J\11 ®J\12) ® J\13 
(the former being generated by sets of the form A1 x A2 x A3 with A1 E Mj , and 
the latter by sets of the form B x A3 with B E M1 0 M2 and A3 E J\13), and 
/-l1 x /-l2 x /-l3 == (J.-t1 x J.-t2 ) x /-l3 (since they agree on sets of the form A1 x A2 x A3 , 
and hence in general by uniqueness). Details are left to the reader (Exercise 45) .  All 
of our results below have obvious extensions to products with n factors, but we shall 
stick to the case n == 2 for simplicity. 

We return to the case of two measure spaces (X, M, J.-t) and (Y, N, v) . If E c 
X x Y, for x E X and y E Y we define the x-section Ex and the y-section EY of 
E by 

Ex == {y E Y :  (x , y) E E} , EY == { X E X : (X ' y)  E E} . 

Also, if f is a function on X x Y we define the x-section fx and the y-section fY 
of f by 

fx (Y) == fY (x) == f(x , y) . 
Thus, for example, (XE) x == X Ex and (XE) Y == XEY . 
2.34 Proposition. 

a. If E E M  x N, then Ex E Nfor all x E X and EY E  Mfor all y E Y. 
b. If f is M @  N-measurable, then fx is N-measurable for all x E X and fY is 

M-measurable for all y E Y. 

Proof. Let 9{ be the collection of al l subsets E of X x Y such that Ex E N for al l x 
and EY E JV( for all y .  Then 9{ obviously contains all rectangles (e .g. , (A x B)x == B 
if x E A , == 0 otherwise) .  Since (U� Ej )x == U� (Ej ) x and (Ec ) x  == (Ex ) c ,  and 
likewise for y-sections , 9{ is a a-algebra. Therefore 9{ � M®N, which proves (a) . (b) 
follows from (a) because (fx ) - 1 (B) == (f- 1 (B) )x and (JY ) - 1 (B) == (f- 1 (B) ) Y .  1 

Before proceeding further we need a technical lemma. We define a monotone 
class on a space X to be a subset e ofP (X ) that is closed under countable increasing 
unions and countable decreasing intersections (that is, if Ej E e and E1 c E2 c · · · ,  
then U E1 E e,  and l ikewise for intersections) . Clearly every a-algebra is a monotone 
class. Also, the intersection of any family of monotone classes is a monotone class, 
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so for any £  c P(X) there is a unique smallest monotone class containing £, called 
the monotone class generated by £.  

2.35 The Monotone Class Lemma. If A is an algebra of subsets of X, then the 
monotone class e generated by A coincides with the a-algebra M generated by A. 

Proof. Since M is a monotone class, we have e c M; and if we can show that 
e is a a-algebra, we will have J\1 c e. To this end, for E E e let us define 

e(E) = {F E  e :  E \ F, F \ E, and E n  F are in e } .  

Clearly 0 and E are in e(E) , and E E e(F) iff F E e (E) . Also, it is easy to check 
that e(E) is a monotone class . If E E A, then F E e (E) for all F E A because A 
is an algebra; that is, A c e(E) , and hence e c e(E) . Therefore, if F E e, then 
F E e (E) for all E E A. But this means that E E e(F) for all E E A, so that 
A c e(F) and hence e c e(F) . Conclusion :  If E, F E e, then E \ F and E n  F 
are in e. Since X E A c e, e is therefore an algebra. But then if { Ei } 1 c e, we 
have U� Ej E e for all n, and since e is closed under countable increasing unions it 
follows that U� Ej E e. In short, e is a a-algebra, and we are done. 1 

We now come to the main results of this section, which relate integrals on X x Y 
to integrals on X and Y. 

2.36 Theorem. Suppose (X, M , JL) and (Y, N, v) are a-finite measure spaces. If 
E E M  Q9 N, then the functions x � v(Ex ) and y � JL(EY ) are measurable on X 
and Y, respectively, and 

fL x v(E) = I v(Ex ) dJ.L(x) = I J.L(EY ) dv(y) . 

Proof. First suppose that JL and v are finite, and let e be the set of all E E 
JV( ® N for which the conclusions of the theorem are true. If E = A x B, then 
v(Ex ) = XA (x) v(B) and JL(EY )  == JL(A)XB (Y) , so clearly E E e. By additivity 
it fol lows that finite disjoint unions of rectangles are in e, so by Lemma 2.35 it 
will suffice to show that e is a monotone class. If {En} is an increasing sequence 
in e and E == U� En, then the functions fn (Y ) == JL( (En)Y )  are measurable and 
increase pointwise to f (y) = JL(EY ) .  Hence f is measurable, and by the monotone 
convergence theorem, 

I J.L(EY ) dv(y) = lim I J.L( (En) Y ) dv(y) = lim fL x v(En) = fL x v(E) . 

Likewise JL X v(E) == J v(Ex ) dJL(x) , so E E e. Similarly, if {En}  is a decreas
ing sequence in e and n� En, the function y � JL( (El ) Y )  is in L1 (v) because 
JL((El ) Y )  < JL(X) < oo and v(Y) < oo, so the dominated convergence theorem 
can be applied to show that E E e. Thus e is a monotone class, and the proof is  
complete for the case of finite measure spaces. 
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Finally, if 1-l and v are a-finite, we can write X x Y as the union of an increasing 
sequence { Xj x }j}  of rectangles of finite measure . If E E M Q9 N, the preceding 
argument applies to E n (Xj x }j) for each j to give 

f.L X v(En (Xj x }j )) = J Xxj (x) v(Exn}j ) dJ.L(x) = J XY)Y)J.L(EY nXj ) dv(y) , 
and a final application of the monotone convergence theorem then yields the desired 
result. 1 

2.37 The Fubini-Tonelli Theorem. Suppose that (X, M, J.-t) and (Y, N, v) are a
finite measure spaces. 

a. (Tonelli) iff E £+ (X x Y), then the functions g(x) == J fx dv and h(y) = 
J fY df.-l are in L + (X) and L + (Y), respectively, and 

(2 .38)  
J f d(J.L x v) = J [! f(x, y) dv(y)] dJ.L(x) 

= J [! f(x, y) dJ.L(x)] dv(y) .  

b. (Fubini) iff E L1 (J.-t x v), then fx E L1 (v) for a. e. x E X, fY E L1 (J.-t) for 
a. e. y E Y, the a. e. -definedfunctions g(x) = J fx dv and h(x) = J fY dv are 
in L1 (J.-t) and L1 (v) , respectively, and (2.38) holds. 

Proof. Tonell i 's theorem reduces to Theorem 2.36 in case f is a characteristic 
function, and it therefore holds for nonnegative simple functions by linearity. If 
f E £+ (X x Y), let {fn } be a sequence of simple functions that increase pointwise 
to f as in Theorem 2 . 1 0. The monotone convergence theorem implies, first, that the 
corresponding 9n and hn increase to g and h (so that g and h are measurable), and, 
second that 

j g dJ.L = lim J 9n dJ.L = lim J fn d(J.L X v) = J f d(J.L X v) , 

J h dv = lim J hn dv = lim J f n d(J.L X v) = J f d(J.L X v) , 

which is (2 .38) . This establishes Tonelli 's theorem and also shows that if f E 
L + (X x Y) and J f d(J.-t x v) < oo, then g < oo a. e. and h < oo a. e . ,  that is, 
fx E £1 (v) for a. e .  x and fY E £1 (J.-t) for a. e .  y. If f E £1 (J.-t x v ) , then, the 
conclusion of Fubini 's theorem follows by applying these results to the positive and 
negative parts of the real and imaginary parts of f . 1 

A few remarks are in order: 

• We shall usually omit the brackets in the iterated integrals in (2 .38), thus : 

J [! f(x, y) dJ.L(x)] dv(y) = JJ f (x , y) dJ.L(x) dv(y) = JJ f dJ.L dV. 
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• The hypothesis of a-finiteness is necessary; see Exercise 46. 

• The hypothesis f E L + (X x Y) or f E L 1 (J.-L x v) is necessary, in two 
respects. First, it is possible for f x and fY to be measurable for all x, y and 
for the iterated integrals JJ f dJ-L dv and JJ f dv dJ-L to exist even if f is not 
JY( Q9 N-measurable . However, the iterated integrals need not then be equal ; see 
Exercise 47 . Second, if f is not nonnegative, it is possible for fx and fY to be 
integrable for all x, y and for the iterated integrals JJ f dJ-L dv and JJ f dv dJ-L 
to exist even if J I f I d(J-L x v) == oo. But again, the iterated integrals need not 
be equal ; see Exercise 48 . 

• The Fubini and Tonelli theorems are frequently used in tandem. Typically  one 
wishes to reverse the order of integration in a double integral JJ f dJ-L dv. First 
one verifies that J I f I d(J-L x v) < oo by using Tonelli 's theorem to evaluate this 
integral as an iterated integral ; then one applies Fubini 's theorem to conclude 
that JJ f dJ-L dv == JJ f dv dJ-L. For examples, see the exercises in §2.6 . 

Even if J-L and v are complete , J-L x v is almost never complete . Indeed, suppose 
that there is a nonempty A E M with J-L(A) == 0 and that N # P(Y) . (This is the 
case with 1-l == v == Lebesgue measure on JR, for example . )  If E E P (Y ) \ N, then 
A x E tt M Q9 N by Proposition 2 .34, but A x E c A x Y, and J-L x v(A x Y) == 0 .  

If one wishes to work with complete measures, of course, one can consider the 
completion of J-L x v. In this setting the relationship between the measurability 
of a function on X x Y and the measurability of its x-sections and y-sections is 
not so simple. However, the Fubini-Tonelli theorem is still valid when suitably 
reformulated: 

2.39 The Fubini-Tonelli Theorem for Complete Measures. Let (X, M, J-L) and 
(Y, N, v) be complete, a-finite measure spaces, and let (X x Y, /:.; ,  ,\) be the com
pletion of (X x Y, JY( Q9 N, J-L x v ) .  If f is /:.;-measurable and either (a) f > 0 
or (b) f E £1 (..\) , then fx is N-measurable for a. e. x and fY is M-measurable for 
a. e. y, and in case (b) fx and fY are also integrable for a. e. x and y. Moreover, 
x �----* J f x dv and y �----* J fY dJ-L are measurable, and in case (b) also integrable, and 

J f d). = J J f(x, y) dJ-L(x) dv(y) = J J f(x , y) dv(y) dJ-L (x) . 

This theorem is a fairly easy corollary of Theorem 2.37 ; the proof is outlined in 
Exercise 49. 

Exercises 

45. If (Xj , JY(j ) is a measurable space for j == 1 ,  2 ,  3, then ®t JV(j == (M1 ® M2) ® 
M3 . Moreover, if /-lj is a a-finite measure on (Xj , JV(j ) , then J.-L1 x J.-L2 x J-L3 == 
(J-Ll X /-l2 ) X /-l3 . 
46. Let X ==  Y = [0 , 1] , M == N == 23 [o , 1 ] , J-L = Lebesgue measure, and v = counting 
measure . If D == { (x ,  x) : x E [0 , 1] } is the diagonal in X x Y, then JJ XD dJ-L dv, 
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JJ XD dv dJ.-t, and J XD d(J.-t x v) are all unequal . (To compute J XD d(J.-t x v) == 
1-l x v(D) , go back to the definition of 1-l x v.) 

47. Let X == Y be an uncountable linearly ordered set such that for each x E X, 
{y E X : y < x} is countable . (Example : the set of countable ordinals . )  Let 
JY( == N be the a-algebra of countable or co-countable sets, and let 1-l == v be defined 
on JV( by J.-t (A) == 0 if A is countable and J.-t (A) = 1 if A is co-countable . Let 
E == { (x , y) E X  x X :  y < x} .  Then Ex and EY are measurable for all x , y, 
and JJ XE dJ.-t dv and JJ XE dv dJ.-t exist but are not equal .  (If one believes in the 
continuum hypothesis, one can take X == [0 , 1] [with a nonstandard ordering] and 
thus obtain a set E c [0 , 1 ] 2 such that Ex is countable and EY is co-countable [in 
particular, Borel] for al l x , y, but E is not Lebesgue measurable.) 

48. Let X == Y = N, M == N == P(N) , 1-l == v == counting measure . Define 
f (m, n) == 1 if m == n, f (m, n) == - 1 if m == n + 1 ,  and f (m, n) == 0 otherwise . 
Then J I f I d(J.-t x v) = oo, and JJ f dJ.-t dv and JJ f dv dJ.-t exist and are unequal. 

49. Prove Theorem 2.39 by using Theorem 2.37 and Proposition 2. 1 2  together with 
the following lemmas. 

a. If E E M x N and 1-l x v(E) == 0, then v(Ex ) == J.-t(EY) == 0 for a.e. x and y. 
b. If f is 1:-measurable and f = 0 ..\-a.e . ,  then fx and fY are integrable for a.e. 
x and y, and J f x dv == J fY dJ.-t == 0 for a.e. x and y. (Here the completeness of 
1-l and v is needed.) 

50. Suppose (X, M, J.-t) is a a-finite measure space and f E £+ (X) . Let 

GJ == { (x , y) E X  x [0 , oo] : y < f (x) } .  
Then G f is M x 23JR -measurable and 1-l x m( G f )  == J f dJ.-t; the same is also true 
if the inequality y < f ( x) in the definition of G f is replaced by y < f ( x) . (To 
show measurability of G f , note that the map (x , y) � f (x) - y is the composition 
of (x , y) � (f (x) , y) and (z ,  y) � z - y.) This is the definitive statement of the 
familiar theorem from calculus, "the integral of a function is the area under its graph." 

51.  Let (X, M, J.-t) and (Y, N, v) be arbitrary measure spaces (not necessarily a
finite) . 

a. If f : X  � C is M-measurable, g : Y � C is N-measurable, and h(x , y) == 
f (x)g (y) ,  then h is M Q9 N-measurable . 
b. If f E £1 (J.-t) and g E £1 (v) , then h E £1 (J.-t x v) and J h d(J.-t x v) == 
[J f dJ.-t] [J g dv] . 

52. The Fubini-Tonelli theorem is valid when (X, M, J.-t) is an arbitrary measure 
space and Y is a countable set, N == P(Y) , and v is counting measure on Y.  (Cf. 
Theorems 2 . 15  and 2.25 .) 
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2.6 TH E n-DIMENSIONAL LEB ESGUE I NTEGRAL 

Lebesgue measure mn on lRn is the completion of the n-fold product of Lebesgue 
measure on lR with itself, that is, the completion of m x · · · x m on �JR Q9 • • • Q9 �JR = 
�JRn , or equivalently the completion of m x · · · x m on /:.; Q9 • • • Q9 /:.;. The domain 
/:.; n of m n is the class of Lebesgue measurable sets in lR n; sometimes we shall also 
consider m n as a measure on the smaller domain �JRn . When there is no danger of 
confusion, we shall usually omit the superscript n and write m for m n, and as in the 
case n = 1 ,  we shall usually write J f(x) dx for J f dm. 

We begin by establishing the extensions of some of the results in § 1 .5 to the 
n-dimensional case . In what follows, if E = TI� Ej is a rectangle in IRn, we shall 
refer to the sets E i c lR as the sides of E. 
2.40 Theorem. Suppose E E /:.;n . 

a. m(E) = inf{m(U) : U � E, U open} = sup{m(K) : K c E, K compact} . 
b. E = A1 U N1 == A2 \ N2 where A1 is an Fa set, A2 is a G8 set, and 

m(N1 ) = m(N2 ) = 0. 
c. If m(E) < oo, for any E > 0 there is a finite collection { Rj }{" of disjoint 

rectangles whose sides are intervals such that m(E� u� Rj ) < E. 
Proof. By  the definition of product measures, if E E /:.;n and E > 0 there is 

a countable family {Tj }  of rectangles such that E c u� Tj and E� m(Tj )  < 
m(E) + E. For each j, by applying Theorem 1 . 1 8 to the sides of Rj we can find 
a rectangle Ui � Fj whose sides are open sets such that m(Uj )  < m(Tj )  + E2-i . 
If u = u� Uj , then u is open and m(U) < E� m(Uj )  < m(E) + 2E. This 
proves the first equation in part (a) ;  the second one, and part (b), then follow as in the 
proofs of Theorems 1 . 1 8 and 1 . 1 9. Next, if m( E) < oo, then m(Uj )  < oo for all j .  
Since the sides of Ui are countable unions of open intervals, by taking suitable finite 
subunions we obtain rectangles Vj c Ui whose sides are finite unions of intervals 
such that m(Vj ) > m(Uj )  - E2-i . If N is sufficiently large, then, we have 

and 

N N � 

m ( E \ U Vj ) < m (U UJ \ Vj) + m ( U UJ) < 2E  
1 1 N+ 1  

N � 
m (U Vj  \ E) < m (U uJ \ E) < E ,  

1 1 
so that m(E� U� Vj )  < 3E. Since U� Vj can be expressed as a finite disjoint union 
of rectangles whose sides are intervals, we have proved (c) . 1 

2.41 Theorem. Iff E £1 ( m) and E > 0, there is a simple function ¢ = E� ai XR1 , 
where each Rj is a product of intervals, such that J I f - ¢ 1 < E, and there is a 
continuous function g that vanishes outside a bounded set such that J I f - g I < E. 
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Proof. As in the proof of Theorem 2 .26, approximate f by simple functions, 
then use Theorem 2 .40c to approximate the latter by functions ¢ of the desired 
form. Finally, approximate such ¢'s by continuous functions by applying an obvious 
generalization of the argument in the proof of Theorem 2.26. 1 

2.42 Theorem. Lebesgue measure is translation- invariant. More precisely, for a E 
IRn define Ta : IRn � IRn by Ta (x) == X + a. 

a. If E E [.;n, then Ta (E) E [.;n and m( Ta (E) ) == m(E). 
b. Iff : IRn � C is Lebesgue measurable, then so is f o Ta. Moreover, if either 

f > 0 or f E L1 (m), then J (f o Ta) dm == J f dm. 

Proof. Since Ta and its inverse r -a are continuous , they preserve the class of 
Borel sets. The formula m( Ta (E) ) == m( E) follows easily  from the one-dimensional 
result (Theorem 1 .2 1 )  if E is a rectangle, and it then follows for general Borel sets 
since m is determined by its action on rectangles (the uniqueness in Theorem 1 . 14). 
In particular, the collection of Borel sets E such that m( E) == 0 is invariant under 
Ta . Assertion (a) now follows immediately. 

If f is Lebesgue measurable and B is a Borel set in C, we have f- 1 (B) == E U N  
where E is Borel and m(N) == 0. But r;; 1 (E) is Borel and m(r;;1 (N) ) == 0, so 
(f o Ta )- 1 (B) E [.;n and f is Lebesgue measurable . The equality J(f o Ta ) dJ.-t == 
J f dJ.-t reduces to the equality m( r -a (E) ) == m(E) when f == XE · It is then true for 
simple functions by linearity, and hence for nonnegative measurable functions by the 
definition of the integral . Taking positive and negative parts of real and imaginary 
parts then yields the result for f E £1 ( m) . 1 

Let us now compare Lebesgue measure on lRn to the more naive theory of n
dimensional measure usually found in advanced calculus books . In this discussion, 
a cube in 1Rn is a Cartesian product of n closed intervals whose side lengths are al l 
equal . 

For k E Z, let Qk be the collection of cubes whose side length is 2-k and whose 
vertices are in the lattice (2- kz)n . (That is, TI� [a1 , b1 ]  E Qk iff 2ka1 and 2kb1 are 
integers and b1 - a1 == 2-k for all j . )  Note that any two cubes in Qk have disjoint 
interiors, and that the cubes in Qk+1 are obtained from the cubes in Qk by bisecting 
the sides . 

If E c lRn , we define the inner and outer approximations to E by the grid of 
cubes Qk to be 

A(E, k) == U{Q E Qk : Q c E} , A(E, k) == U{Q E Qk : Q n E =1= 0 } .  

(See Figure 2 .2 .) The measure of A(E,  k) (in either the naive geometric sense or the 
Lebesgue sense) is just 2-nk times the number of cubes in Qk that lie in A(E,  k ) , 
and we denote it by m(A(E,  k) ) ;  likewise for m(A (E,  k) ) .  Also, the sets A(E,  k) 
increase with k while the sets A( E,  k) decrease, because each cube in Qk i s a union 
of cubes in Qk+ 1 · Hence the limits 

�(E) == lim m(A (E,  k) ) ,  
k�r:x::> 

�(E) == lim m(A(E, k ) )  
k�r:x::> 
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Fig. 2.2 Approximations to the inner and outer content of a set. 

exist. They are called the inner and outer content of E, and if they are equal , their 
common value ""(E) is the Jordan content of E. 

Two comments : First, Jordan content is usually defined using general rectangles 
whose sides are intervals rather than our dyadic cubes , but the result is the same. 
Second, although all the definitons above make sense for arbitrary E c lRn , the 
theory of Jordan content is meaningful only if E is bounded, for otherwise ""(E) 
always equals oo. 

Let 00 00 
A(E) == U A(E , k) , A(E) == n A(E, k) . 

1 1 

Then A (E) c E c A(E) ,  A(E) and A(E) are Borel sets , and ""(E) == m(A(E) ) 
and ""(E) == m(A(E) ) .  Thus the Jordan content of E exists iffm(A(E) \A(E) ) == 0, 
which implies that E is Lebesgue measurable and m( E) == ""(E) . 

To clarify further the relationship between Lebesgue measure and the approxi
mation process leading to Jordan content, we establish the following lemma. (The 
second part of the lemma will be used later. ) 

2.43 Lemma. If U C lRn is open, then U == A(U). Moreover, U is a countable 
union of cubes with disjoint interiors. 

Proof. If x E U, let 8 == inf{ I Y - x l  : y � U} ,  which is positive since U is open. 
If Q is a cube in Qk that contains x, then every y E Q is at a distance at most 2-k fo 
from x (the worst case being when !x1 - y1 I == 2-k for all j) , so we will have Q c U 
provided k is large enough so that 2-k fo < 8.  But then x E A(U, k) c A(U) . 

This shows that A ( U) == U ,  and the second assertion follows by writing A ( U) == 
A(U, O) U U� [A(U, k) \ A(U, k - 1 ) ] .  A(U, O) is a (countable) union of cubes in 
Qo , and for k > 1, the closure of A(U, k) \ A(U, k - 1 ) is a (countable) union of 
cubes in Qk . These cubes all have disjoint interiors, and the result follows. 1 
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Lemma 2.43 immediately implies that the Lebesgue measure of any open set is 
equal to its inner content. On the other hand, suppose that F c lRn is compact. 
We can find a large cube, say Q0 == {x : max lx1 1 < 2M }, whose interior int (Qo ) 
contains F. If Q E Qk and Q c Q0 then either Q n F =I= 0 or Q c (Qo \ F) ,  so 
m(A(F, k) ) + m(A(Q0 \ F, k) ) == m(Q0 ) .  Letting k � oo, we see that ""(F) + 
r;, (Qo \ F) == m(Qo ) .  But Qo \ F is the union of the open set int (Qo ) \ F and the 
boundary of Q0 , which has content zero, so that ""( Q0 \ F) == ""(int (  Q0 ) \ F) == 
m( Qo \ F) . It follows that the Lebesgue measure of any compact set is equal to its 
outer content. 

Combining these results with Theorem 2.40a, we can see exactly how Lebesgue 
measure compares to Jordan content. The Jordan content of E is defined by approx
imating E from the inside and the outside by finite unions of cubes . The Lebesgue 
measure of E, on the other hand, is given by a two-step approximation process : 
First one approximates E from the outside by open sets and from the inside by 
compact sets , and then approximates the open sets from the inside and the compact 
sets from the outside by finite unions of cubes. The Lebesgue measurable sets are 
precisely those for which these outer-inner and inner-outer approximations give the 
same answer in the limit. (Cf. Exercise 19  in § 1 .4.) 

We now investigate the behavior of the Lebesgue integral under linear transfor
mations . We identify a linear map T : lRn � lRn with the matrix (Tij )  == ( ei · Te1 )  
where { e1 }  is the standard basis for IR n . We denote the determinant of this matrix 
by det T and recall that det (T o S) == ( det T) ( det S) . Furthermore, we employ the 
standard notation GL(n, IR) (the "general l inear" group) for the group of invertible 
linear transformations of 1Rn . We shall need the fact from elementary linear algebra 
that every T E G L( n, lR) can be written as the product of finitely many transfor
mations of three "elementary" types. The first type multiplies one coordinate by a 
nonzero constant c and leaves the others fixed; the second type adds a multiple of one 
coordinate to some other coordinate and leaves all but the latter fixed; the third type 
interchanges two coordinates and leaves the others fixed. In symbols: 

T1 (x1 , . . . , Xj , . . .  , Xn ) == (x1 , . . . , CXj , . . .  , Xn ) (c =/= 0) , 
T 2 (X 1 , . . . , X j , . . . , X n ) == (X 1 , . . . , X j + ex k , . . . , X n ) ( k =/= j) , 

T3 (x1 , . . . , Xj ,  . . . , xk , . . . , xn ) = (x1 , . . . , xk , . . . , Xj ,  . . . , xn ) . 
That every invertible transformation is a product of transformations of these three 
types is simply the fact that every nonsingular matrix can be row-reduced to the 
identity matrix. 

2.44 Theorem. Suppose T E GL(n, IR). 
a. If f is a Lebesgue measurable function on lRn, so is f o T. If f  > 0 or 

f E L 1 (m) , then 

(2 .45) J f (x) dx = I det Tl J f o T(x) dx . 

b. If E E [.;n, then T(E) E [.;n and m(T(E) ) == I det Tim( E). 
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Proof. First suppose that f is Borel measurable. Then f o T is Borel measurable 
since T is continuous . If (2.45) is true for the transformations T and S, it is also true 
for T o S, since 

j f(x) dx = I  det TI j f o T(x) dx = I  det TI I det S l Ju o T) o S(x) dx 

= I det (T o S) l J f o (T o S) (x) dx . 

Hence is suffices to prove (2 .45) when T is of the types T1 , T2 , T3 described above. 
But this is a simple consequence of the Fubini-Tonelli theorem. For T3 we interchange 
the order of integration in the variables xi and x k ,  and for T1 and T2 we integrate 
first with respect to xi and use the one-dimensional formulas 

J f (t) dt = l e i J f (ct) dt , J f (t + a) dt = J f (t) dt ,  
which fol low from Theorem 1 .2 1 .  Since it is easily verified that det T1 == c, det T2 == 
1 ,  and det T3 == - 1 , (2 .45) is proved. Moreover, if E is a  Borel set, so is T( E) (since 
r- 1 is continuous), and by taking f == XT(E) '  we obtain m(T(E) ) == I det Tim(  E) . 
In particular, the class of Borel null sets is invariant under T and r- 1 , and hence so 
is /:.; n . The result for Lebesgue measurable functions and sets now follows as in the 
proof of Theorem 2 .42. 1 

2.46 Corollary. Lebesgue measure is invariant under rotations. 

Proof. Rotations are linear maps satisfying TT* == I where T* is the transpose 
of T. Since det T == det T* , this condition implies that I det T l  == 1 .  1 

Next we shall generalize Theorem 2.44 to differentiable maps . This result will 
not be used elsewhere in this book and may be omitted on a first reading. We shall 
prove a generalization of it, by somewhat different methods, in § 1 1 .2. 

Let G == (g1 , . . . , 9n ) be a map from an open set 0 c lR n into lR n whose 
components 9i are of class C1 , i .e . ,  have continuous first-order partial derivatives . 
We denote by DxG the linear map defined by the matrix ( (8gi /8xj ) (x) ) of partial 
derivatives at x. (Observe that if G is linear, then DxG == G for all x.) G is called 
a C1 diffeomorphism if G is injective and DxG is invertible for all X E n. In this 
case, the inverse function theorem guarantees that c-1 : G(O) � 0 is also a C1 
diffeomorphism and that Dx ( c- 1 ) == [De- l (x)c] - 1 for all X E G(O) . 

2.47 Theorem. Suppose that 0 is an open set in IRn and G : 0 � lRn is a C1 
diffeomorphism. 

a. If f is a Lebesgue measurable function on G(O), then f o G is Lebesgue 
measurable on 0. Iff > 0 or f E L1 (G(O) , m) , then 

{ f(x) dx = { ! o G(x) l det DxGI  dx. Jc(n) Jn 
b. If E c n and E E f_;n, then G(E) E f_;n and m (G(E) )  == JE I det DxGI  dx. 
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Proof. It suffices to consider Borel measurable functions and sets . Since G and 
c- 1 are both continuous, there are no measurabil ity problems in this case, and the 
general case fol lows as in the proof of Theorem 2.42 . 

A bit of notation : For x E JRn and T == (Tij ) E G L( n, IR) , we set 

We then have I ! Tx l l  < I I T I I I I x l l , and { x : l l x - a l l  < h} is the cube of side length 
2h centered at a. 

Let Q be a cube in 0, say Q == { x : l l x - a l l  < h } .  By the mean value theorem, 
gj (x ) - 9i (a) == E1 (x1 - a1 ) (8gj8x1 ) (y) for some y on the line segment joning 
x and a, so that for x E Q, I I G(x) - G(a) l l < h(supyEQ I IDyG I I ) .  In other words, 
G( Q) is contained in a cube of side length supyEQ I IDyGI I times that of Q, so that 
by Theorem 2.44, m(G(Q) ) < (supyEQ I I DyG I I ) nm(Q) . 1fT E GL (n ,  IR), we can 
apply this formula with G replaced by r-1 o G together with Theorem 2 .44 to obtain 

(2.48) 
m(G(Q) ) == l det T im (T- 1 (G(Q) ) ) 

< I det Tl (sup I IT- 1 DyGI If m(Q) . yEQ 

Since DyG is continuous in y, for any E > 0 we can choose 8 > 0 so that 
I I (DzG)- 1 DyG I I n < 1 + E if y ,  z E Q and I I Y - z l l  < 8. Let us now subdivide 
Q into subcubes Q1 , . . .  Q N whose interiors are disjoint, whose side lengths are at 
most 8, and whose centers are x1 , . . . x N . Applying (2.48) with Q replaced by Q j 
and with T = Dxi G, we obtain 

N 

m(G(Q) ) < L m(G(Qj ) ) 
1 

N 

< L i det Dxi GI ( sup I I (Dxi G) - 1DyGI Ifm(Qj ) 
1 yEQJ 

N 

< ( l + E) L i det Dxj Gim(Qj ) .  
1 

This last sum is the integral of E� I det Dx1 Glxqi (x) , which tends uniformly on 
Q to I det DxGI as 8 � 0 since DxG is continuous . Thus , letting 8 � 0 and E � 0, 
we find that 

m(G(Q) ) < k l det DxGi dx. 

We claim that this estimate holds with Q replaced by any Borel set in 0. Indeed, if 
U c 0 is open, by Lemma 2.43 we can write U == U� Q 1 where the Q 1 's are cubes 
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with disjoint interiors . S ince the boundaries of the cubes have Lebesgue measure 
zero, we have 

Moreover, if E c 0 is any Borel set of finite measure, by Theorem 2.40 there is a 
decreasing sequence of open sets UJ c 0 of finite measure such that E c n� UJ 
and m(n� UJ \ E) == 0. Hence by the dominated convergence theorem, 

00 
m(G(E) ) < m ( c (n ui ) )  = limm(G(Ui ) ) 

1 
< lim J ! det DxG\ dx = r I det DxG\ dx. 

U · jE J 

Finally, since m is a-finite, it follows from this that m( G(E) ) < JE I det DxGI dx 
for any Borel set E c 0. 

If f = E aiXAj is a nonnegative simple function on G(O) , we therefore have 

1 f(x) dx == L ajm(Aj ) < L aj j j det DxGi dx 
G(O) G- 1 (Aj ) 

= In f o  G(x) \ det DxG\ dx. 

Theorem 2. 1 0  and the monotone convergence theorem then imply that 

1 f(x) dx < { f o G(x) \ det DxG\ dx 
G(O) ln 

for any nonnegative measurable f. But the same reasoning applies with G replaced 
by c-1 and f replaced by f o G, so that 

In f o  G(x) \ det DxG\ dx 

< 1 ! o G o  c- 1 (x) l det Dc- l (x) GI I det DxG- 1 1 dx == 1 f (x) dx. 
G(O) ) G(O) 

This establishes (a) for f > 0, and the case f E £1 fol lows immediately. Since (b) 
is just the special case of (a) where f == Xc(E) , the proof is complete. 1 

Exercises 

53. Fill in the details of the proof of Theorem 2.4 1 .  

54. How much of Theorem 2.44 remains valid if T is not invertible? 
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55. Let E == [0 , 1 ] x [0 , 1 ] . Investigate the existence and equality of J E f dm 2 , 
f01 f01 f (x, y) dx dy, and f01 f01 f(x, y) dy dx for the following f. 

a. f ( x ' y) == ( x2 - y2 ) ( x2 + y2 ) -2 . 
b. f(x, y) == ( 1  - xy) -a (a > 0). 
c. f(x ,  y) == (x - � ) -3 if 0 < y < l x - � I , f (x, y) == 0 otherwise . 

56. If f is Lebesgue integrable on (0 , a) and g (x) == J: t- 1 f (t) dt, then g is 
integrable on (0 , a) and J0a g (x) dx == J0a f(x) dx . 
57. Show that J000 e-sx x- 1 sin x dx == arctan( s- 1 ) for s > 0 by integrating 
e- sxy sin x with respect to x and y. (It may be useful to recall that tan( ; - B) == 
(tan B) - 1 . Cf. Exercise 3 ld.) 

58. Show that J e-sxx- 1 sin2 x dx == ! log ( l  + 4s-2 ) for s > 0 by integrating 
e-sx sin 2xy with respect to x and y. 

59. Let f (x) == x- 1 sin x. 
a. Show that J000 l f (x) l dx == oo. 

b. Show that limb---too J� f ( x) dx == � 1r by integrating e-xy sin x with respect 
to x and y. (In view of part (a), some care is needed in passing to the limit as 
b ---t oo.) 

60. r(x)r(y) jr(x + y) == f01 tx- 1 ( 1 - t)Y- 1 dt for x, y > 0. (Recall that r was 
defined in §2 .3 .  Write r (x)r(y) as a double integral and use the argument of the 
exponential as a new variable of integration .) 

61. If f is continuous on [0 , oo ) , for a > 0 and x > 0 let 

1 1x 
IaJ(x) = f(a) 0 (x - t)a- 1 f (t) dt . 

I a f is called the ath fractional integral of f. 
a. Ia+f3f == Ia (If3f) for all a, {3 > 0 .  (Use Exercise 60.) 
b. If n E N, In! is an nth-order antiderivative of f .  

2.7 INTEG RATION I N  POLAR COORDINATES 

The most important nonlinear coordinate systems in IR2 and IR3 are polar coor
dinates ( x == r cos fJ, y = r sin fJ) and spherical coordinates ( x == r sin ¢ cos fJ, 
y == r sin ¢  sin fJ, z == r cos ¢) .  Theorem 2.4 7, applied to these coordinates, yields the 
familiar formulas ( loosely stated) dx dy = r dr dB and dx dy dz == r2 sin ¢ dr dB d¢. 
Similar coordinate systems exist in higher dimensions, but they become increasingly 
complicated as the dimension increases. (See Exercise 65 . )  For most purposes , 
however, it is sufficient to know that Lebesgue measure is effectively the product of 
the measure rn- 1 dr on (0, oo ) and a certain "surface measure" on the unit sphere 
(dB for n == 2, sin ¢ dB d¢ for n == 3). 
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Our construction of this surface measure is motivated by a familiar fact from plane 
geometry. Namely, if So is a sector of a disc of radius r with central angle () (i .e . ,  
the region in the disc contained between the two sides of the angle), the area m( So ) 
is proportional to () ;  in fact, m(So) == � r2B. This equation can be solved for () and 
hence used to define the angular measure () in terms of the area m( So ) .  The same 
idea works in higher dimensions : We shall define the surface measure of a subset of 
the unit sphere in terms of the Lebesgue measure of the corresponding sector of the 
unit ball .  

We shall denote the unit sphere {X E IRn : l x l == 1} by sn- 1 . If X E ]Rn \ {0} ,  
the polar coordinates of x are 

r == l x l E (0 , oo ) , 
X x' = � E sn- 1 . 

The map <I>(x) == (r, x' ) is a continuous bijection from lRn \ {0} to (0 , 00 ) X sn- 1 
whose (continuous) inverse is <I>- 1 (r, x' )  == rx' . We denote by m* the Borel 
measure on (0 , oo ) x sn- 1 induced by <I> from Lebesgue measure on lRn, that is, 
m* (E) == m(<I>- 1 (E) ) .  Moreover, we define the measure p == Pn on (0 , oo ) by 
p(E) == JE rn- 1 dr . 
2.49 Theorem. There is a unique Borel measure a == an- 1 on sn- 1 such that 
m* == p x a. Iff is Borel measurable on lRn and f > 0 or f E £1 ( m ) , then 

(2 .50) r f(x) dx = r= r f(rx' )rn- 1 du(x' ) dr. 
}JRn lo J sn- 1 

Proof. Equation (2 .50), when f is a characteristic function of a set, is merely a 
restatement of the equation m* == p x a, and it follows for general f by the usual 
linearity and approximation arguments. Hence we need only to construct a. 

If E is a  Borel set in sn- 1 , for a > 0 let 

Ea == <I>- 1 ( (0 , a] x E) == { rx' : 0 < r < a, x' E E } . 

If (2.50) is to hold when f == XE 1 , we must have 

m(E1 ) = {1 { rn- 1 du(x' ) dr = u(E) {1 
rn- 1 dr = 

u(E) . 
Jo JE Jo n 

We therefore define a( E) to be n · m (E1 ) .  Since the map E � E1 takes Borel sets 
to Borel sets and commutes with unions, intersections, and complements , it is clear 
that a is a Borel measure on sn- 1 . Also, since Ea is the image of E1 under the 
map x r--t ax, it fol lows from Theorem 2.44 that m (Ea ) == anm (E1 ) , and hence, if 
0 < a < b, 

bn - an lb m* ( (a , b] X E) == m(Eb \ Ea) == a(E) == a(E) rn- 1 dr 
n a 

== p x a ( (a , b] x E) . 



INTEGRATION IN POLAR COORDINATES 79 

Fix E E � sn- 1  and let A E be the collection of finite disjoint unions of sets of the 
form (a ,  b] x E. By Proposition 1 .7 ,  AE is an algebra on (0, oo ) x E that generates 
the a-algebra ME == {A x E : A E �(O ,oo) } ·  By the preceding calculation we 
have m* == p x a on AE , and hence by the uniqueness assertion of Theorem 
1 . 14, m* == p x a on ME. But U{ME : E E �sn- 1 } is precisely the set of Borel 
rectangles in (0, 00 ) X sn- 1 , SO another application of the uniqueness theorem shOWS 
that m* == p x a on all Borel sets . 1 

Of course, (2.50) can be extended to Lebesgue measurable functions by consider
ing the completion of the measure a. Details are left to the reader. 

2.51 Corollary. If f  is a measurable function on IRn, nonnegative or integrable, 
such that f (x) == g( lx l ) for somefunction g on (0 , oo ) , then 

2.52 Corollary. Let c and C denote positive constants, and let B == { x E JRn : 
l x l < c } . Suppose that f is a measurable function on lRn. 

a. If l f (x) l < C !x l -a on B for some a < 
n, then f E L1 (B). However, if 

l f (x) l > C l x l-n on B, then f tt L1 (B) .  
b. If l f (x) l < C lx l -a on Be for some a > n, then f E L1 (Be ) .  However, if 

l f (x) l > C lx l -n on Be, then f tt L1 (Be ) .  

I 
We shall compute a(sn-1 ) shortly. Of course, we know that a(S1 ) == 21r ; this 

is just the definition of 21r as the ratio of the circumference of a circle to its radius . 
Armed with this fact, we can compute a very important integral. 

2.53 Proposition. If a > 0, 

r (1T ) n/2 
lrtn 

exp(-a !x ! 2 ) dx = a . 

Proof. Denote the integral on the left by In . For 
n == 

2, by Corollary 2.5 1 we 
have 100 2 (1T ) 2 00 1T 

I2 == 
2
1T re-ar dr == - - e-ar == -

. 

0 a o a 
Since exp(-a lx l 2 ) == TI� exp(-ax] ) ,  Tonelli 's theorem implies that In == (I1 )n . 
In particular, I1 == (I2 ) 1 I2 , so In == (I2 )nl2 == (1rja)nl2 . 1 

Once we know this result, the device used in its proof can be turned around to 
compute a(sn- l ) for all 

n 
in terms of the gamma function introduced in §2 .3 .  

21Tn/2 
2.54 Proposition. u(sn- l ) = r(n/2) . 
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Proof. By Corollary 2.5 1 ,  Proposition 2 .53 ,  and the substitution s == r2 , 

7rn/2 = r e- lx l 2 dx = a(sn- 1 ) r= rn- 1 e-r2 dr 
}�n Jo 

= a(s;- 1 ) loo s Cn/2) - 1 e-s ds = a(s;- 1 ) r (;) . 

1(n/2 
2.55 Corollary. !fEn = {x E �n : l x l  < 1 }, then m(Bn ) = e ) " r 2 n + 1 

I 

Proof. m(Bn) == n- 1a(sn- 1 ) by definition of a, and � nr ( � n) == r( � n + 1 )  
by the functional equation for the gamma function .  1 

We observed in §2 .3 that r(n) == (n - 1 ) ! .  Now we can also evaluate the gamma 
function at the half-integers : 

2.56 Proposition. r ( n + � ) == ( n - � ) ( n - � ) · · · ( � ) y0r. 
Proof. We have r( n + ! ) == ( n - � )  ( n - � ) · · · ( � )r (  � ) by the functional 

equation, and by Proposition 2.53 and the substitution s == r2 , 

r ( ! ) = r= s- 112 e-s ds = 2 r= e-r2 dr = joo e-r2 dr = ...;:;r. lo Jo - � 

I 
An amusing consequence of Proposition 2.56 and the formula r(n) == (n - 1 ) ! 

is that the surface measure of the unit sphere and the Lebesgue measure of the unit 
ball in IRn are always rational multiples of integer powers of 1r, and the power of 1r 

increases by 1 when n increases by 2 .  

Exercises 

62. The measure a on sn- 1 is invariant under rotations . 

63. The technique used to prove Proposition 2.54 can also be used to integrate any 
polynomial over sn- 1 . In fact, suppose f (x ) == 11� x;i (aJ E N U {0}) is a 
monomial . Then J f da ==  0 if any aj is odd, and if all aj ' s are even, 

J f d - 2r({31 ) . . .  r (f3n ) 
h {3 · - Qj + 1 a - r({31 + . . .  + f3n ) ' w ere J - 2 . 

64. For which real values of a and b is l x l a j log lx l l b integrable over {x E JRn 
l x l  < ! } ? Over {x E JRn : l x l  > 2} ? 

65. Define G : IRn � IRn by G(r, ¢1 , . . . , cPn-2 , B) == (x1 , . . .  , Xn ) where 

x 1 == r cos ¢1 , x2 == r sin ¢1 cos ¢2 , X3 == r sin ¢1 sin ¢2 cos ¢3 , . . .  , 
Xn- 1 == r sin ¢1 · · · sin cPn-2 cos (}, Xn == r sin ¢1 · · · sin cPn-2 sin (}. 
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a. G maps IRn onto IRn, and I G(r, ¢1 , . . .  , cPn-2 , B) I = l r l . 
b d t D G n- 1 · n-2 A. • n-3 A. • A. 

. e (r,¢1 , . . .  , </Jn- 2 ,(}) = r  Sill ¥'1 Slll ¥'2 · · · Slll ¥'n-2 ·  
c. Let 0 = (0 , 00 ) X (0 , 7r)n-2 X (0 , 27r) . Then GIO is a diffeomorphism and 
m(IRn \ G(O) ) = 0. 
d. Let F(¢1 , . . .  , ¢n-2 , 8) = G( l , ¢1 , · · · , ¢n-2 , 8) and 0' = (0 , 7r) n- 2 X 
(0 , 27r) . Then (F I0' ) - 1 defines a coordinate system on sn- 1 except on a a-null 
set, and the measure a is given in these coordinates by 

da(¢1 , . . .  cPn-2 , B) = sinn-2 ¢1 sinn-3 ¢2 · · · sin ¢n-2 d¢1 · · · dc/Jn-2 d(} . 

2.8 NOTES AND REFERENCES 

The history of modern measure and integration theory can fairly be said to have 
begun with the publication of Lebesgue 's thesis [9 1 ]  in 1 902, although of course 
Lebesgue was building on earlier works of other mathematicians, and some of his 
results were obtained independently by Vitali and W. H. Young. The theory of the 
Lebesgue integral was extensively developed by a number of mathematicians in the 
ensuing decade, during which time most of the results in this chapter were first 
derived. In particular, Lebesgue himself proved the dominated convergence theorem 
and deduced the monotone convergence theorem from it in the case when the limit 
function f is integrable ; when J f = oo the latter theorem is due to B .  Levi . 

Lebesgue [92] studied more general measures on IRn (which he called "additive 
set functions") in connection with the problem of generalizing the notion of indefinite 
integrals to functions of several variables . Radon [ 1 1 1 ] then developed the theory of 
integration with respect to what we now call regular Borel measures on IRn , which 
in particular yields the Lebesgue-Stieltjes integrals when n = 1 .  Finally, in 1 9 1 5  
Frechet [53]  pointed out that many of Radon's ideas would work i n  the general setting 
of sets equipped with a-algebras. Thus was abstract measure and integration theory 
born. It continued to develop unti l ,  by about 1950, it had assumed more or less the 
form in which we know it today. The first systematic modern treatise on the subject 
i s  Halmos [62] . 

For accounts of the prehistory and early history of the Lebesgue integral , see 
Hawkins [70] . References concerning the later development of the subject can be 
found in Saks [ 1 28] and Hahn and Rosenthal [6 1 ] .  

We have adopted the point of view of beginning with measures and deriving 
integrals from them. However, it is also possible to go the other way, a procedure 
first developed by Daniell [29] . Roughly speaking, one starts with an "elementary 
integral" : a linear functional I defined on a suitable space of functions that satisfies 
some mild continuity conditions and is positive in the sense that I (f) > 0 whenever 
f > 0 (for example, the Riemann integral on the space of continuous functions on 
[a, b] ) .  The Daniell theory provides an extension of I to a functional I defined on a 
larger class of functions . Under appropriate hypotheses, the collection M of sets E 
such that XE is in the domain of I is then a a-algebra, the function J.-t( E) = I (XE ) is a 
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measure on M, and I is integration with respect to 1-l · See Royden [ 1 2 1 ] for a concise 
account of the Daniel l theory and Pfeffer [ 1 08] for a comprehensive treatment, as 
wel l as Konig [86] for a somewhat different approach. 

The Lebesgue theory is not the last word regarding integration on JR. Motivated 
partly by the problem of establishing the fundamental theorem of calculus in the 
greatest possible generality (about which we shal l  say more in §3 .6), a number of 
theories of integration have been developed that include not only the Lebesgue integral 
but also certain "conditionally convergent" integrals. That is, they assign a meaning to 
J f ( x) dx for certain measurable functions f : 1R � 1R such that J J+ = J f- = oo ,  

but for which the cancellation of positive and negative values in some way yields a 
reasonable definition of J f (x) dx. (A standard example is f(x) = x- 1 sin x; see 
Exercise 59.) The first procedures for defining such integrals, due to Denjoy and 
Perron, were quite complicated. However, in the late 1 950s, Henstock and Kurzweil 
independently discovered a modification of the classical Riemann integral that yields 
the same results .  

The Henstock-Kurzweil integral on a bounded interval [a , b] is defined as follows. 
A tagged partition of [a , b] is a finite sequence { Xj }b' such that a = xo < · · · < 
x N = b (i .e . , a partition in the sense of §2.3) together with another finite sequence 
{tj }f such that tj E [xj- 1 , Xj ] · A gauge on [a , b] is an (arbitrary ! )  function 
8 : [a, b] � (0, oo ) . If P is a tagged partition and 8 is a gauge, P is called 6'-fine if 
Xj - Xj_ 1 < 8(tj ) for all j .  The compactness of [a , b] easily implies that for any 
gauge 8 there is a 8-fine tagged partition of [a , b] . 

Now suppose f is a real-valued function on [a , b] . If P is a tagged partition of 
[a , b] , the corresponding Riemann sum for f is �pf = E� f(tj ) (xj - Xj_ 1 ) .  The 
function f is called Henstock-Kurzweil integrable on [a , b] if there exists c E 1R 
with the following property: For any E > 0 there is a gauge 8€ such that if P is any 
8€ -fine tagged partition of [a , b] , then I �P f - c l < E. In this case the number c is 
unique, and it is called the Henstock-Kurzweil integral of f. The ordinary Riemann 
integral of f, in contrast, can be defined in exactly the same way except that one 
allows only constant gauges. 

It turns out that the Henstock-Kurzweil integral coincides with the integrals of 
Den joy and Perron. In particular, it coincides with the Lebesgue integral for nonneg
ative functions, but its domain includes many functions that have both positive and 
negative values and are not in £1 ( [a , b] ) .  The definition of the Henstock-Kurzweil 
integral is easily extended to unbounded intervals. It also admits an n-dimensional 
version: One simply defines an n-interval to be a product of n one-dimensional 
intervals and a tagged partition of an n-interval I to be a finite collection { Ij } of 
n-intervals with disjoint interiors whose union is I together with a choice of tj E Ij 
for each j ;  the definition of the integral then proceeds as above. 

A good case can be made that the Henstock-Kurzweil integral ought to be the theory 
of integration on IRn that is generally taught to students, not just because of its added 
generality but (more cogently) because its definition is relatively simple and requires 
no measure theory to get started. On the other hand, it does not generalize as readily 
to spaces other than IRn, and although it can be developed in a rather abstract setting, 
it loses much of its appealing simplicity there. Moreover, although conditionally 
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convergent integrals that cannot be obtained by a simple limiting procedure from 
absolutely convergent ones do turn up now and then in certain problems, their utility 
is not sufficently broad to make a compelling case for their study by nonspecialists . 

In any case, in this book we shall content ourselves with the Lebesgue integral 
and the general theory of measure and integration of which it is a part. Readers who 
wish to learn more about the Henstock-Kurzweil integral can find a brief introduction 
in Bartle [ 1 3] and detailed treatments in McLeod [99] and Pfeffer [ 1 09] . See also 
Gordon [57] for a comprehensive account of the Denjoy, Perron, and Henstock
Kurzweil integrals on [a , b] , and Henstock [72] for a development of the theory in a 
more abstract setting. 

§2. 1 : A Borel isomorphism between two measurable spaces (X, M) and (Y, N) 
is a bijection f : X � Y such that f-1 is a bijection from N to M. Unlike the 
related notion of homeomorphism for topological spaces (see Chapter 4) and notions 
of isomorphism in various other categories, the notion of Borel isomorphism is of 
limited util ity, because it is too easy for two spaces to be Borel isomorphic. That 
this is so is clearly indicated by the single major theorem in the subject, due to 
Kuratowski : 

Suppose that (X, M) is Borel isomorphic to a Borel subset E of a complete 
separable metric space Y (equipped with the a-algebra { F E 23y : F c E} ) .  
Then either X i s  countable and M = P(X) ,  or X i s  Borel isomorphic to 
(JR, 23JR) .  

A proof of this theorem, as well as much additional information about Borel sets, can 
be found in Srivastava [ 1 39] . 

There is a hierarchy of Borel measurable functions on a metric space that corre
sponds roughly to the hierarchy of Borel sets {open and closed, Fa and G8 , etc . ) .  
Namely, let Eo be the space of all continuous functions , and for each countable 
ordinal a define Ba recursively as follows. If a has an immediate predecessor 
{3, Ba is the set of all limits of pointwise convergent sequences in Bf3 ; otherwise, 
Ba = Uf3<a Bf3 · Functions in Ba are said to be of Baire class a. For example, if f 
is everywhere differentiable on JR, f' is of Baire class 1 .  

Exercise 1 1  is a result from Lebesgue's first published paper. See Rudin [ 1 23] for 
a discussion of it. 

§2 . 3 :  The blurring of the distinction between individual measurable functions 
and equivalence classes of functions defined by almost -everywhere equality is often 
conven ient and rarely disastrous. The most common situations where some care is 
needed involve the interplay of measurable and continuous functions (on IRn, say), 
for a function that is equal a.e. to a continuous function will not be continuous in 
general . See Zaanen [ 1 65 ]  for a careful discussion of this point. 

§2.4: An interesting discussion of Egoroff's theorem, including some necessary 
and sufficient conditions for almost uniform convergence, can be found in Bartle 
[ 1 2] .  For a simple proof of Lusin's theorem (Exercise 44) that does not depend on 
Egoroff's theorem, see Feldman [43] . We shall prove a more general form of this 
theorem in §7 .2. 
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§2 .5 : The original theorems ofFubini and Tonelli pertained to Lebesgue measure 
in the plane. The theory of abstract product measures was developed independently 
by several people in the 1 930s; the construction of 1-l x v presented here is that of 
Hahn [60] . It is also possible to define a product measure on the product of an infinite 
family { (X a ,  Ma , f.-la ) }  aEA of measure spaces provided that /-la (X a )  = 1 for all but 
finitely many a; see Saeki [ 1 27] , Halmos [62, §38] ,  or Hewitt and Stromberg [76, 
§22] . We shall present a version of this result in §7 .4 (Theorem 7 .28) . 

Using the axiom of choice but not the continuum hypothesis, Sierpinski [ 1 34] has 
proved the existence of a Lebesgue nonmeasurable subset of JR2 whose intersection 
with any straight line contains at most two points. This should be compared with 
Exercise 47 (which is also due to Sierpinski) .  

The following generalization of the notion of product measures is useful in a 
number of situations : One is given a measurable space (X, M) , a a-finite measure 
space (Y, N, v ) , and a family {J.-ty : y E Y} of finite measures on X such that the 
function y r--t /-ly (E) is measurable on Y for each E E M. One can then define a 
measure A on X x Y such that J f dA = JJ f(x, y) dJ.-ty (x) dv(y) for f E L + (X x Y) . 
See Johnson [79] . 

§2.6: Our proof of Theorem 2.47 follows J. Schwartz [ 1 3 1 ] .  This theorem can 
also be proved under slightly weaker hypotheses on the transformation G; see Rudin 
[ 1 25 ,  Theorem 7.26] . 



Signed Measures and 
Differentiation 

The principal theme of this chapter i s  the concept of differentiating a measure v with 
respect to another measure 1-l on the same a-algebra. We do this first on the abstract 
level, then obtain a more refined result when 1-l is Lebesgue measure on IRn. When 
the latter is special ized to the case n == 1 ,  it joins with classical real-variable theory 
to produce a version of the fundamental theorem of calculus for Lebesgue integrals. 

In developing this program it is useful to generalize the notion of measure so as to 
allow measures to assume negative or even complex values. There are three reasons 
for this . First, in applications such "signed measures" can represent things such 
as electric charge that can be either positive or negative. Second, the differentiation 
theory proceeds more naturally in the more general seting. Finally, complex measures 
have a functional-analytic significance that will be explained in Chapter 7 .  

3.1  SIGNED MEASU RES 

Let (X, M) be a measurable space. A signed measure on (X, M) is a function 
v : M --7 [ -oo , oo ] such that 

• v (0)  == 0; 

• v assumes at most one of the values ±oo; 

• if { Ej } is a sequence of disjoint sets in M, then v (U� Ej ) == L� v (Ej ) , 
where the latter sum converges absolutely if v (U� Ej ) is finite. 

Thus every measure is a signed measure; for emphasis we shall sometimes refer to 
measures as positive measures. 

85 
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Two examples of signed measures come readi ly to mind. First, if /-ll , J.-t2 are 
measures on JV( and at least one of them is finite, then v == /-ll - /-l2 is a signed 
measure . Second, if 1-l is a measure on M and f : X � [- oo, oo] is a measurable 
function such that at least one of J J+ dJ.-t and J f- dJ.-t is finite (in which case we 
shal l call f an extended J.L-integrable function), then the set function v defined by 
v( E) == J E f dJ.-t is a signed measure. In fact, we shall see shortly that these are 
really the only examples: Every signed measure can be represented in either of these 
two forms . 

3.1 Proposition. Let v be a signed measure on (X, M). If { Ej } is an increasing 
sequence in M, then v(U� Ej ) == limj-Hx) v( Ej ) . If { Ej } is a decreasing sequence 
in M and v( E1 ) is finite, then v(n� EJ ) == limj __. oo  v( EJ ). 

The proof is essentially the same as for positive measures (Theorem 1 . 8) and is 
left to the reader (Exercise 1 ) .  

If v is a signed measure on (X, M) , a set E E M is cal led positive (resp. negative, 
null) for v if v(F) > 0 (resp. v(F) < 0, v(F) == 0) for all F E  M such that F c E. 
(Thus, in the example v( E) == J E f dJ.-t described above, E is positive, negative, or 
null precisely when f > 0, f < 0, or f == 0 J.-t-a.e. on E.) 
3.2 Lemma. Any measurable subset of a positive set is positive, and the union of 
any countable family of positive sets is positive. 

Proof. The first assertion is obvious from the definition of positivity. If P1 , P2 , . . . 

are positive sets, let Qn == Pn \ U�- 1 Pj . Then Qn c Pn, so Qn is positive . Hence 
if E c U� Pj ,  then v(E) == 2:� v(E n QJ ) > 0, as desired. 1 

3.3 The Hahn Decomposition Theorem. lfv is a signed measure on (X, M), there 
exist a positive set P anda negative set N for v such that PuN == X and PnN == 0. 
If P', N' is another such pair, then P t:.P' (== N t:.N') is null for v. 

Proof. Without loss of generality, we assume that v does not assume the value 
- oo. (Otherwise, consider -v.) Let m be the supremum of v(E) as E ranges over 
all positive sets ; thus there is a sequence { Pj } of positive sets such that v(Pj )  � m. 
Let P == U� PJ . By Lemma 3 .2 and Proposition 3 . 1 ,  P is positive and v(P) == m; 
in particular, m < oo. We claim that N == X \  P is negative. To this end, we assume 
that N is not negative and derive a contradiction . 

First, notice that N cannot contain any nonnull positive sets. Indeed, if E c N is 
positive and v(E) > 0, then E U P is positive and v(E U P) == v(E) + v(P) > m, 
which is impossible. 

Second, if A c N and v(A) > 0, there exists B c A with v(B) > v(A) . Indeed, 
since A cannot be positive, there exists C c A with v( C) < 0; thus if B == A \ C 
we have v(B) == v(A) - v(C) > v(A) . 

If N is not negative, then, we can specify a sequence of subsets { AJ } of N and 
a sequence { nj } of positive integers as fol lows: n1 is the smallest integer for which 
there exists a set B c N with v(B) > n1 1 , and A1 is such a set. Proceeding 
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inductively, nj is the smallest integer for which there exists a set B c Aj _ 1 with 
v(B) > v(Aj_ 1 ) + nj 1 , and Aj is such a set. 

Let A == n� Aj . Then 00 > v(A) == lim v(Aj ) > E� nj 1 , so nj � 00 

as j --7 oo .  But once again, there exists B c A with v (B) > v(A) + n- 1 for 
some integer n. For j sufficiently large we have n < nj , and B c Aj_ 1 , which 
contradicts the construction of nj and Aj . Thus the assumption that N is not negative 
is untenable. 

Finally, if P' , N' is another pair of sets as in the statement of the theorem, we 
have P \ P' c P and P \ P' c N', so that P \ P' is both positive and negative, 
hence null ;  likewise for P' \ P. 1 

The decomposition X == P U N if X as the disjoint union of a positive set and a 
negative set is called a Hahn decomposition for v. It is usually not unique (v-null 
sets can be transferred from P to N or from N to P), but it leads to a canonical 
representation of v as the difference of two positive measures. 

To state this result we need a new concept: We say that two signed measures 1-l and 
v on (X, M) are mutually singular, or that v is singular with respect to f.-l, or vice 
versa, if there exist E, F E M such that E n F == 0, E u F == X,  E is null for f.-l, 
and F is null for v. Informally speaking, mutual singularity means that 1-l and v "live 
on disjoint sets ." We express this relationship symbolical ly with the perpendicularity 
s1gn : 

1-l ..l v. 

3.4 The Jordan Decomposition Theorem. If v is a signed measure, there exist 
unique positive measures v+ and v- such that v == v+ - v- and v+ ..l v- .  

Proof. Let X == P U N  be a Hahn decomposition for v, and define v+ (E) == 
v(E n P) and v- (E) == -v(E n N) . Then clearly v == v+ - v- and v+ ..l v- . If 
also v == 1-l+ - 1-l- and 1-l+ ..l 1-l- , let E, F E M  be such that EnF == 0, EuF == X, 
and J.-t+ (F) == J.-t- (E) == 0. Then X ==  E U F is another Hahn decomposition for v, 
so P �E is v-null . Therefore, for any A E M, J.-t+ (A) == J.-t+ (A n E) == v(A n E) == 
v( A n P) == v+ (A) , and likewise v- == 1-l- . 1 

The measures v+ and v- are called the positive and negative variations of v, 
and v == v+ - v- is called the Jordan decomposition of v, by analogy with the 
representation of a function of bounded variation on 1R as the difference of two 
increasing functions (see §3 .5) .  Furthermore, we define the total variation of v to 
be the measure I v i  defined by 

I v i  == v+ + v- . 

It is easily verified that E E M is v-null iff I v I  (E) == 0, and v ..l J.-l iff I v I  ..l J.-L iff 
v+ ..l 1-l and v- ..l 1-l (Exercise 2.) 

We observe that if v omits the value oo then v+ (X ) == v(P) < oo, so that v+ is a 
finite measure and v is bounded above by v+ (X) ; similarly if v omits the value - oo . 

In particular, if the range of v is contained in JR, then v is bounded. We observe also 
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that v is of the form v(E) = JE f dJ.-t, where J.-l = I v i  and f == XP - XN , X = P U N  
being a Hahn decomposition for v. 

set 
Integration with respect to a signed measure v is defined in the obvious way : We 

£1 (v) = £1 (v+ ) n £1 (v- ) , 

j f dv = j f dv+ - j f dv- (! E L1 (v) ) .  

One more piece of terminology : a signed measure v is called finite (resp. a-finite) 
if I v i  is finite (resp. a-finite) . 

Exercises 

1. Prove Proposition 3 . 1 .  

2. If v is a signed measure, E is v-null iff I vi (E) = 0. Also, if v and 1-l are signed 
measures, v ..l J.-l iff I v I .1. J.-l iff v+ .1. J.-l and v- .1. J.-l. 

3. Let v be a signed measure on (X, M) . 
a. £1 (v) = L1 ( I v i ) .  
b. If f E L1 (v) ,  I J f dv l < J 1 ! 1 dl v l . 
c. If E E M, l v i (E) = sup{ I fE f dv l : l f l  < 1 } . 

4. If v is a signed measure and A, 1-l are positive measures such that v = A - J.-l, 
then A > v+ and 1-l > v- . 

5. If v1 , v2 are signed measures that both omit the value +oo or -oo, then l v1 +v2 l < 
l v1 l + l v2 l - (Use Exercise 4.) 

6. Suppose v(E) == J f dJ.-t where 1-l is a positive measure and f is an extended 
J.-t-integrable function. Describe the Hahn decompositions of v and the positive , 
negative, and total variations of v in terms of f and 1-l· 

7. Suppose that v is a signed measure on (X, M) and E E M. 

a. v+ (E) == sup{v(F) : E E J\1, F C E} and v- (E) == - inf{v(F) : F E 
M, F c E}. 
b. l v i (E) = sup{l:� l v(EJ ) I : n E N, E1 , . . .  , En are disjoint, and U� EJ = 
E} . 

3.2 TH E LEBESG UE-RADON-NIKODYM THEOREM 

Suppose that v is a signed measure and 1-l is a positive measure on (X, M) . We say 
that v is absolutely continuous with respect to 1-l and write 

v << 1-l 

if v( E) == 0 for every E E M for which J.-t( E) = 0. It is easily verified that v << 1-l iff 
I v i  << J.-l iff v+ << J.-l and v- << J.-l (Exercise 8) . Absolute continuity is in a sense the 



THE LEBESGUE-RADON-NIKODYM THEOREM 89 

antithesis of mutual singularity. More precisely, if v ..l 1-l and v << f.-l, then v == 0, for 
if E and F are disjoint sets such that E U F == X  and J.-t(E) == l v i (F) == 0, then the 
fact that v << J.-l implies that l v i (E) == 0, whence ! v i == 0 and v == 0. One can extend 
the notion of absolute continuity to the case where 1-l is a signed measure (namely, 
v << J.-l iff v << IJ.-t l ) , but we shall have no need of this more general definition . 

The term "absolute continuity" is derived from real-variable theory ; see §3 .5 .  For 
finite signed measures it is equivalent to another condition that is obviously a form 
of continuity. 

3.5 Theorem. Let v be a .finite signed measure and J.-l a positive measure on (X, M). 
Then v << J.-l iff for every E > 0 there exists 8 > 0 such that I v ( E) I < E whenever 
J.-t( E) < 8. 

Proof. Since v << J.-l iff l v l  << J.-l and l v (E) I < l v i (E) , it suffices to assume 
that v == ! v i is positive. Clearly the E-8 condition implies that v << 1-l· On the other 
hand, if the E-8 condition is not satisfied, there exists E > 0 such that for all n E N 
we can find En E M with J.-t(En) < 2-n and v(En) > E .  Let Fk == ur En and 
F == n� Fk . Then J.-t(Fk )  < Er 2-n == 2 1-k

' so J.-t(F) == 0; but v(Fk ) > E for all 
k and hence, since v is finite, v( F) == lim v( Fk ) > E. Thus it is false that v << 1-l· 1 

If 1-l is a measure and f is an extended J.-t-integrable function, the signed measure 
v defined by v( E) == J E f dJ.-t is c learly absolutely continuous with respect to J.-t; it is 
finite iff f E L1 (J.-t) . For any complex-valued f E L1 (J.-t) , the preceding theorem can 
be applied to Re f and Im f, and we obtain the following useful result : 

3.6 Corollary. If f E £1 (J.-t ) , for every E > 0 there exists 8 > 0 such that 
I J E f dJ.-t l < E whenever J.-t( E) < 8. 

We shall use the following notation to express the relationship v( E) == J E f dJ.-t: 

dv == f dJ.-t. 

Sometimes, by a slight abuse of language, we shall refer to "the signed measure 
f dJ.-t." 

We now come to the main theorem of this section, which gives a complete picture 
of the structure of a signed measure relative to a given positive measure. First, a 
technical lemma. 

3.7 Lemma. Suppose that v and J.-l are .finite measures on (X, M). Either v ..l f.-l, or 
there exist E > 0 and E E M such that J.-t( E) > 0 and v > EJ.-l on E (that is, E is a 

positive set for v - EJ.-t). 

Proof. Let X == Pn U Nn be a Hahn decomposition for v - n- 1J.-t, and let 
P == U� Pn and N == n� N n == pc . Then N is a negative set for v - n - 1 1-l for all 
n, i .e . , 0 < v(N) < n- 1 J.-t(N) for all n, so v(N) == 0. If J.-t(P) == 0, then v ..l p. If 
J.-t(P) > 0, then J.-t(Pn) > 0 for some n, and Pn is a positive set for v - n- 1 f.-l· 1 
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3.8 The Lebesgue-Radon-Nikodym Theorem. Let v be a a-finite signed measure 
and 1-l a a-finite positive measure on (X, M). There exist unique a-finite signed 
measures ..\, p on (X, M) such that 

,\ ..l J.-l, p << J.-l, and v == ,\ + p. 
Moreover, there is an extended J.-t-integrablefunction f : X � JR. such that dp == f dJ.-t, 
and any two such functions are equal J.-t-a. e. 

Proof. Case 1 :  Suppose that v and 1-l are finite positive measures. Let 

3" = { f : X ---+ [0 , oo ] : L f dp, < v(E) for all E E M} . 
� is nonempty since 0 E �- Also, if f, g E �' then h == max(/, g) E �' for if 
A ==  {x : f (x) > g(x) } ,  for any E E M  we have 

{ h dp, = { f dp, +  { g dp, < v(E n A) + v(E \ A) = v (E) . jE lEnA jE\A 
Let a == sup{f f dJ.-t : f E �} , noting that a < v(X) < oo, and choose a sequence 
{fn } C � such that J fn dJ.-t � a. Let 9n == max(fl , . . .  , fn ) and f == supn fn · 
Then gn E �' 9n increases pointwise to f, and f 9n dJ.-t > f f n dJ.-t. It fol lows that 
lim J 9n dJ.-t == a and hence, by the monotone convergence theorem, that f E � 
and J f dJ.-t == a. (In particular, f < oo a.e . ,  so we may take f to be real-valued 
evecywhere . )  

We claim that the measure d..\ == dv - f dJ.-t (which is positive since f E � is 
singular with respect to 1-l· If not, by Lemma 3 .7 there exist E E M and E > 0 
such that J.-t(E) > 0 and ,\ > EJ.-l on E. But then EXE dJ.-t < d..\ == dv - f dJ.-t, that 
is, (f + exE ) dJ.-t < dv, SO f + EXE E � and f(f + EXE ) dJ.-t == a + EJ.-t (E) > a, 
contradicting the definition of a. 

Thus the existence of ..\, f, and dp == f dJ.-t is proved. As for uniqueness, if also 
dv == d..\' + f' dJ.-t, we have d..\ - d..\' == (!' - f) dJ.-t. But ,\ - ,\' ..l 1-l (see Exercise 
9), while (!' - f) dJ.-t << dJ.-t; hence d,\ - d..\' = (!' - f) dJ.-t == 0, so that ,\ == ,\' and 
(by Proposition 2.23) f == f' J.-t-a.e. Thus we are done in the case when 1-l and v are 
finite measures. 

Case II: Suppose that 1-l and v are a-finite measures. Then X is a countable 
disjoint union of J.-t-finite sets and a countable disjoint union of v-finite sets; by taking 
intersections of these we obtain a disjoint sequence { Aj } c M such that 1-l ( Aj ) and 
v(Aj ) are finite for all j and X == u� Aj . Define /-lj (E) = J.-t(E n Aj ) and Vj (E) == 
v(E n Aj ) . By the reasoning above, for each j we have dvj == d..\j + fj dJ.-tj where 
Aj .1. /-lj · Since /-lj (Aj ) == Vj (Aj ) == 0, we have Aj (Aj ) = vj (Aj ) - fAc: f dJ.-tj = 0, 

J 
and we may assume that /j == 0 on Aj . Let ,\ == E� Aj and f == E� fj . Then 
dv == d..\ + f dJ.-t, ,\ ..l 1-l (see Exercise 9), and d..\ and f dJ.-t are a-finite, as desired. 
Uniqueness follows as before. 

The General Case: If v is a signed measure, we apply the preceding argument to 
v+ and v- and subtract the results . 1 
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The decomposition v = ,\ + p where ,\ ..l 1-l and p << 1-l is called the Lebesgue 
decomposition of v with respect to 1-l· In the case where v << f.-l, Theorem 3 . 8  says 
that dv = f dJ.-t for some f. This result is usually known as the Radon-Nikodym 
theorem, and f is called the Radon-Nikodym derivative of v with respect to 1-l ·  We 
denote it by dv I dJ.-t: 

dv 
dv = 

dJ.L 
dJ.L. 

(Strictly speaking, dv I dJ.-t should be construed as the as the class of functions equal 
to f J.-t-a.e.) The formulas suggested by the differential notation dJ.-tl dv are generally 
correct. For example, it is obvious that d( v1 + v2 ) I dJ.-t == ( dv1 I dJ.-t) + ( dv2 I dJ.-t) ,  and 
we have the chain rule: 

3.9 Proposition. Suppose that v is a a-finite signed measure and J.-l , ,\ are a-finite 
measures on (X, M) such that v << 1-l and 1-l << ..\. 

a. If g E £1 ( v ), then g (  dv I dJ.-t) E £1 (J.-t) and 

b. We have v << ..\, and 

1 g dv = 1 g �: dJ.L. 

dv 
d,\ 

..\-a. e. 

Proof. By considering v+ and v- separately, we may assume that v > 0. The 
equation J g dv = J g( dv I dJ.-t) dJ.-t is true when g == XE by definition of dv I dJ.-t. It 
is therefore true for simple functions by linearity, then for nonnegative measurable 
functions by the monotone convergence theorem, and finally for functions in £1 (v) 
by linearity again . Replacing v, 1-l by J.-l , ,\ and setting g == XE ( dv I dJ.-t ) ,  we obtain 

v (  E) 
= 

{ dv 
dJ.L = 

{ dv dJ.L 
d>. 

} E dJ.-t } E dJ.-t d,\ 

for all E E M, whence ( dv I d..\ ) = ( dv I dJ.-t) ( dJ.-t I d..\) ..\-a.e. by Proposition 2 .23 . 1 

3.10 Corollary. If 1-l << ,\ and ,\ << f.-l, then (d..\ldJ.-t) (dJ.-tld..\) == 1 a. e. (with respect 
to either ,\ or J.-t). 

Nonexample: Let 1-l be Lebesgue measure and v the point mass at 0 on (IR, �JR ) .  
Clearly v ..l 1-l· The nonexistent Radon-Nikodym derivative dv I dJ.-t is popularly 
known as the Dirac 8-finction. 

We conclude this section with a simple but important observation : 

3. 1 1  Proposition. If J.-t1 , . . .  , /-ln are measures on (X, M), there is a measure J.-l such 
that /-lj << J.-l for all j - namely, J.-l == E� /-lj . 

The proof is trivial . 
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Exercises 

8. v << JL iff I v i  << JL iff v+ << JL and v- << JL· 

9. Suppose { Vj } is a sequence of positive measures. If Vj ..l JL for all j ,  then 
E� Vj .1. JL; and if Vj << JL for all j ,  then E� Vj << JL· 

10. Theorem 3 .5 may fai l when v i s  not finite. (Consider dv(x) == dxlx and 
dJL(x) == dx on (0 , 1 ) , or v = counting measure and JL (E) == EnEE 2-n on N.) 

11. Let JL be a positive measure . A col lection of functions {!a }aEA C £1 (JL) 
is cal led uniformly integrable if for every E > 0 there exists 8 > 0 such that 
I JE !a dp, l < E for all a E A whenever JL (E) < 8. 

a. Any finite subset of L1 (JL) is uniformly integrable. 
b. If {! n } is a sequence in £1 (JL) that converges in the £1 metric to f E £1 (JL) ,  
then {fn } i s  uniformly integrable. 

12. For j == 1 ,  2, let /Lj , Vj be a-finite measures on (Xj , Mj ) such that Vj << /Lj . 
Then v1 x v2 << /L1 x /L2 and 

d( v1 x v2 ) ( ) _ dv1 ( ) dv2 ( ) 
d( ) X1 , X2 - d 

X1 d 
X2 · /L1 X /L2 /L1 /L2 

13. Let X == [0 , 1] , M == � [o , 1 ] , m = Lebesgue measure, and JL = counting measure 
on M. 

a. m << JL but dm =1- f dJL for any f. 
b. JL has no Lebesgue decomposition with respect to m. 

14. If v is an arbitrary signed measure and JL is a a-finite measure on (X, M) such 
that v << JL, there exists an extended JL-integrable function f : X ---7 [-oo , oo ] such 
that dv == f dJL. Hints : 

a. It suffices to assume that JL is finite and v is positive . 
b. With these assumptions, there exists E E M that is a-finite for v such that 
JL(E) > JL(F) for all sets F that are a-finite for v. 
c. The Radon-Nikodym theorem applies on E. If F n E == 0, then either 
v (F) == JL (F) == 0 or JL (F) > 0 and l v (F) I == oo .  

15. A measure JL on (X, M) is called decomposable if there is a family 1' c M with 
the following properties: (i) JL (F) < oo for all F E 1'; (ii) the members of 1' are 
disjoint and their union is X; (iii) if JL (E) < oo then JL (E) == EFE� JL (E n F) ; (iv) 
if E c X and E n F E M for all F E 1' then E E M. 

a. Every a-finite measure is decomposable. 
b. If JL is decomposable and v is any signed measure on (X, M) such that v << JL, 
there exists a measurable f : X ---7 [-oo,  oo] such that v (E) == J E f dJL for any 
E that is a-finite for JL, and I f I < oo on any F E 1' that is a-finite for v. (Use 
Exercise 1 4  if v is not a-finite.) 

16. Suppose that JL ,  v are measures on (X, J\1) with v << JL, and let ,\ == JL + v. If 
f == dv I d..\, then 0 < f < 1 JL-a.e. and dv I dJL == f I ( 1 - f) . 
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17. Let (X , M, JL) be a a-finite measure space, N a sub-a-algebra of M, and v == 
JL !N. If f E L1 (JL ) ,  there exists g E L1 (v) (thus g is N-measurable) such that 
J E f dJL == J E g dv for al l E E N; if g' is another such function then g == g

' v-a.e. 
(In probability theory, g is called the conditional expectation of f on N.) 

3.3 COMPLEX M EASU RES 

A complex measure on a measurable space (X, M) is a map v : M --4 C such that 

• v(0) == 0; 

• if { Ej } is a sequence of disjoint sets in M, then v(U� Ej ) == E� v(Ej ) ,  
where the series converges absolutely. 

In particular, infinite values are not allowed, so a positive measure is a complex 
measure only if it is finite. Example : If JL is a positive measure and f E £1 (JL ) ,  then 
f dJL is a complex measure. 

If v is a complex measure, we shall write Vr and Vi for the real and imaginary 
parts of v. Thus Vr and Vi are signed measures that do not assume the values ±oo; 
hence they are finite, and so the range of v is a bounded subset of C. 

The notions we have developed for signed measures generalize easily to complex 
measures. For example, we define L1 (v) to be L1 (vr )  n L1 (vi ) ,  and for f E L1 (v) , 
we set J f dv == J f dvr + i J f dvi . If v and JL are complex measures, we say that 
v _L JL if va _L /Lb for a ,  b == r, i , and if ,\ is a positive measure, we say that v << ,\ if 
Vr << ,\ and vi << ..\. The theorems of §3 .2 also generalize; one has merely to apply 
them to apply them to the real and imaginary parts separately. In particular: 

3.12 The Lebesgue-Radon-Nikodym Theorem. If v is a complex measure and JL 
is a a-finite positive measure on (X, M), there exist a complex measure ,\ and an 
f E £1 (JL) such that ,\ _L JL and dv == d..\+ f dJL. If also ..\' _L JL and dv == d..\'+ f' dJL, 
then ,\ == ,\' and f == f' JL-a. e. 

As before, if v << JL, we denote the f in Theorem 3 . 1 2  by dv / dJL. 
The total variation of a complex measure v is the positive measure I v I  determined 

by the property that if dv == f dJL where JL is a positive measure, then dl v I  == I f  I dJL. 
To see that this is well defined, we observe first that every v is of the form f dJL for 
some finite measure JL and some f E L 1 (JL) ; indeed, we can take JL == I Vr I + I vi I and 
use Theorem 3 . 12 to obtain f. Second, if dv == !1 dJL1 == !2 dJL2 , let p == /Ll + /L2 · 
Then by Proposition 3 .9, 

dJL 1 dJL2 ft dp 
dp = dv = h dp 

dp, 

so that f1 ( dJL1 I dp) == f2 ( dJL2 I dp) p-a.e. Since dJLj I dp is nonnegative, we therefore 
have 

l ft l dp,t 
= It dp, t 

dp dp 
h dp,2 = lh l 

dp,2 
dp dp 

p-a.e. , 
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and thus 
dJ.-l1 dJ.-l2 l it I d,u1 = l it I dp 

dp = I h i  
dp 

dp = I h i  d,u2 . 

Hence the definition of I v i  is independent of the choice of J.-l and f. This definition 
agrees with the previous definition of v when v is a signed measure, for in that 
case dv == (XP - XN )d l v l  where X == P U N is a Hahn decomposition, and 
I XP - XN i == 1 .  
3.13 Proposition. Let v be a complex measure on (X, M). 

a. l v (E) I < l v i (E) for all E E M. 

b. v << I v i , and dv I d lv l  has absolute value 1 l v l -a. e. 
c. L1 (v) == L1 ( l v l ) , and iff E L1 (v), then I J f dv l < J l f l  d l v l .  

Proof. Suppose dv = f dJ.-t as in the definition of I v i .  Then 

l v (E) I = I L f d,u l < L I l l d,u = l v i (E) . 

This proves (a) and shows that v << I v i .  If g == dv I d l v l ,  then, we have f dJ.-t == dv == 
g d lv l  == g lf l dJ.-t, so g l f l  == f J.-t-a.e. and hence l v l -a.e. But clearly I f  I > 0 l v l -a.e . , 
whence jg l == 1 l v l -a.e. Part (c) is left to the reader (Exercise 1 8) .  1 

3. 14 Proposition. If v1 , v2 are complex measures on (X, M), then l v1 + v2 l < 
l v1 l + l v2 l -

Proof. By Proposition 3 . 1 1  we can write Vj == fj dJ.-t, with the same f.-l, for 
j == 1 ,  2 .  But then d l v1 + v2 l == lf1 + f2 l dJ.-t < l f1 l dJ.-t + l f2 l dJ.-t == d lv1 l + d lv2 l - 1 

Exercises 

18. Prove Proposition 3 . 1 3c .  

19. If v, 1-l are complex measures and A is a positive measure, then v .1. J.-l iff I v i  .1. I J.-t l ,  
and v << A iff I v i  << A. 

20. If v is a complex measure on (X, M) and v(X) == l v i (X ) ,  then v == I v i .  

21. Let v be a complex measure on (X, M) . If E E M, define 

n n 
,U1 (E) = sup{L lv(Ej ) I : n E N, E1 , . . .  , En disjoint, E = U Ej } , 

1 1 
00 00 

,U2(E) = sup{L lv(Ej ) I : E1 , E2 , . . .  disjoint, E = U Ei } , 
1 1 

,U3 (E) = sup{ L f d,u : 1 ! 1 < 1 } ·  
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Then /-l1 == /-l2 == /-l3 == l v l . (First show that /-l 1 < /-l2 < /-l3 · To see that /-l3 == I v i , 
let f == dv/dl v l and apply Proposition 3 . 1 3 .  To see that /-l3 < J.-l1 , approximate f by 
simple functions.) 

3.4 DIFFERENTIATION O N  EUCLIDEAN SPAC E 

The Radon-Nikodym theorem provides an abstract notion of the "derivative" of a 
signed or complex measure v with respect to a measure 1-l· In this section we analyze 
more deeply the special case where (X , M) == (lRn , 23JRn )  and 1-l == m i s  Lebesgue 
measure . Here one can define a pointwise derivative of v with respect to m in the 
following way. Let B(r, x) be the open ball of radius r about x in lRn ; then one can 
consider the limit 

F(x) = lim 
v(B(r, x) ) 

r__. o m(B(r, x) ) 
when it exists . (One can also replace the balls B(r, x) by other sets which , in a 
suitable sense, shrink to x in a regular way ; we shall examine this point later.) If 
v << m, so that dv == f dm, then v(B(r, x) )/m(B(r, x) ) is simply the average value 
of f on B(r, x) ,  so one would hope that F == f m-a .e. This turns out to be the case 
provided that v ( B ( r, x) ) is finite for all r, x. From the point of view of the function 
f, this may be regarded as a generalization of the fundamental theorem of calculus : 
The derivative of the indefinite integral of f (namely, v) is f. 

For the remainder of this section, terms such as "integrable" and "almost every
where" refer to Lebesgue measure unless otherwise specified. We begin our analysis 
with a technical lemma that is of interest in its own right. 

3.15 Lemma. Let e be a collection of open balls in lRn, and let u == UBEe B. If 
c < m(U), there exist disjoint B1 ' . . .  ' Bk E e such that E� m(Bj )  > 3-nc. 

Proof. If c < m(U) , by Theorem 2 .40 there is a compact K c U with m(K) > 
c, and finitely many of the balls in e - say, A1 , . . .  , Am - cover K. Let B1 be the 
largest of the Aj 's (that is, choose B1 to have maximal radius), let B2 be the largest of 
the Aj 's that are disjoint from B1 , B3 the largest of the Aj 's that are disjoint from B1 
and B2 , and so on until the list of Aj 's is exhausted. According to this construction, 
if Ai is not one of the Bj 's , there is a j such that Ai n Bj =/= 0, and if j is the smallest 
integer with this property, the radius of Ai is at most that of Bj . Hence Ai c BJ , 
where BJ is the ball concentric with Bj whose radius i s  three times that of Bj .  But 
then K c U� BJ , so 

k k 
c < m(K) < L m(Bj ) == 3n L m(Bj ) · 

1 1 
I 

A measurable function f : lRn --4 C is called locally integrable (with respect to 
Lebesgue measure) if JK lf(x) l dx < oo for every bounded measurable set K c IRn . 
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We denote the space of locally integrable functions by Lfoc · If f E Lfoc ' x E IRn , 
and r > 0, we define Arf(x) to be the average value of f on B(r, x) : 

Arf(x) = (B� ) )  { f(y) dy. m r, X j B(r,x) 

3.16 Lemma. Iff E Lfoc' Arf(x) isjointly continuous in r and x (r > 0, x E 1Rn). 
Proof From the results in §2.7 we know that m(B(r, x) ) == ern where c == 

m(B(l , 0) ) , and m (S (r, x)) == 0 where S (r, x) == {y : I Y - x l == r } .  Moreover, 
as r ----t ro and x ----t xo , XB(r,x) ----t XB(ro ,xo )  pointwise on lRn \ S(ro , xo ) . Hence 
XB (r ,x ) ----t XB(ro ,xo )  a.e . , and iXB(r,x) l < XB(ro+ l , xo )  ifr < ro + � and l x-,xo l < � 
By the dominated convergence theorem, it follows that J B( r,x) f (y) dy is continuous 
in r and x, and hence so is Arf(x) == c- l r-n JB (r,x )  f(y) dy. 1 

Next, if f E Lfoc ' we define its Hardy-Littlewood maximal function H f by 

HJ(x) = sup Ar lf i (x) = sup (Bt ) )  { i f (y) i dy . 
r>O r>O m r, X J B(r,x) 

H f is measurable, for (H f)- 1 ( (a, oo ) )  == Ur>O (Ar 1 ! 1 ) - 1 ( (a, oo ) )  is open for any 
a E IR, by Lemma 3 . 16. 

3.17 The Maximal Theorem. There is a constant C > 0 such that for all f E L1 

and all a > 0, 

m({x : HJ(x) > a}) < � J l f(x) l dx . 

Proof Let Ea == {x : HJ(x) > a} . For each x E Ea we can choose rx > 0 
such that Arx l f l (x) > a. The balls B (rx , x ) cover Ea , so by Lemma 3 . 1 5 ,  if 
c < m(Ea ) there exist x1 , . . .  , Xk E Ea such that the balls Bj == B(rxi ,  Xj )  are 
disjoint and E� m (Bj ) > 3-nc. But then 

Letting c ----t m( Ea ) ,  we obtain the desired result. I 
With this tool in hand, we now present three successively sharper versions of the 

fundamental differentiation theorem. In the proofs we shall use the notion of limit 
superior for real-valued functions of a real variable, 

lim sup ¢(r) == lim sup ¢(r) == inf sup ¢(r) , 
r�R c�o O< l r-RI < c c>O O< lr- RI <c 

and the easi ly verified fact that 

lim ¢(r) == c iff lim sup l ¢(r) - cl == 0. 
r�R r� R 
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3. 18 Theorem. Iff E Lfoc' then limr__.o Arf(x) == f(x) for a.e. x E lRn. 

Proof. It suffices to show that for N E N, Ar f ( x) � f ( x) for a. e. x with 
l x l < N. But for l x l < N and r < 1 the values Arf(x) depend only on the values 
f(y) for I Y I  < N + 1 ,  so by replacing f with fXB(N+ l ,O ) we may assume that 
f E £1 . 

Given E > 0, by Theorem 2.4 1 we can find a continuous integrable function g 
such that J lg(y) - f(y) l dy < E. Continuity of g implies that for every x E lRn and 
8 > 0 there exists r > 0 such that l g (y) - g (x) l < 8 whenever I Y - x l < r, and 
hence 

I Arg(x) - g (x) J = (B� ) ) r [g (y) - g(x)] dy < 8. m r, X j B(r,x ) 

Therefore Arg (x) � g (x) as r � 0 for every x, so 

lim sup I Arf(x) - f(x) l r__.Q 

Hence, if 

= lim sup jAr (f - g) (x) + (Arg - g) (x) + (g - f) (x) j r__.Q 
< H(f - g) (x) + 0 + If - g l (x) . 

Ea = { x :  lim sup IArf(x) - f(x) l > a} , r__.o Fa == {x : I f - g l (x) > a } , 

we have 
Ea C Fa/2 U {X :  H(f - g) (x) > a/2 } .  

But (a/2)m(Fa;2 ) < JFa;2 l f(x) - g(x) l dx < E, so by the maximal theorem, 

(E ) 2E 2CE m a < - + . 
Q Q 

Since E is arbitrary, m(Ea ) == 0 for all a > 0. But limr__.o Arf(x) == f(x) for all 
X t/:. u� El/n ' so we are done. I 

This result can be rephrased as follows : If f E Lfoc ' 

(3 . 1 9) lim (B� ) )  r [f (y) - f(x) ] dy == 0 for a.e. X. r__.Q m r, X J B(r,x ) 

Actually, something stronger is true : (3 . 19) remains valid if one replaces the integrand 
by its absolute value . That is, let us define the Lebesgue set L f of f to be 

Lt == {x :  lim (B� ) )  { I J (y) - f(x) l dy == o } . r__.Q m r, X J B(r,x ) 



98 SIGNED MEASURES AND DIFFERENTIATION 

3.20 Theorem. Iff E Lfoc ' then m((LJ ) c ) == 0. 

Proof. For each c E CC we can apply Theorem 3 . 1 8  to 9c (x) == l f (x) - c l to 
conclude that, except on a Lebesgue null set Ec, we have 

. 1 j hm (
B

( ) )  l f(y) - c l dy == I J (x) - cl . r__.O m r, x B(r,x ) 

Let D be a countable dense subset of CC, and let E == UcED Ec . Then m(E) == 0, 
and if x � E, for any E > 0 we can choose c E D with l f (x) - c l < E, so that 
l f (y) - f (x) l < l f (y) - c l + E, and it follows that 

lim sup (
B
t ) ) r l f (y) - f(x) l dy < I J(x) - c l + E < 2E .  

r__.O m r, X J B(r, x ) 

Since E is arbitrary, the desired result follows. I 

Finally, we consider families of sets more general than balls . A family { Er } r>O 
of Borel subsets of 1Rn is said to shrink nicely to x E IRn if 

• Er C B(r, x) for each r; 

• there is a constant a > 0, independent of r, such that m( Er ) > am
( 
B ( r, x) ) .  

The sets Er need not contain x itself. For example, if U is any Borel subset of 
B

(
l ,  0) such that m(U) > 0, and Er == {x + ry : y E U} , then {Er} shrinks nicely 

to x. Here, then, is the final version of the differentiation theorem. 

3.21 The Lebesgue Differentiation Theorem. Suppose f E Lfoc· For every x in 
the Lebesgue set off - in particular, for almost every x - we have 

lim (� ) r l f (y) - f(x) l dy = 0 and lim (� ) r f(y) dy = f(x) r__.O m r j Er r__.O m r j Er 
for every family { Er }r>O that shrinks nicely to x. 

Proof. For some a > 0 we have 

(� ) r i f(y) - f(x) i dy < (� ) r i f(y) - f(x) l dy m r }Er m r jB(r,x ) 

< (;( ) ) r l f(y) - f(x) l dy. am r, X } B(r,x) 

The first equali ty therefore follows from Theorem 3 .20, and one sees immediately 
that it implies the second one by writing the latter in the form (3 . 1 9) .  1 
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We now return to the study of measures . A Borel measure v on JR.n will be called 
regular i f  

• v (K ) < oo for every compact K; 

• v(E) == inf{v (U) : U open, E C U} for every E E 23JRn . 

(Condition (ii) is actually implied by condition (i) . For n = 1 this follows from 
Theorems 1 . 1 6 and 1 . 1 8 , and we shal l prove it for arbitrary n in §7 .2. For the time 
being, we assume (ii) explicitly. ) We observe that by (i), every regular measure is 
a-finite. A signed or complex Borel measure v will be called regular if I v I is regular. 

For example, if f E L + (lRn ) ,  the measure f dm is regular iff f E Lfoc . Indeed, 
the condition f E Lfoc is clearly equivalent to (i). If this holds, (ii) may be verified 
directly as fol lows . Suppose that E is a bounded Borel set. Given 8 > 0, by 
Theorem 2.40 there is a bounded open U � E such that m(U) < m(E) + 8 and 
hence m (U \ E) < 8 .  But then, given E > 0, by Corollary 3 .6  there is an open 
U � E such that fu\E f dm < E and hence fu f dm < JE f dm + E. The case 
of unbounded E follows easily by writing E == U� E1 where E1 is bounded and 
finding an open uj � Ej such that fu · \E ·  f dm < E2-j . 

J J 

3.22 Theorem. Let v be a regular signed or complex Borel measure on JR.n, and let 
dv == dA + f dm be its Lebesgue-Radon-Nikodym representation. Then for m-almost 
every x E JR.n, 

. v(Er ) hm (E )  = f(x) r�o m r 
for every family { Er }r>O that shrinks nicely to x. 

Proof. It is easily verified that dl v l == di A l + I f I dJ.-t, so the regularity of v implies 
the regularity of both A and f dm (Exercise 26). In particular, f E Lfoc ' so in view of 
Theorem 3 .2 1 ,  it suffices to show that if A is regular and A ..l m, then for m-al most 
every x, A (Er ) /m(Er ) --4 0 as r --4 0 when Er shrinks nicely to x. It also suffices 
to take Er == B(r, x) and to assume that A is positive, since for some a > 0 we have 

A (Er ) I A I (Er ) I A I (B(r, x) ) I A I (B (r, x) ) 
< < < . m(Er ) - m(Er ) - m(Er ) - am(B(r, x) ) 

Assuming A > 0, then, let A be a Borel set such that A (A) == m(Ac ) == 0, and let { . A (B(r, x) ) 1 } Fk = x E A : ln::_:�p m(B(r, x) ) > k . 

We shal l show that m( Fk ) == 0 for all k, and this will complete the proof. 
The argument is similar to the proof of the maximal theorem. By regularity of 

A, given E > 0 there is an open uf. � A such that A (Uf. )  < E. Each X E Fk is 
the center of a ball Bx c Uf. such that A (Bx ) > k- 1m(Bx ) · By Lemma 3 . 15 ,  if 
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V:: == UxEFk Bx and c < m(V:: ) there exist x1 , . . .  , XJ such that Bx1 , • • •  , BxJ are 
disjoint and 

J J 
c < 3n L m(Bxj ) < 3nk L A (Bxj ) < 3nkA(V:: ) < 3nkA(U€ )  < 3nkE. 

1 1 

We conclude that m (V€ )  < 3nkE, and since Fk c Vc and E i s  arbitrary, m(Fk )  == 0. 1 

Exercises 

22. If f E L1 (1Rn ) , f =/= 0, there exist C, R > 0 such that HJ(x) > C �x l - n for 
l x l  > R. Hence m( { x : H f(x) > a } ) > C' /a when a is small, so the estimate in 
the maximal theorem is essentially sharp. 

23. A useful variant of the Hardy-Littlewood maximal function is 

H* f(x) = sup { 
mtB) L i f (y) j  dy : B i s  a ball and x E B } . 

Show that HJ < H* f  < 2nHf . 

24. If f E Lfoc and f is continuous at x, then x is in the Lebesgue set of f. 
25. If E is a Borel set in lRn, the density DE ( x) of E at x is defined as 

whenever the limit exists .  

DE (x) = lim 
m (E n B(r, x ) ) ' 

r� o m(B(r, x) ) 

a. Show that DE (x ) = 1 for a.e . x E E and DE (x) == 0 for a.e . x E Ec . 
b. Find examples of E and x such that DE (x ) i s  a given number a E (0 ,  1 ) ,  or 
such that DE ( x) does not exist. 

26. If A and 1-l are positive, mutual ly singular Borel measures on lRn and A + 1-l is 
regular, then so are A and 1-l· 

3.5 FUNCTIONS OF BOUN DED VARIATION 

The theorems of the preceding section apply in particular on the real l ine, where, 
because of the correspondence between regular Borel measures and increasing func
tions that we established in § 1 .5 ,  they yield results about differentiation and inte
gration of functions . As in § 1 .5 ,  we adopt the notation that if F is an increasing, 
right continuous function on JR, /-lF is the Borel measure determined by the rela
tion J.-lF ( (a , b] ) == F(b) - F(a) . Also, throughout this section the term "almost 
everywhere" will always refer to Lebesgue measure. 

Our first result uses the Lebesgue differentiation theorem to prove the a.e. differ
entiabi lity of increasing functions .  
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3.23 Theorem. Let F : ffi. --4 ffi. be increasing, and let G( x) == F( x+ ) . 
a. The set of points at which F is discontinuous is countable. 
b. F and G are differentiable a. e. , and F' == G' a.e. 

Proof. Since F is increasing, the intervals (F(x-) ,  F(x+) )  (x E ffi.) are disjoint, 
and for l x l < N they lie in the interval (F(-N) , F(N) ) . Hence 

L [F(x+) - F(x-)] < F(N) - F(-N) < oo , l x i <N 
which implies that { x E ( -N, N) : F(x+) =/= F(x-) }  is countable. As this is true 
for all N, (a) is proved. 

Next, we observe that G is increasing and right continuous, and G == F except 
perhaps where F is discontinuous . Moreover, 

G(x + h) _ G(x) == { �c ( (x , x + h] )  �f h > 0, 
-�c ( (x + h , x] ) If h < 0, 

and the families { ( x-r, x] } and { ( x, x+r] } shrink nicely to x as r == I h i � 0. Thus, 
an application of Theorem 3 .22 to the measure �c (which is regular by Theorem 
1 . 1 8) shows that G' ( x) exists for a. e. x. To complete the proof, it remains to show 
that if H == G - F, then H' exists and equals zero a. e. 

Let { Xj } be an enurr1eration of the points at which H =I= 0. Then H(x1 ) > 0, 
and as above we have L:{i : l xi i <N} H(xj ) < oo for any N. Let 8i be the point 
mass at X_j and � == 2:1 H(x1 )81 .  Then � finite on compact sets by the preceding 
sentence, and hence � is regular by Theorems 1 . 1 6  and 1 . 1 8 ; also, � ..l m since 
m(E) == � (Ec ) == 0 where E == { Xj }1 .  But then 

H(x + h) - H(x) < H(x + h) + H(x) < 4,u ( (x - 2 l h l , x + 2 l h l ) ) 
h - l h l - 4 l h l ' 

which tends to zero as h --4 0 for a.e. x, by Theorem 3 .22. Thus H' == 0 a.e . ,  and we 
are done. 1 

As positive measures on ffi. are related to increasing functions, complex measures 
on ffi. are related to so-cal led functions of bounded variation. The definition of the 
latter concept is a bit technical , so some motivation may be appropriate . Intuitively, 
if F( t) represents the position of a particle moving along the real line at time t, the 
"total variation" of F over the interval [a, b] i s  the total distance traveled from time 
a to time b, as shown on an odometer. If F has a continuous derivative, this is just 
the integral of the "speed," J: I F' ( t) I dt . To define the total variation without any 
smoothness hypotheses on F requires a different approach; namely, one partitions 
[a , b] into subintervals [t1_ 1 , t1 ] and approximates F on each subinterval by the linear 
function whose graph joins (tj - 1 , F(t1_ 1 ) )  to (t1 , F(t1 ) ) , and then passes to a l imit. 

In making this precise, we begin with a slightly different point of view, taking 
a == -oo and considering the total variation as a function of b. To wit, if F : 1R � C 
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and x E JR, we define 

n 
Tp (x) = sup{_L I F(xj ) - F(xj- 1 ) 1 : n E N, - oo  < xo < · · · < Xn = x } ·  

1 
T F is called the total variation function of F. We observe that the sums in the 
definition of T F are made bigger if the additional subdivision points x 1 are added. 
Hence, if a < b, the definition of Tp (b) is unaffected if we assume that a is always 
one of the subdivision points . It follows that 

n (3 ·24) = sup {_L I F(xj )  - F(Xj- 1 ) 1 : n E N, a = Xo < · · · < Xn = b } ·  
1 

Thus Tp is an increasing function with values in [0 , oo] . IfTp (  oo ) == limx�oo Tp (x) 
is finite, we say that F i s  of bounded variation on JR, and we denote the space of all 
such F by BV. 

More generally, the supremum on the right of (3 .24) is called the total variation of 
F on [a, b] . It depends only on the values of F on [a , b] , so we may define BV( [a ,  b] )  
to be the set of al l functions on [a , b] whose total variation on [a , b] is finite . If 
F E  BV, the restriction of F to [a , b] is in BV( [a , b] ) for all a , b; indeed, its total 
variation on [a , b] is nothing but Tp (b) - Tp (a) . Conversely, if F E BV( [a , b] ) and 
we set F(x) == F(a) for x < a and F(x) == F(b) for x > b, then F E  BV. By this 
device the results that we shall prove for BV can also be applied to BV( [a ,  b] ) .  

3.25 Examples. 

a. If F : 1R � 1R i s  bounded and increasing, then F E BV (in fact, T F ( x) == 
F(x) - F(-oo)) . 

b. If F, G E BV and a ,  b E  CC, then aF + bG E BV. 
c .  If F is differentiable on 1R and F' i s  bounded, then F E BV ( [a , b] )  for 

- oo  < a < b < oo (by the mean value theorem) . 
d. If F(x) == sin x, then F E  BV( [a , b] ) for -oo < a < b < oo, but F f/:. BV. 
e. If F(x) == x sin (x- 1 ) for x =/= 0 and F(O) == 0, then F f/:. BV( [a , b] ) for 

a < 0 < b or a < 0 < b. 

The verification of these examples is left to the reader (Exercise 27) .  

3.26 Lemma. IfF E BV is real-valued, then Tp + F and Tp - F are increasing. 

Proof. If x < y and E > 0, choose xo < · · · < Xn == x such that 

n 
,L I F(xj ) - F(xj- 1 ) 1 > Tp (x) - E .  
1 
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Then E� IF (xj )  - F(xj- 1 ) I + IF(y) - F(x) I is an approximating sum for TF (y) ,  
and F(y) == [F (y) - F(x)] + F (x) , so 

n 
Tp (y) ± F(y) > L IF(xj ) + F(xj- 1 ) 1 

1 

+ IF(y) - F(x) l ± [F(y) - F(x)] ± F(x) 
> Tp (x) - E ± F(x) . 

Since E is arbitrary, Tp(y) ± F(y) > Tp (x) ± F(x) , as desired. 

3.27 Theorem. 

a. F E  BV iffRe F E BV and lm F E BV. 

I 

b. IfF : 1R � JR, then F E BV iff F is the difference of two bounded increasing 
functions; for F E BV these functions may be taken to be � (TF + F) and 
� (TF - F). 

c. If F  E BV, then F(x+) == limy�x F(y) and F(x-) == limy/x F(y) exist 
for all x E JR, as do F ( ±oo) == limy�±oo F(y ) . 

d. IfF E BV, the set of points at which F is discontinuous is countable. 
e. IfF E BV and G(x) == F(x+ ) , then F' and G' exist and are equal a. e. 

Proof. (a) is obvious. For (b), the "if" implication is easy (see Examples 3 .25a,b ) .  
To prove "only if," observe that by Lemma 3 .26, the equation F == � (TF + F) -
� (T F - F) expresses F as the difference of two increasing functions . Also, the 
inequalities 

Tp (y) ± F(y) > Tp (x) ± F(x) (y > x) 
imply that 

I F(y) - F (x) l < Tp (y) - Tp (x) < Tp (oo) - Tp (-oo) < oo, 
so that F, and hence Tp ± F, i s  bounded. Finally, (c) , (d), and (e) follow from (a) , 
(b), and Theorem 3 .23 . 1 

The representation F == � (TF + F) - � (TF - F) of a real -valued F E BV is 
called the Jordan decomposition of F , and � (TF + F) and � (TF - F) are called 
the positive and negative variations of F. Since x+ == max(x , 0) == � ( l x l + x) and 
x- == max(-x , 0) == � ( lx l - x) for x E JR, we have 

� (TF ± F) (x) 
n 

= sup{L[F(xj ) - F(xj_ i ) J ± : xo < · · · < Xn = x} ± �F(-oo) , 
1 

Theorem 3 .27(a,b) leads to the connection between BV and the space of complex 
Borel measures on JR. To make this precise, we introduce the space N BV (N for 
"normalized") defined by 

N BV == { F E BV : F is right continuous and F(-oo) == 0} . 
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We observe that ifF E BV, then the function G defined by G(x) == F(x+ ) -F(-oo) 
i s  in N BV and G' == F' a.e. (That G E BV follows easily from Theorem 3 .27(a,b) : 
if F is real and F == F1 - F2 where F1 , F2 are increasing, then G ( x) == F1 ( x+) -
[F2 (x+) + F(-oo )] , which is again the difference of two increasing functions .) 

3.28 Lemma. IfF E BV, then Tp (-oo) == 0. IfF is also right continuous, then 
so is Tp. 

Proof. If E > 0 and x E JR, choose xo < · · · < Xn == x so that 

n 
L IF(xi ) - F(xj- 1 ) 1 > Tp (x) - E . 
1 

From (3 .24) we see that Tp (x) - Tp (x0 ) > Tp (x) - E, and hence Tp(y) < E for 
y < xo . Thus Tp (-oo) == 0. 

Now suppose that F is right continuous . Given x E 1R and E > 0, let a == 

Tp (x+) -Tp (x) ,  and choose 8 > 0 so that I F (x + h) - F(x) l < E and Tp(x + h) 
T F ( x+) < E whenever 0 < h < 8. For any such h, by (3 .24) there exist xo < · · · < 
Xn == x + h such that 

n 

L IF(xj ) - F(xj -1 ) 1 > � [Tp (x + h) - Tp(x)] > �a , 
1 

and hence 
n 

L IF(xj ) - F (xj- 1 ) 1 > �a - IF(x1 ) - F(xo ) l  > �a - E .  
2 

Likewise, there exist x == to < · · · < tm == x1 such that I:� IF(tj ) - F(tj _ 1 ) 1 > 
�a, and hence 

a + E > Tp (x + h) - Tp (x) 
m n 

> L IF(ti ) - F(tj- 1 ) 1 + L IF(xj ) - F(xj- 1 ) 1 
1 2 3 > 2 a - E . 

Thus a < 4E, and since E is arbitrary, a == 0. I 

3.29 Theorem. If J.-l is a complex Borel measure on JR. and F(x) == J.-t ( (-oo, x] ), 
then F E N BV. Conversely, ifF E N BV, there is a unique complex Borel measure 
J.-lF such that F(x) == J.-lF ( (-oo, x] ) ;  moreover, 1 1-lF I == f.-lTp · 

Proof. If J.-l i s  a complex measure, we have J.-l == J.-tt - J.-t1 + i ( J.-tt - J.-t2 ) where the 
1-lT are finite measures. If pi± (x) == 1-lJ ( (-oo, x] ) ,  then pi± is increasing and right 
continuous, pj± (-oo) == 0, and pi± (oo) == 1-lJ (lR) < oo. By Theorem 3 .27(a,b), 
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the function F == F{ - F1- + i ( Fi - F2- ) is in N BV. Conversely, by Theorem 
3 .27 and Lemma 3 .28, any F E N BV can be written in this form with the F1± 
increasing and in N BV. Each F1± gives rise to a measure 1-LT according to Theorem 
1 . 1 6, so F(x) == J..LF ( (-oo, x] ) where f..LF == J..Lt - J..L1 + i (J..Lt - J..L2 ) . The proof that 
I J..LF I == f..LTp i s  outlined in Exercise 28 . 1 

The next obvious question is :  Which functions in N BV correspond to measures 
J..L such that J..L ..l m or J..L << m? One answer is the following: 

3.30 Proposition. IfF E N  BV, then F' E L1 (m). Moreover, f..LF ..l m iff F' == 0 
a. e. , and f..LF << m iff F(x) == Jx 00 F' (t) dt. 

Proof. We have merely to observe that F' (x) == limr�o J..Lp (Er )/m(Er ) where 
Er == (x ,  x + r] or (x - r, x] and apply Theorem 3 .22 . (The measure f..LF is 
automatically regular by Theorem 1 . 1 8 .) 1 

The condition J..L F << m can also be expressed directly in terms of F, as follows. 
A function F : JR --4 C is called absolutely continuous if for every E > 0 there exists 8 > 0 such that for any finite set of disjoint intervals ( a1 , b1 ) ,  . . . , (aN , b N ) ,  

N 
(3 .3 1 )  L IF(bj ) - F(aj ) l  < E . 

1 

More generally, F is said to be absolutely continuous on [a , b] if this condition is 
satisfied whenever the intervals ( a1 , b1 ) all l ie in [a , b] . Clearly, if F is absolutely 
continuous , then F is uniformly continuous (take N == 1 in (3 .3 1 )) .  On the other 
hand, if F is everywhere differentiable and F' is bounded, then F is absolutely 
continuous, for I F(bj ) - F(a1 ) 1 < (max IF' I ) (bj - aj ) by the mean value theorem. 

3.32 Proposition. IfF E N BV, then F is absolutely continuous iff f..LF << m. 

Proof. If f..LF << m, the absolute continuity of F follows by applying Theorem 
3 .5 to the sets E == U� ( a1 , b1 ] .  To prove the converse, suppose that E is a Borel set 
such that m( E) == 0. If E and 8 are as in the definition of absolute continuity of F, 
by Theorem 1 . 1 8  we can find open sets U1 � U2 � · · · � E such that m(U1 ) < 8 
(and thus J..L (U1 )  < 8 for all j) and J..Lp (U1 )  --4 J..LF (E) . Each U1 is a disjoint union of 
open intervals (a j ,  bj ) ,  and 

N N 

L!J..LF ( (aj , bj ) ) I < L IF (bj ) - F(aj ) l < E 
k=1 k=1 

for al l N. Letting N --4 oo, we obtain I J..LF (Uj )  I < E and hence I J..LF (E) I < E. S ince 
E is arbitrary, J..LF (E) == 0, which shows that f..LF << m. 1 

3.33 Corollary. If f E L1 (m), then the function F(x) == Jx 00 f(t) dt is in N BV 
and is absolutely continuous, and f == F' a. e. Conversely, ifF E N BV is absolutely 
continuous, then F' E £1 ( m) and F ( x) == Jx 00 F' ( t) dt. 

Proof. This follows immediately from Propositions 3 .30 and 3 .32. I 
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If we consider functions on bounded intervals, this result can be refined a bit. 

3.34 Lemma. IfF is absolutely continuous on [a, b] , then F E  BV( [a, b] ) .  
Proof. Let 8 be as in the definition of absolute continuity, corresponding to E == 1 ,  

and let N be the greatest integer less than 8- 1 (b - a) + 1 .  If a ==  xo < · · · < Xn == 
b, by inserting more subdivision points if necessary, we can collect the intervals 
(xi_ 1 , xi )  into at most N groups of consecutive intervals such that the sum of the 
lengths in each group is less than 8. The sum I: IF (xi ) - F (xi _ 1 ) I over each group 
is at most 1 ,  and hence the total variation of F on [a , b] is at most N. 1 

3.35 The Fundamental Theorem of Calculus for Lebesgue Integrals. If - oo  < 
a < b < oo and F : [a , b] --4 C, the following are equivalent: 

a. F is absolutely continuous on [a , b] . 
b. F(x) - F(a) == J: f (t) dtfor some f E L1 ( [a , b] , m ) . 
c. F is differentiable a.e. on [a , b] , F' E £1 ( [a, b] , m) , and F(x) - F(a) 

I: F' (t)dt. 
Proof. To prove that (a) implies (c), we may assume by subtracting a constant 

from F that F(a) == 0. If we set F(x) == 0 for x < a and F(x) == F(b) for x > b, 
then F E  N BV by Lemma 3 .34, so (c) follows from Corollary 3 .33 .  That (c) implies 
(b) is trivial .  Final ly, (b) implies (a) by setting f ( t) == 0 for t tt [a , b] and applying 
Corollary 3 .33 .  1 

The following decomposition of Borel measures on lRn is sometimes important. 
A complex Borel measure 1-l on lR.n is called discrete if there is a countable set 
{xi }  C lR.n and complex numbers Cj such that I: I Cj I < oo and 1-l == I: Cj 8x j ,  where 
8x is the point mass at x. On the other hand, 1-l is called continuous if J.-t(  { x} ) == 0 for 
al l x E JRn . Any complex measure 1-l can be written uniquely as 1-l == /-ld + 1-lc where 
/-ld is discrete and /-lc is continuous . Indeed, let E == { x : 1-l ( { x}) =/= 0} . For any 
countable subset F of E the series L:xEF J.-t(  { x} ) converges absolutely (to J.-t(  F)) , so 
{ x E E : IJ.-t( { x}) I > k- 1 } is finite for all k, and it follows that E itself is countable. 
Hence /-ld (A) == J.-t(A n E) is discrete and /-lc (A) == J.-t(A \ E) is continuous . 

Obviously, if 1-l is discrete, then 1-l ..l m; and if 1-l << m, then 1-l is continuous . 
Thus, by Theorem 3 .22, any (regular) complex Borel measure on lR.n can be written 
uniquely as 

J.-l = /-ld + /-lac + /-lsc 
where /-ld is discrete, /-lac is absolutely continuous with respect to m, and 1-lsc is a 
"singular continuous" measure, that is, /-lsc is continuous but /-lsc ..l m. 

The existence of nonzero singular continuous measures in JRn is evident enough 
when n > 1 ;  the surface measure on the unit sphere discussed in §2. 7 is one example. 
Their existence when n == 1 is not quite so obvious ; they correspond via Theorem 
3 .29 to nonconstant functions F E N BV such that F is continuous but F' == 0 
a. e. One such function is the Cantor function constructed in § 1 .5 (extended to JR. by 
setting F(x) == 0 for x < 0 and F(x) == 1 for x > 1) .  More surprisingly, there exist 
strictly increasing continuous functions F such that F' == 0 a.e. ; see Exercise 40. 
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If F E N BV, it is customary to denote the integral of a function g with respect 
to the measure /-lF by J g dF or J g(x) dF(x) ; such integrals are called Lebesgue
Stieltjes integrals. We conclude by presenting an integration-by-parts formula for 
Lebesgue-Stieltjes integrals; other variants of this result can be found in Exercises 
34 and 35 . 

3.36 Theorem. IfF and G are in N BV and at least one of them is continuous, then 
for -oo < a < b < oo, 

{ F dG + { G dF = F(b)G(b) - F(a)G(a) . 
�(a ,� �(a ,� 

Proof. F and G are linear combinations of increasing functions in N BV by 
Theorem 3 .27(a,b), so a simple calculation shows that it suffices to assume F and 
G increasing. Suppose for the sake of definiteness that G is continuous , and let 
n = { (x , y) : a < X <  y < b} . We use Fubini 's theorem to compute /-lF X J.-tc (O) 
in two ways : 

1-LF X P,a (O) = r r dF(x) dG(x) = r [F(y) - F(a) ] dG(y) 
�(a ,b] �(a ,y] �(a , b] 

== { F dG - F(a) [G(b) - G(a) ] ,  
�(a, b] 

and since G(x) == G(x-) ,  

1-LF X P,a (O) = r r dG(y) dF(x) = r [G(b) - G(x) ] dF(x) 
�(a ,b] }[x , b] J(a ,b] 

== G(b) [F (b) - F(a)] - { G dF. 
�(a ,b] 

Subtracting these two equations, we obtain the desired result. 

Exercises 

27. Verify the assertions in Examples 3 .25 . 

I 

28. If F E NBV , let G(x) == 1 1-lF I ( (-oo, x] ) .  Prove that 1 1-lF I == f.-lTp by showing 
that G == T F via the following steps . 

a. From the definition of Tp, Tp < G. 
b. I J.-tF (E) I < /-lTp (E) when E is an interval, and hence when E is a  Borel set. 
c. 1 1-lF I < f.-lTp , and hence G < T F · (Use Exercise 2 1 . ) 

29. If F E N BV is real-valued, then J.-tt == J.-lP and J.-l F == J.-lN where P and N are 
the positive and negative variations of F. (Use Exercise 28 . ) 

30. Construct an increasing function on JR. whose set of discontinuities is Q. 
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31. Let F(x)  == x2 sin(x-1 ) and G(x) == x2 sin(x-2 ) for x =f. 0, and F(O) 
G(O) == 0. 

a. F and G are differentiable everywhere ( including x == 0) . 
b. F E  BV( [- 1 ,  1 ] ) ,  but G � BV( [-1 ,  1 ] ) .  

32. If F1 , F2 , . . . , F E N BV and Fi -t F pointwise, then T F < lim inf T p1 • 

33. If F is increasing on JR, then F( b) - F( a) > J: F' ( t) dt . 

34. Suppose F, G E N BV and -oo < a < b < oo .  

a. By adapting the proof of Theorem 3 .36, show that 1 F(x) + F(x-)  
dG(x) + 

1 G(x) + G(x-)  
dF(x) 

[a , b] 2 [a , b] 2 

== F(b)G(b) - F(a-)G(a-) .  

b. If there are no points in [a , b] where F and G are both discontinuous, then 

1 F dG + { G dF = F(b)G(b) - F(a-)G(a- ) .  
[a , b] J[a , b] 

35. If F and G are absolutely continuous on [a, b] , then so is  FG, and 

1b 
(FG' + GF' ) (x) dx = F(b)G(b) - F(a)G(a) . 

36. Let G be a continuous increasing function on [a , b] and let G( a) == c, G( b) == d. 
a. If E c [ c, d] is a Borel set, then m ( E) == /-lG ( c- 1 (E) ) .  (First consider the 
case where E is an interval . ) 
b. If f is a Borel measurable and integrable function on [ c ,  d] , then fed f (y) dy == 
J: f(G(x) ) dG(x) . In particular, fed f(y) dy == J: f(G(x) )G' (x) dx if G is 
absolutely continuous . 
c. The validity of (b) may fail if G is merely right continuous rather than 
continuous . 

37. Suppose F : 1R -t C. There is a constant M such that iF (x) - F(y) j < Mlx - y l  
for all x ,  y E 1R (that is, F i s  Lipschitz continuous) iff F is absolutely continuous 
and IF' I < M a.e. 

38. If f : [a , b] --+ JR, consider the graph of f as a subset of C, namely, { t + if (t) : 
t E [a , b] } .  The length L of this graph is by definition the supremum of the lengths 
of all inscribed polygons .  (An "inscribed polygon" is the union of the line segments 
joining tj- 1 + ij(tj- 1 ) to tj + if(ti ) ,  1 < j < n, where a ==  to < · · · < tn == b.) 

a. Let F(t) == t + if (t) ; then L is the total variation of F on [a , b] . 
b. If f is absolutely continuous , L == J: [1 + f' (t) 2 ] 11 2 dt . 

39. If { Fi } is a sequence of nonnegative increasing functions on [a , b] such that 
F(x) == 2::� Fj (x) < oo for all x E [a, b] , then F' (x) == 2::� Fj (x) for a.e. 
x E [a, b] . (It suffices to assume Fi E N BV. Consider the measures 1-l p1 • ) 
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40. Let F denote the Cantor function on (0 , 1 ] (see § 1 .5), and set F( x) = 0 for x < 0 
and F(x) = 1 for x > 1 .  Let { [an , bn ] }  be an enumeration of the closed subintervals 
of (0 , 1 ] with rational endpoints ,  and let Fn (x) = F((x - an )/ (bn - an ) ) .  Then 
G = I:� 2-n Fn is continuous and strictly increasing on [0 , 1] , and G' = 0 a. e. 
(Use Exercise 39.) 

41. Let A c [0 , 1 ] be a Borel set such that 0 < m(A n I) < m(I) for every 
subinterval I of [0,  1] (Exercise 33 ,  Chapter 1 ) .  

a. Let F(x) == m( [O , x] n A) . Then F i s  absolutely continuous and strictly 
increasing on [0, 1] , but F' == 0 on a set of positive measure . 
b. Let G(x) = m( [O , x] n A) - m( [O, x] \ A) . Then G is absolutely continuous 
on [0 , 1 ] , but G is not monotone on any subinterval of [0 , 1 ] . 

42. A function F : (a , b) --7 }R ( -oo < a < b < oo) is called convex if 

F(As + ( 1 - A)t) < AF(s) + ( 1 - A)F(t) 
for all s, t E (a, b) and A E (0, 1 ) . (Geometrically, this says that the graph of F 
over the interval from s to t lies underneath the line segment joining ( s, F( s) ) to 
(t , F(t) ) . ) 

a. F is convex iff for all s, t ,  s' , t' E (a, b) such that s < s' < t' and s < t < t' , 
F(t) - F(s) F(t' ) - F(s' ) 
-------- < . t - s t' - s' 

b. F is convex iff F is absolutely continuous on every compact subinterval of 
(a , b) and F' is increasing (on the set where it is defined) . 
c. If F is convex and t0 E (a , b) , there exists (3 E 1R such that F( t) - F( to ) > 
{3( t - to ) for all t E (a, b) . 
d. (Jensen's Inequality) If (X, M, J.-t) is a measure space with J.-t(X) = 1 ,  
g : X --7 (a , b) i s  i n  £1 (J.-t ) , and F is convex on (a, b) , then 

(Let t0 = J g dJ.-t and t == g ( x) in (c), and integrate.) 

3.6 NOTES AN D REFERENCES 

§3 .2 :  The Lebesgue-Radon-Nikodym theorem was proved by Lebesgue [92] in 
the case where 1-l is Lebesgue measure on JRn . Under the hypothesis v << f.-l, it 
was generalized by Radon [ 1 1 1 ] to arbitrary regular Borel measures on IRn and by 
Nikodym [ 107] to measures on abstract spaces . The Lebesgue decomposition in the 
abstract setting appears in Saks [ 1 28] . The proof of the Lebesgue-Radon-Nikodym 
theorem in the text is similar to, but more efficient than, the one in Halmos [62] ; I 
learned it from L. Loomis. 
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§3 . 3 : The characterization 

n n 

/ v / (E) = sup {L /v(EJ ) / : n E N, E1 , . . .  , En disjoint, E = U Ej } 
1 1 

of the total variation of a complex measure v (see Exercise 2 1 )  is usually taken as 
the definition of I v i .  Our definition seems more generally useful , and it is certainly 
easier to compute with. 

§3 .4: Theorems 3 .2 1  and 3 .22 are due to Lebesgue [92] , but the l ine of argument 
we have presented is essentially that of Wiener [ 1 6 1 ] ,  and the maximal function H f, 
in dimension one, was first studied in Hardy and Littlewood [65 ] .  Our proof of 
Theorem 3 . 1 8  is il lustrative of a general technique that has been much exploited in 
recent years, namely, controlling the limiting behavior of a family of operators by 
means of estimates on an appropriate maximal function . 

Lemma 3 . 15 ,  a simplified version of Wiener's covering lemma, is taken from 
Rudin [ 1 25 ] .  There is also an older and more delicate covering theorem, due to 
Vitali ,  which is used for similar purposes : 

If E c JRn and Q is a family of cubes such that each x E E is contained in 
members of Q of arbitrarily small diameter, then there is a (finite or infinite) 
disjoint sequence { Q1 } c Q such that m(E \ U1 Q1 ) == 0. 

Proofs can be found in many books , for example, Cohn [27, §6.2] , Falconer [39, 
§ 1 .3 ] ,  and Hewitt and Stromberg [76, § 17] . 

§3 .5 : The main results of this section are due to Lebesgue and Vitali ;  see Hawkins 
[70] for detailed references . Exercise 36 gives one form of the change-of-variable 
formula for Lebesgue integrals ;  others can be found in Serrin and Varberg [ 1 33 ] . 
Exercise 39 is a theorem of Fubini, and the example in Exercise 40 is due to Brown 
[2 1 ] .  

The Stieltjes integral I: g dF was originally defined, under the hypothesis that F i s  
an increasing function on [a , b] , as a limit of Riemann sums E g(t1 ) [F(t1 )  -F( t1_ 1 ) ] . 
The theory of such "Riemann-Stieltjes" integrals is much like that of the ordinary 
Riemann integral , but some care is needed to handle cases where g and F are both 
allowed to be discontinuous . See ter Horst [ 1 48] ,  which contains the analogue of 
Theorem 2.28 for Stieltjes integrals .  

The example of the Cantor function shows that a continuous, a.e . -differentiable 
function need not be the integral of its derivative. It is a highly nontrivial theorem 
that if F is continuous on [a, b] , F' ( x)  exists for every x E [a , b] \ A where A is 
countable, and F' E £1 , then F is absolutely continuous and hence can be recovered 
from F' by integration . A proof can be found in Cohn [27, §6 .3] ; see also Rudin 
[ 1 25 ,  Theorem 7 .26] for the somewhat easier case when A =  0.  

However, this i s  not the end of the story, for there exist everywhere differentiable 
functions F such that F' f/:. L1 . Perhaps the simplest example is F(x) = x2 sin (x- 2 ) 
(see Exercise 3 1 ) .  Here the only trouble is at x = 0, so for a < 0 < b one could 
consider I: F' ( t) dt as an improper integral, i .e . ,  the limit of Lebesgue integrals over 
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[a, b] \ [-E, E] as E --+ 0. However, it is not hard to construct examples in which 
the singularities of F' are so complicated that F' is not Lebesgue integrable on any 
interval . In this situation the Lebesgue integral is s imply insufficient. However, the 
Henstock-Kurzweil integral (or the Denjoy or Perron integral) that was discussed in 
§2.8 is powerful enough to integrate such F', and by using this integral one obtains 
the general fundamental theorem of calculus : If F is everywhere differentiable on 
[a, b] , then F (b) - F (a) == J: F' ( t) dt . 





Point Set Topology 

The concepts of limit, convergence, and continuity are central to al l of analysis, and 
it is useful to have a general framework for studying them that includes the class ical 
manifestations as special cases . One such framework, which has the advantage of 
not requiring many ideas beyond those occurring in analysis on Euclidean space, is 
that of metric spaces . However, metric spaces are not sufficiently general to describe 
even some very classical modes of convergence, for example, pointwise convergence 
of functions on JR. A more flexible theory can be built by taking the open sets, rather 
than a metric , as the primitive data, and it is this theory that we shall explore in the 
present chapter. 

4.1  TOPO LOGICAL SPACES 

Let X be a nonempty set. A topology on X is a family 'J of subsets of X that 
contains 0 and X and is c losed under arbitrary unions and finite intersections ( i .e . ,  if 
{Ua }aEA c 'J then UaEA Ua E 'J, and if Ul , . . . ' Un E 'J then n� uj E 'J) . The 
pair (X, 'J) is called a topological space. If 'J is understood, we shall simply refer 
to the topological space X. Let us examine a few examples: 

• If X i s  any nonempty set, P(X) and {0, X} are topologies on X. They 
are called the discrete topology and the trivial (or indiscrete) topology, 
respectively. 

• If X is an infinite set, { U c X : U = 0 or uc is finite} is a topology on X, 
called the co finite topology . 

1 1 3 
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• If X i s  a metric space, the collection of all open sets with respect to the metric 
is a topology on X. 

• If (X, 'J)  i s  a topological space and Y c X, then 'J y == {U n Y : U E 'J} i s  
a topology on Y, called the relative topology induced by 'J.  

We now present the basic terminology concerning topological spaces . Most of 
these concepts are already famil iar in the context of metric spaces. Until further 
notice, (X, 'J) will be a fixed topological space . 

The members of 'J are called open sets, and their complements are called closed 
sets. If Y c X, the open (closed) subsets of Y in the relative topology are called 
relatively open (closed) . We observe that, by deMorgan 's laws, the family of closed 
sets is closed under arbitrary intersections and finite unions. 

If A c X, the union of all open sets contained in A is called the interior of A, 
and the intersection of al l closed sets containing A is called the closure of A. We 
denote the interior and closure of A by A 0 and A, respectively. Clearly A 0 is the 
largest open set contained in A and A is the smallest closed set containing A, and we 
have (Ao)c  == Ac and (A)c == (Ac ) o .  The difference A \  A0 == A n Ac is called the 
boundary of A and is denoted by 8A. If A == X, A is called dense in X. On the 
other hand, if (A) 0 == 0, A is called nowhere dense. 

If x E X (or E c X), a neighborhood of x (or E) is a set A c X such that 
x E A 0 (or E c A 0) .  Thus, a set A is open iff it is a neighborhood of itself. (Some 
authors require neighborhoods to be open sets ; we do not.) A point x is called an 
accumulation point of A if A n ( U \ { x} ) =/= 0 for every neighborhood U of x .  
(Other terms sometimes used for the same concept are "cluster point" and "l imit 
point." We shall use "cluster point" to mean something a bit different below.) 

4. 1 Proposition. If A C X, let ace (A) be the set of accumulation points of A. Then 
A ==  A U  acc (A), and A is closed iffacc (A) C A. 

Proof. If x tt A, then A c is a neighborhood of x that does not intersect A, so 
x � ace ( A) ; thus A U  acc (A) C A. If x � A U  ace( A) , there is an open U containing 
x such that U n A == 0, so that A c uc and x � A. Thus A c A U  ace ( A) . Finally, 
A is closed iff A ==  A, and this happens iff acc(A) c A. 1 

If 'J1 and 'J2 are topologies on X such that 'J1 c 'J2 , we say that 'J1 is weaker 
(or coarser) than 'J2 , or that 'J2 is stronger (or finer) than 'J1 . Clearly the trivial 
topology is the weakest topology on X, while the discrete topology is the strongest. If 
£ c P(X) ,  there is a unique weakest topology 'J (£ ) on X that contains £ ,  namely the 
intersection of all topologies on X containing £ .  It is called the topology generated 
by £ ,  and £ is sometimes called a subbase for 'J ( £ ) . 

If 'J is a topology on X, a neighborhood base for 'J at x E X is a family N c 'J 
such that 

• x E V for all V E N; 

• if U E 'J and x E U, there exists V E N such that x E V and V c U. 
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A base for 'J is a family 13 c 'J that contains a neighborhood base for 'J at each 
x E X. For example, if X is a metric space, the collection of open balls centered at 
x is a neighborhood base for the metric topology at x, and the collection of all open 
balls in X is a base . 

4.2 Proposition. /f'J is a topology on X and £ C 'J, then £ is a base for 'J iff every 
nonempty U E 'J is a union of members of£. 

Proof. If £ is a base, U E 'J, and x E U, there exists Vx E £ with x E Vx C U, 
so U == UxEU Vx . Conversely, if every nonempty U E 'J is a union of members of 
£ ,  then {V E £ : x E V} is clearly a neighborhood base at x, so £ is a base. 1 

4.3 Proposition. If£ C P(X), in order for £  to be a base for a topology on X it is 
necessary and sufficient that the following two conditions be satisfied: 

a. each x E X is contained in some V E £; 
b. if U, V E £ and x E U n V, there exists W E £ with x E W c (U n V) .  

Proof. The necessity i s  clear, since if U, V are open, then so is U n V. To prove 
the sufficiency, let 

'J == {U c X : for every x E U there exists V E £ with x E V c U } . 

Then X E 'J by condition (a) and 0 E 'J trivially, and 'J is obviously closed under 
unions. If ul ' u2 E 'J and X E ul n U2, there exist vl ' v2 E £ with X E vl c ul 
and x E V2 c U2 , and by condition (b) there exists W E £ with x E W C (V1 n V2 ) .  
Thus U1 n U2 E 'J,  so by induction 'J is closed under finite intersections. Therefore 
'J is a topology, and £ is clearly a base for 'J .  1 

4.4 Proposition. If£ C P(X), the topology 'J (£ )  generated by £ consists of0, X, 
and all unions of finite intersections of members of£. 

Proof. The family of finite intersections of sets in £, together with X, satisfies 
the conditions of Proposition 4.3 , so by Propostiion 4.2 the family of all unions of 
such sets, together with 0, is a topology. It is obviously contained in 'J ( £ ) ,  hence 
equal to 'J ( £)  . 1 

Note how the simplicity of this proposition contrasts with the corresponding result 
for a-algebras (Proposition 1 .23) . What makes life easier here is that only finite 
intersections are involved. 

The concept of topological space is general enough to include a great profusion 
of interesting examples, but - by the same token - too general to yield many 
interesting theorems. To build a reasonable theory one must usually restrict the class 
of spaces under consideration . The remainder of this section is devoted to a discussion 
of two types of restrictions that are commonly made, the so-called countabil ity and 
separation axioms. 
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A topological space (X, 'J) satisfies the first axiom of countability, or is first 
countable, if there is a countable neighborhood base for 'J at every point of X.  (It is 
useful to observe that if X is first countable, for every x E X there is a neighborhood 
base {Uj }1 at X such that uj � uj+l for all j .  Indeed, if {Vj }1 is any countable 
neighborhood base at X, we can take uj = n{ Vi .) The space (X, 'J) satisfies the 
second axiom of countability, or is second countable, if 'J has a countable base. 
Also, (X, 'J) is separable if X has a countable dense subset. Every metric space is 
first countable (the balls of rational radius about x are a neighborhood base at x), and 
a metric space is second countable iff it is separable (Exercise 5) .  The latter fact can 
be partly generalized : 

4.5 Proposition. Every second countable space is separable. 

Proof. If X is second countable, let £ be a countable base for the topology, 
and for each U E £ pick a point xu E U. Then the complement of the closure of 
{xu : U E £ }  is an open set that does not include any U E £ ; hence it is empty and 
{xu : U E £} is dense. 1 

A sequence { Xj } in a topological space X converges to x E X (in symbols :  
x j ----t x) if for every neighborhood U of x there exists J E N such that x j E U for all 
j > J .  First countable spaces have the pleasant property that such things as closure 
and continuity can be characterized in terms of sequential convergence - which is 
not the case in more general spaces, as we shall see. For example: 

4.6 Proposition. If X is first countable and A C X, then x E A iff there is a 
sequence { x j }  in A that converges to x. 

Proof. Let { Uj }  be a countable neighborhood base at x with Uj � Uj+l for all 
j .  If X E A, then Uj n A =I= 0 for all j .  Pick Xj E uj n A; since uk c uj for k > j 
and every neighborhood of x contains some Uj , it is clear that Xj ---+ x. On the other 
hand, if x f/:. A and { x j }  is any sequence in A, then (A) c is a neighborhood of x 
containing no Xj , so Xj ft x.  1 

Lastly, we discuss the separation axioms. These are properties of a topological 
space, labeled T0 , . . .  , T4 , that guarantee the existence of open sets that separate 
points or closed sets from each other. If X has the property Tj , we say that X is a Tj 
space or that the topology on X is Tj .  

To : If x =/= y, there is an open set containing x but not y or an open set containing 
y but not x.  

T1 : If x =/= y, there i s  an open set containing y but not x.  

T2 : If x =I y,  there are disjoint open sets U, V with x E U and y E V. 

T3 : X is a T1 space, and for any closed set A c X and any x E Ac there are 
disjoint open sets U, V with x E U and a c V. 
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T4 : X is a T1 space, and for any disjoint closed sets A, B in X there are disjoint 
open sets U, V with A c U and B c V. 

T2 , T3 , and T4 also have other names : A T2 space is a Hausdorff space, a T3 
space is a regular space, and a T4 space is a normal space. (Some authors do not 
require regular and normal spaces to be T1 . ) There is an additional useful separation 
condi tion, intermediate between T3 and T4 , that we shall discuss in §4.2. 

The following characterization of T1 spaces is useful . It shows in particular that 
every normal space is regular and that every regular space is Hausdorff. 

4.7 Proposition. X is a T1 space iff { x} is closed for every x E X. 

Proof. If X is T1 and x E X, for each y =/= x there is an open Uy containing y 
but not X �  thus {X }c == uy#x Uy is open and {X} is closed . Conversely, if {X} is 
closed, then { x} c is an open set containing every y =/= x. 1 

The vast majority of topological space that arise in practice (and, in particular, in 
this book) are Hausdorff, or become Hausdorff after simple modifications. (This last 
phrase refers to spaces such as the space of integrable functions on a measure space, 
which becomes a Hausdorff space with the £1 metric when we identify two functions 
that are equal a.e .) However, two classes of (usually) non-Hausdorff topologies 
are of sufficient importance to warrant special mention: the quotient topology on a 
space of equivalence classes, discussed in Exercises 28 and 29 (§4.2), and the Zariski 
topology on an algebraic variety. Without attempting to give the definition of an 
algebraic variety, we shall describe the Zariski topology on a vector space . 

Let k be a field, and let k ( X 1 ,  . . . , Xn) be the ring of polynomials in n variables 
over x .  Each P E k (X 1 ,  . . . , X n ) determines a polynomial map p : kn ----t k by 
substituting elements of k for the formal indeterminates X 1 ,  . . .  , X n . The corre
spondence P ---+ p is one-to-one precisely when k is infinite . The collection of all 
sets p- 1 ( {0}) in kn , as p ranges over all polynomial maps, is closed under finite 
unions, since p-1 ( {0} )  U q- 1 ( {0} )  == (pq) - 1 ( {0} ) ,  and it contains kn itself (take 
p == 0). Hence, by Propositions 4.2 and 4.3 , the collection of all sets of the form 
naEA Pa 1 ( {0} ) (pa being a polynomial map for each a) is the collection of closed 
sets for a topology on kn , called the Zariski topology . The Zariski topology is T1 
by Proposition 4.7 , for if a == ( a1 , . . .  , an ) E kn then {a} == n� pj 1 ( {0})  where 
pj (X1 , . . .  , Xn) == Xj - aj . If k is finite the Zariski topology is discrete, but if k is 
infinite the Zariski topology is not Hausdorff; in fact, any two nonempty open sets 
have nonempty intersection. This is just a restatement of the fact that k( X 1 , . . . , X n) 
is an integral domain, that is, if P and Q are nonzero polynomials, then PQ is 
nonzero. (For n == 1 ,  the Zariski topology is the cofinite topology.) 

Other examples illustrating the separation and countability axioms will be found 
in the exercises. 

Exercises 

1. If card (X) > 2, there is a topology on X that is To but not T1 . 
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2. If X is an infinite set, the co finite topology on X is T1 but not T2, and is first 
countable iff X is countable. 

3. Every metric space is normal . (If A, B are closed sets in the metric space (X, p), 
consider the sets of points x where p(x , A) < p(x , B) or p(x , A) > p(x ,  B) .) 

4. Let X = JR, and let 'J be the family of all subsets of 1R of the form U u (V n <Q) 
where U, V are open in the usual sense. Then 'J is a topology that is Hausdorff but 
not regular. (In view of Exercise 3 ,  this shows that a topology stronger than a normal 
topology need not be normal or even regular. ) 

5. Every separable metric space is second countable. 

6. Let £ = { (a, b] : -oo < a < b < oo} .  
a. £ is a base for a topology 'J on 1R in which the members of £ are both open 
and closed. 
b. 'J is first countable but not second countable. (If x E JR, every neighborhood 
base at x contains a set whose supremum is x. ) 
c. <Q is dense in 1R with respect to 'J. (Thus the converse of Proposition 4.5 is 
false .) 

7. If X is a topological space, a point x E X is called a cluster point of the 
sequence { Xj } if for every neighborhood U of x, Xj E U for infinitely many j .  If X 
is first countable, x is a cluster point of { Xj } iff some subsequence of { Xj } converges 
to x. 

8. If X is an infinite set with the co finite topology and { x j }  is a sequence of distinct 
points in X, then xi -+ x for every x E X. 
9. If X is a linearly ordered set, the topology 'J generated by the sets { x : x < a} 
and { x : x > a} (a E X) is called the order topology. 

a. If a, b E X and a < b, there exist U, V E 'J with a E U, b E V, and x < y 
for all x E U and y E V. The order topology is the weakest topology with this 
property. 
b. If Y c X, the order topology on Y is never stronger than, but may be weaker 
than, the relative topology on Y induced by the order topology on X. 
c. The order topology on 1R is the usual topology. 

10. A topological space X is called disconnected if there exist non empty open sets U, V such that U n V = 0 and U U V = X; otherwise X is connected. When we 
speak of connected or disconnected subsets of X, we refer to the relative topology 
on them. 

a. X is connected iff 0 and X are the only subsets of X that are both open and 
closed. 
b. If {Ea }aEA is a collection of connected subsets of X such that naEA Ea =I= 
0, then UaEA Ea is connected. 
c. If A c X is connected, then A is connected. 
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d. Every point x E X is contained in a unique maximal connected subset of X, 
and this subset is closed. (It is called the connected component of x.) 

1 1 . If E1 , . . .  , En are subsets of a topological space, the closure of U� Ei is U� Ei . 

12. Let X be a set. A Kuratowski closure operator on X is a map A � A* from 
P(X) to itself satisfying (i) 0* == 0, (ii) A c A* for all A, (ii i) (A* ) *  == A* for all 
A, and (iv) (A u B) * == A* u B* for all A, B. 

a. If X is a topological space, the map A � A is a Kuratowski closure operator. 
(Use Exercise 1 1 .) 
b. Conversely, given a Kuratowski closure operator, let � == {A c X : A == A* } 
and 'J == {U c X : uc E �} . Then 'J is a topology, and for any set A c X, A* 
is its closure with respect to 'J .  

13. If X is a topological space, U is open in X, and A i s dense in X, then U == U n A. 

4.2 CONTINUOUS MAPS 

Topological spaces are the natural setting for the concept of continuity, which can 
be described in either global or local terms as follows. Let X and Y be topological 
spaces and f a map from X to Y. Then f is called continuous if f-1 (V) is open 
in X for every open V C Y. (S ince f- 1 (Ac) == [f- 1 (A)] c , an equivalent condition 
is that f- 1 (A) i s closed in X for every closed A c Y.) If x E X, f is called 
continuous at x if for every neighborhood V of f ( x ) there is a neighborhood U of 
x such that f (U) c V, or equivalently, if f- 1 (V) i s a neighborhood of x for every 
neighborhood V of f ( x ) . Clearly, if f : X ---+ Y and g : Y ---+ Z are continuous (or 
f is continuous at x and g is continuous at f (x) ), then g o  f i s continuous (at x) . We 
shall denote the set of continuous maps from X to Y by C(X, Y) .  

4.8 Proposition. The map f : X ---+ Y is continuous iff f is continuous at every 
X E X. 

Proof. If f is continuous and V is a neighborhood of f(x) , f- 1 (V0)  is an open 
set containing x, so f is continuous at x. Conversely, suppose that f is continuous at 
each x E X. If V c Y is open, V is a neighborhood of each of its points, so f - 1 (V) 
is a neighborhood of each of its points . Thus f- 1 (V) is open, so f is continuous. 1 

4.9 Proposition. If the topology on Y is generated by a family of sets £, then 
f : X ----t Y is continuous iff f- 1 (V) is open in X for every V E £. 

Proof. This is clear from Proposition 4.4 and the fact that the set mapping /- 1 

commutes with unions and intersections. 1 
If f : X ---+ Y is bijective and f and f- 1 are both continuous, f is called a 

homeomorphism, and X and Y are said to be homeomorphic. In this case the 
set mapping f- 1 is a bijection from the open sets in Y to the open sets in X, so 
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X and Y may be considered identical as far as their topological properties go. If 
f : X ----t Y is injective but not surjective, and f : X ---+ f(X) is a homeomorphism 
when f (X) c Y is given the relative topology, f is called an embedding. 

If X is any set and {fa : X ----t Ya }aEA is a family of maps from X into some 
topological spaces Ya , there is a unique weakest topology 'J on X that makes all the 
fa continuous; it is called the weak topology generated by {fa }  a EA . Namely, 'J is 
the topology generated by sets of the form f;;1 (Ua )  where a E A and Ua is open in 
Ya . 

The most important example of this construction is the Cartesian product of 
topological spaces . If { Xa}aEA is any family of topological spaces, the product 
topology on X = TiaEA Xa is the weak topology generated by the coordinate 
maps 1r a : X ---+ X a .  When we consider a Cartesian product of topological spaces, 
we always endow it with the product topology unless we specify otherwise. By  
Proposition 4.4, a base for the product topology is given by the sets of the form 
n� 1r a} (U aj ) where n E N and U aj is open in Xaj for 1 < j < n. These sets 
can also be written as TiaEA Ua where Ua == Xa if a =/= a1 , . . .  , an . Notice, in 
particular, that if A is infinite, a product of nonempty open sets TiaEA U a is open in 
TiaEA X a iff Ua = X a for all but finitely many a. 

4.10 Proposition. If X a is Hausdorff for each a E A, then X 
Hausdorff. 

Proof. If x and y are distinct points of X, we must have 7ra (x) =/= 1ra (Y) for 
some a. Let U and V be disjoint neighborhoods of 7ra (x) and 7ra (Y) in Xa . Then 
1ra 1 (U) and 1ra 1 (V) are disjoint neighborhoods of x and y in X. 1 

4.1 1  Proposition. !fXa (a E A) andY are topological spaces andX == TiaEA Xa, 
then f : Y ---+ X is continuous iff 1r a o f is continuous for each a. 

Proof. If 1r a o f  is continuous for each a, then f- 1 ( 1r a 1 (U a ) )  is open in Y for 
each open Ua in X a .  By Proposition 4.9, f is continuous. The converse is obvious . 1 

If the spaces Xa are all equal to some fixed space X, the product TiaEA X a is just 
the set X A of mappings from A to X, and the product topology is j ust the topology 
of pointwise convergence. More precisely : 

4.12 Proposition. If X is a topological space, A is a nonempty set, and { f n } is a 
sequence in X A' then f n ---+ f in the product topology iff f n ---+ f pointwise. 

Proof. The sets 

k 
N(U1 , . . . , Uk )  == n7ra/ (Uj ) == {g E XA : g (aj ) E Uj for 1 < j < k } ,  

1 
where k E N and Uj is a neighborhood of f ( aj ) in X for each j, form a neighborhood 
base for the product topology at f. If f n ---+ f pointwise, then f n ( aj ) E Uj for 
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n > Nj and hence fn E N(U1 ,  . . .  , Uk ) for n > max(N1 , . . .  , Nk ) ;  therefore 
f n ---+ f in the product topology. Conversely, if f n ---+ f in the product topology, 
a E A, and U is a neighborhood of f (a) , then fn E N (U) == 1ra 

1 (U ) for large n ;  
hence f n (a) E U for large n, and so f n (a) ---+ f (a) . I 

We shall be particularly interested in real- and complex-valued functions on topo
logical spaces . If X is any set, we denote by B(X, IR) (resp. B(X, <C) ) the space 
of all bounded real- (resp. complex-) valued functions on X. If X is a topological 
space, we also have the spaces C(X, IR) and C(X, <C) of countinuous functions on 
X, and we define 

BC(X, F) == B(X, F) n C(X, F) (F == IR or <C) . 

In speaking of complex-valued functions we shall usual ly omit the <C and simply 
write B(X) ,  C(X) ,  and BC(X) . Since addition and multiplication are continuous 
from <C x <C to <C, C(X) and BC(X) are complex vector spaces .  

If f E B(X) ,  we define the uniform norm of f to be 

I I  f I I  u == sup { I f (X) I : X E X } . 

The function p(f, g) == I I ! - g l l u  i s  easily seen to be a metric on B(X) ,  and 
convergence with respect to this metric is simply uniform convergence on X. B (X)  
i s  obviously complete in the uniform metric : If { f n } is uniformly Cauchy, then 
{ f n ( x) } is Cauchy for each x, and if we set f ( x) == limn f n ( x) ,  it is easily verified 
that I I  f n - f l l u ---+ 0. 

4.13 Proposition. If X is a topological space, BC(X) is a closed subspace of 
B (X) in the unzform metric; in particular, BC(X) is complete. 

Proof. Suppose {fn } C BC(X) and l l fn - f l l u ---+ 0. Given E > 0, choose N 
so large that l l fn - f l l u  < E/3 for n > N. Given n > N and x E X, since fn is 
continuous at x there is a neighborhood U of x such that l fn (Y) - fn (x) l < E/3 for 
y E U. But then 

l f (y) - f(x) l < l f (y ) - fn (Y) I + l fn (Y) - fn (x) l + l fn (x) - f (x) l < E ,  

so f i s  continuous at x. By  Proposition 4.8, f i s  continuous . I 
For a given topological space X it may happen that C(X) consists only of constant 

functions .  This is obviously the case, for example, if X has the trivial topology, but 
it can happen even when X is regular. Normal spaces, however, always have plenty 
of continuous functions, as the following fundamental theorems show. 

4.14 Lemma. Suppose that A and B are disjoint closed subsets of the normal space 
X, and let � == {k2-n : n > 1 and 0 < k < 2n } be the set of dyadic rational 
numbers in (0 ,  1 ) .  There is a family {Ur : r E �} of open sets in X such that 
A C Ur C Be for all r E � and Ur C Us for r < s. 



122 POINT SET TOPOLOGY 

Proof. By normality, there exist disjoint open sets V, W such that A c V, 
B c W. Let U1;2 == V.  Then since we i s closed, 

A c U1;2 c U 112 c we c Be . 

We now select Ur for r == k2-n by induction on n. Suppose that we have chosen Ur 
for r == k2-n when 0 < k < 2n and n < N - 1 .  To find Ur for r == (2j + 1 ) 2-N 
(0 < j < 2N- 1 ), observe that Uj21 -N and (U(j+ l ) 21 -N )e are disjoint closed sets 
(where we set U o == A and Uf_ == B), so as above we can choose an open Ur with 

These Ur 's clearly have the desired properties. I 

4.15 Urysohn's Lemma. Let X be a normal space. If A and B are disjoint closed 
sets in X, there exists f E C(X, [0 , 1 ] ) such that f == 0 on A and f == 1 on B. 

Proof. Let Ur be as in Lemma 4. 14 for r E �' and set u1 == X. For X E X' 
define f (x) == inf { r : x E Ur } .  Since A C Ur C Be for 0 < r < 1 , we clearly have 
f (x ) == O for x E A and f (x) == 1 for x E B, and O < f (x) < 1 for all x E X . It 
remains to show that f is continuous . To this end, observe that f ( x) < a iff x E Ur 
for some r < a iff x E Ur<a Ur , so f-1 ( (-oo , a) )  == Ur<a Ur i s  open. Also 
f (x) > a iff x f/:. Ur for some r > a iff x f/:. Us for some s > a (since Us C Ur for 
s < r) iff x E Us>a (Us ) e , so f-1 ( (a , oo ) )  == Us>a (Us ) e is open . Since the open 
half-lines generate the topology on JR, f is continuous by Proposition 4.9. 1 

The proof of Urysohn 's lemma may seem somewhat opaque at first, but there is a 
simple geometric intuition behind it. If one pictures X as the plane JR2 and the sets 
Ur as regions bounded by curves, the curves aur form a "topographic map" of the 
function f .  
4.16 The Tietze Extension Theorem. Let X be a normal space. If A is a closed 
subset of X and f E C(A, [a, b] ), there exists F E C(X, [a , b] ) such that P IA ==  f. 

Proof. Replacing f by (f - a) / (b - a) , we may assume that [a, b] == [0 , 1] . 
We claim that there is a sequence {gn } of continuous functions on X such that 
0 < 9n < 2n- 1 /3n on X and 0 < f - 2:� 9j < (2/3)n on A. To begin with, let 
B == f-1 ( [0 , 1/3] )  and C == f- 1 ( [2/3 , 1 ] ) .  These are closed subsets of A, and since 
A itself is closed, they are closed in X. By Urysohn 's lemma there is a continuous 
91 : X ----t [0 , 1 /3] with g1 == 0 on B and 91 == 1 /3 on C; it follows that 0 < 
f - 91 < 2/3 on A. Having found 91 , . . .  , 9n- 1 , by the same reasoning we can find 
9n : X � [0 , 2n- l /3n] such that 9n == 0 on the set where f - 2:�-1 9j < 2n-1 /3n 
and 9n == 2n- 1 /3n on the set where f - 2:�-1 9j > (2/3)n . Let F == 2:� 9n · 
Since l l 9n l l u < 2n- 1 /3n, the partial sums of this series converge uniformly, so F i s  
continuous by Proposition 4. 1 3 .  Moreover, on A we have 0 < f - F < (2/3) n for 
all n, whence F == f on A. 1 
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4.17 Corollary. If X is normal, A C X is closed, and f E C(A), there exists 
F E C(X) such that PIA ==  f. 

Proof. By considering real and imaginary parts separately, it suffices to assume 
that f is real -valued. Let g == f / ( 1  + If I ) .  Then g E C(A, (- 1 ,  1 ) ) , so there exists 
G E C (X , [- 1 ,  1 ] ) with CIA ==  g. Let B == c-1 ({- 1 , 1 } ) .  By  Urysohn 's lemma 
there exists h E C(X , [0 , 1] ) with h == 1 on A, h == 0 on B. Then hG == G on A 
and l hGI < 1 everywhere , so F == hG/ ( 1  - l hGI ) does the job. 1 

A topological space X is called completely regular if X is T1 and for each closed 
A c X and each x � A there exists f E C (X , [0 , 1 ] ) such that f (x) == 1 and f == 0 
on A. Completely regular spaces are also called Tychonoff spaces or T31. spaces. 

2 
The latter terminology is j ustified, for every completely regular space is T3 (if A, x, 
f are as above, then f- 1 ( ( � , oo ) )  and f - 1 ( (  - oo ,  � ) ) are disjoint neighborhoods of 
x and A), and Urysohn 's lemma shows that every T4 space is completely regular. 

Exercises 

14. If X and Y are topological spaces , f : X ---+ Y is continuous iff f (A) c f (A ) 
for all A c X iff f- 1 (B) c f-1 (B) for al l B c Y. 

15. If X is a topological space, A c X i s  closed, and g E C (A) satisfies g == 0 on 
aA, then the extension of g to X defined by g(x) == 0 for X E Ac is continuous. 

16. Let X be a topological space, Y a Hausdorff space, and f, g continuous maps 
from X to Y.  

a. { x : f ( x) == g ( x) } i s  closed. 
b. If f == g on a dense subset of X, then f == g on all of X. 

17. If X i s  a set, � a collection of real-valued functions on X, and 'J the weak 
topology generated by �' then 'J is Hausdorff iff for every x, y E X with x =/= y there 
exists f E � with f (x) =/= f(y) . 

18. If X and Y are topological spaces and Yo E Y, then X is homeomorphic to 
X x {Yo }  where the latter has the relative topology as a subset of X x Y. 

19. If {X a } is a family  of topological spaces, X == Ila X a (with the product 
topology) is uniquely determined up to homeomorphism by the following property : 
There exist continuous maps 1r a : X ---+ X a such that if Y is any topological space 
and fa E C(Y, X a)  for each a ,  there is a unique F E C(Y, X) such that fa == 7ra o F. 
(Thus X is the category-theoretic product of the X a 's in the category of topological 
spaces .) 

20. If A is a countable set and X a is a first (resp. second) countable space for each 
a E A, then IlaEA Xa i s  first (resp. second) countable . 

21. If X is an infinite set with the cofinite topology, then every f E C (X) is constant. 

22. Let X be a topological space, (Y, p) a complete metric space, and { f n } a 
sequence in Y x such that supxEX p(f n ( x) , f m ( x) ) ---+ 0 as m, n ---+ oo .  There is 
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a unique f E Y x such that supxEX p(f n ( x ) , f ( x) ) ---+ 0 as n ---+ oo. If each f n is 
continuous, so is f.  
23. Give an elementary proof of the Tietze extension theorem for the case X == JR. 
24. A Hausdorff space X is normal iff X satisfies the conclusion ofUrysohn 's lemma 
iff X satisfies the conclusion of the Tietze extension theorem. 

25. If (X, 'J)  is completely regular, then 'J is the weak topology generated by C (X ) . 
26. Let X and Y be topological spaces . 

a. If X is connected (see Exercise 1 0) and f E C (X , Y) , then f (X ) is con
nected. 
b. X is called arcwise connected if for all x0 ,  x1 E X there exists f E 
C( [O ,  1] , X) with f (O) == xo and / ( 1 ) == x1 . Every arcwise connected space is 
connected. 
c. Let X == { ( s , t) E JR2 : t == sin(  s- 1 ) } u { (0, 0) }, with the relative topology 
induced from JR2 . Then X is connected but not arcwise connected. 

27. If Xa is connected for each a E A (see Exercise 10), then X == IlaEA Xa is 
connected. (Fix x E X and let Y be the connected component of x in X. Show that 
Y includes {y  E X : 1r a (y) == 1r a ( x) for all but finitely many a} and that the latter 
set is dense in X. Use Exercises 10  and 1 8 .) 

28. Let X be a topological space �quipped with an equivalence relation, X the set 
of equivalence classes, 1r : X ---+ X the map taking each x E X to its equivalence 
class, and 'J == {U  c X :  1r-1 (U) is open in X} . 

........ 

a. 'J is a topology on X. (It is called the quotient topology.) 
........ 

b. If Y is a topological space, f : X ---+ Y is continuous iff f o 1r is continuous . 
........ 

c. X is T1 iff every equivalence class is closed. 

29. If X is a topological space and G is a group of homeomorphisms from X to 
itself, G induces an equivalence relation on X, namely, x rv y iff y == g(x) for some 
g E G. Let X == JR2 ; describe the quotient space X and the quotient topology on 
it (as in Exercise 28) for each of the following groups of invertible linear maps . In 
particular, show that in (a) the quotient space is homeomorphic to [0 , oo) ; in (b) it is 
T_; but not Hausdorff; in (c) it is To but not T1 , and in (d) it is not To . (In fact.t-in (d) 
X is uncouJ!!able, but there are only six open sets and there are points p E X such 
that {p} == X.) 

a. { ( ��� �  ����e ) : e E �} 
b. { ( � � ) : a E �} 
c. { ( � � ) : a > 0,  b E �} 
d. { ( � � ) : a, b E Q \ {0} } 
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As we have hinted above, sequential convergence does not play the same central 
role in general topological spaces as it does in metric spaces . The reasons for 
this may be illustrated by the following example . Consider the space <CJR of all 
complex-valued functions on JR, with the product topology (i .e . , the topology of 
pointwise convergence), and its subspace C(JR) . On the one hand, by Corollary 2.9, 
if { f n } C C (JR) and f n ---+ f pointwise, then f is Borel measurable, so the set of 
limits of convergent sequences in C(JR) is a proper subset of CIR . Nonetheless , C(JR) 
is dense in <CR . Indeed, if f E <CJR , the sets 

{ g E <CJR 
: I g ( x j ) - f ( x j )  I < E for j == 1 , . . .  , n } 

( n E N, Xl , . . •  , Xn E JR, E > 0) 

form a neighborhood base at f, and each of these sets clearly contains continuous 
functions .  

There i s ,  however, a generalization of the notion of sequence that works well in 
arbitrary topological spaces ; the key idea is to use index sets more general than N. 
The precise definitions are as follows . 

A directed set is a set A equipped with a binary relation ;S such that 

• a ;S a for all a E A; 

• for any a ,  {3 E A there exists 1 E A such that a ;S 1 and {3 ;S 1· 

If a ;S {3, we shall also write {3 � a .  A net in a set X is a mapping a � Xa from a 
directed set A into X. We shall usually denote such a mapping by (xa ) aEA , or just 
by (xa ) if A is understood, and we say that (xa ) is indexed by A. 

Here are some examples of directed sets : 

i .  The set of positive integers N, with j ;S k iff j < k .  

i i .  The set 1R \ {a} (a E JR), with x ;S y iff l x - a l > I Y - a ! . 
111 . The set of all partitions { Xj }0 of the interval [a, b] (i .e . , a == x0 < · · · < Xn == 

b) , with {xi }o ;S {Yk }o iff max (xi - Xj- 1 ) > max(yk - Yk-1 ) .  

iv. The set N of all neighborhoods of a point x in a topological space X, with 
U ;S V iff U � V. (We say that N is directed by reverse inclusion. )  

v .  The Cartesian product A x B of two directed sets , with (a ,  {3) ;S (a ' , {3' ) iff 
a ;S a' and {3 ;S {3' . (This is always the way we make A x B into a directed 
set.) 

Examples (i)-(iii) occur in elementary analysis: A net indexed by N is j ust a 
sequence, and the nets indexed by the sets in (ii) and (iii) occur in defining l imits of 
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real variables and Riemann integrals .  Example (iv) is of fundamental importance in 
topology, and we shall see several uses of the construction in (v). 

Let X be a topological space and E a subset of X. A net (xa )aEA is eventually 
in E if there exists no E A such that X a E E for n 2: no , and (xa ) is frequently in 
E if for every n E A there exists f3 2: n such that x f3 E E. A point x E X is a limit 
of (xa ) (or (xa ) converges to x, or Xa ---+ x) if for every neighborhood U of x, (xa ) 
is eventually in U, and x is a cluster point of (xa ) if for every neighborhod U of x ,  
(xa ) i s  frequently in U. 

The next three propositions show that nets are a good substitute for sequences . 

4.18 Proposition. If X is a topological space, E C X, and x E X, then x is an 
accumulation point of E if! there is a net in E \ { x} that converges to x, and x E E 
iff there is a net in E that converges to x. 

Proof. If x is an accumulation point of E, let N be the set of neighborhoods 
of x, directed by reverse inclusion . For each U E N, pick xu E (U \ { x} ) n E. 
Then xu ---+ x. Conversely, if X a E E \ { x}  and X a ---+ x, then every punctured 
neighborhood of x contains some X a , so x is an accumulation point of E. Likewise, 
if Xa ---+ x where Xa E E, then x E E, and the converse follows from Proposition 
4. 1 .  I 

4.19 Proposition. If X and Y are topological spaces and f : X ---+ Y, then f is 
continuous at x E X if! for every net (xa ) converging to x, (f (xa ) ) converges to 
f (x ) . 

Proof. If f is continuous at x and V is a neighborhood of f ( x) , then f - 1 (V) is a 
neighborhood of x. Hence, if xa ---+ x then (xa) is eventually in f- 1 (V) , so (f (xa ) )  
is eventually in V, and thus f (X a )  ---+ f ( x) . On the other hand, if f is not continuous 
at x, there is a neighborhood V of f (x) such that f- 1 (V) is not a neighborhood of x,  

that is , x � (f- 1 (V) ) 0 ,  or equivalently, x E f- 1 (Vc ) .  By Proposition 4. 1 8 , there is 
a net (xa ) in f- 1  (Vc ) that converges to x. But then f (xa ) � V, so f (xa ) ft f (x) . 1 

A subnet of a net (xa ) aEA is a net (Yf3)f3EB  together with a map {3 � nf3 from 
B to A such that: 

• for every n0 E A there exists {30 E B such that nf3 2: no whenever {3 2: f3o ; 

Clearly if (xa ) converges to a point x, then so does any subnet (xaf3 ) .  
Warning: The name "subnet" is used because subnets perform much the same 

functions as subsequences, but it should not be taken too literally, as the mapping 
f3 r---t nf3 need not be injective. In particular, the index set B may well have larger 
cardinality than the index set A, and a subnet of a sequence need not be a subsequence. 

4.20 Proposition. If (xa ) aEA is a net in a topological space X, then x E X is a 
cluster point of (xa ) iff (xa ) has a subnet that converges to x. 
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Proof. If (Yf3) == (xaf3 ) is a subnet converging to x and U is a neighborhood 
of x, choose /31 E B such that Yf3 E U for f3 2: {31 . Also, given a E A, choose 
/32 E B such that af3 2: a for f3 � {32 . Then there exists f3 E B with f3 � {31 and 
f3 2: /32 , and we have af3 2: a and Xaf3 == Yf3 E U. Thus (xa ) i s  frequently in U, 
so x is a cluster point of (xa ) · Conversely, if x is a cluster point of (xa ) ,  let N be 
the set of neighborhoods of x and make N x A into a directed set by declaring that 
(U, a) ;S (U' , a') i ff U � U' and a ;S a' .  For each (U, "'!) E N x A we can choose 
acu,,) E A such that acu,,) � "'! and Xa<u.-y ) E U. Then if (U' , "'!' ) � (U, "'!) we 
have a(U' ,,' ) 2:: 1' � 1 and Xa<u ' , -y ' ) E U' C U, whence it follows that (xa (u, -y ) ) is 
a subnet of (xa ) that converges to x. 1 

Exercises 

30. If A is a directed set, a subset B of A is called cofinal in A if for each a E A 
there exists f3 E B such that f3 � a. 

a. If B is cofinal in A and (xa ) aEA i s  a net, the inclusion map B � A makes 
(xf3 )f3EB  a subnet of (xa ) aEA · 
b. If (xa ) aEA i s  a net in a topological space, then (xa ) converges to x iff for 
every cofinal B c A there is a cofinal C c B such that (x,),Ec converges to x. 

31. Let (xn ) nEN be a sequence . 
a. If k � nk is a map from N to itself, then (xnk ) kEN is a subnet of (xn ) iff 
nk � oo as k � oo, and it i s  a subsequence (as defined in §0. 1 )  iff nk is strictly 
increasing in k .  
b. There is a natural one-to-one correspondence between the subsequences of 
(xn) and the subnets of (xn ) defined by cofinal sets as in Exercise 30. 

32. A topological space X is Hausdorff iff every net in X converges to at most 
one point. (If X is not Hausdorff, let x and y be distinct points with no disjoint 
neighborhoods, and consider the directed set Nx x Ny where Nx , Ny are the families 
of neighborhoods of x ,  y. ) 
33. Let (xa ) aEA be a net in a topological space, and for each a E A let Ea == { Xf3 : 
/3 2: a} . Then X is a cluster point of (xa ) iff X E naEA Ea . 
34. If X has the weak topology generated by a family � of functions, then (xa ) 
converges to x E X iff (/ (X a ) )  converges to f ( x) for all f E �. (In particular, if 
X ==  TiiEJ Xi , then Xa � x iff ni (xa ) � ni (x) for all i E /.) 
35. Let X be a set and A the collection of all finite subsets of X, directed by inclusion . 
Let f : X � JR. be an arbitrary function, and for A E A, let ZA == l:xEA f (x) . 
Then the net (zA) converges in JR. iff {x : f (x) =/= 0} is a countable set {xn }nEN and 
I:� l f(xn ) l < oo, in which case ZA � I:� f(xn ) · (Cf. Proposition 0.20.) 

36. Let X be the set of Lebesgue measurable complex-valued functions on [0 , 1 ] .  
There is n o  topology 'J on X such that a sequence (fn ) converges to f with respect 
to 'J iff f n � f a.e. (Use Corollary 2.32 and Exercises 30b and 3 1  b.) 
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4.4 COM PACT SPAC ES 

In §0.6 we gave three equivalent characterizations of compactness for metric spaces: 
the Heine-Borel property, the Bolzano-Weierstrass property, and completeness plus 
total boundedness. Only the first two of these make sense for general topological 
spaces, and it is the first one that turns out to be the most useful . Accordingly, we 
define a topological space X to be compact if whenever {Ua }aEA is an open cover 
of X - that is, a collection of open sets such that X == UaEA Ua - there is a 
finite subset B of A such that X = UaEB Ua . To be brief (although somewhat 
sylleptic , since the adjectives "open" and "finite" refer to different things), we say : 
X is compact if every open cover of X has a finite subcover. 

A subset Y of a topological space X is called compact if it is compact in the 
relative topology ; thus Y C X is compact iff whenever { U a }  aEA is a collection of 
open subsets of X with Y C UaEA Ua , there i s  a finite B C A with Y C UaEB Ua . 
Furthermore, Y is called precompact if its closure is compact. 

DeMorgan 's laws lead to the following characterization of compactness in terms of 
closed sets . A family {Fa }  aEA of subsets of X is said to have the finite intersection 
property if naEB Fa =I= 0 for al l finite B c A. 

4.21 Proposition. A topological space X is compact iff for every family {Fa }  aEA 
of closed sets with the finite intersection property, naEA Fa =I= 0. 

Proof. Let Ua == (Fa ) c .  Then Ua is open , naEA Fa =I= 0 iff UaEA Ua =I= X,  
and {Fa }  has the finite intersection property iff no finite subfamily of {Ua }  covers 
X.  The result follows. 1 

We now list several basic facts about compact spaces. 

4.22 Proposition. A closed subset of a compact space is compact. 

Proof. If X is compact, F C X is closed, and {Ua }aEA is a family of open sets 
in X with F C UaEA Ua , then {Ua }aEA U {Fe } is an open cover of X.  It has a 
finite subcover, so by discarding Fe from the latter if necessary, we obtain a finite 
subcollection of { U a }  aEA that covers F. 1 

4.23 Proposition. If F  is a compact subset of a Hausdorff space X and x f/:. F, 
there are disjoint open sets U, V such that x E U and F C V. 

Proof. For each y E F, choose disjoint open Uy and Vy with x E Uy and y E Vy . 
{Vy }yEF is an open cover of F, so it has a finite subcover {Vyj }1 .  Then U == n� Uyj 
and V == U� Vyj have the desired properties. 1 

4.24 Proposition. Every compact subset of a Hausdorff space is closed. 

Proof. According to Proposition 4.23, if F is compact then Fe is a neighborhood 
of each of its points, hence is open. 1 
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We remark that in a non-Hausdorff space, compact sets need not be closed (for 
example, every subset of a space with the trivial topology is compact), and the 
intersection of compact sets need not be compact; see Exercise 37. Of course, in 
a Hausdorff space the intersection of any family of compact sets is compact by 
Propositions 4.22 and 4.24. Moreover, in an arbitrary topological space a finite union 
of compact sets is always compact. (If K 1 , . . .  K n are compact and { U a } is an open 
cover of U� Kj , choose a finite subcover of each Kj and combine them.) 

4.25 Proposition. Every compact Hausdorff space is normal. 

Proof. Suppose that X is compact Hausdorff and E, F are disjoint closed subsets 
of X.  By Proposition 4.23, for each x E E there exist disjoint open sets Ux , Vx with 
x E Ux , F C Vx . By Proposition 4.22, E is compact, and {Ux }xEE is an open cover 
of E, so there is a finite subcover {Uxj }1 .  Let u == u� Uxj and v == n� VXj . Then 
U and V are disjoint open sets with E c U and F c V. 1 

4.26 Proposition. If X is compact and f : X ---+ Y is continuous, then f (X) is 
compact. 

Proof. Let {Va } be an open cover of f (X) in Y. Then {f-1 (Va ) }  i s  an open 
cover of X, so it has a finite subcover {f- 1 (Vaj )  } ,  and {Vaj } is then a finite subcover 
of f(X) . 1 

4.27 Corollary. If X is compact, then C(X) == BC(X). 

4.28 Proposition. If X is compact andY is Hausdorff, then any continuous bijection 
f : X ---+ Y is a homeomorphism. 

Proof. If E c X is closed, then E is compact, hence f (E) is compact, hence 
f (E) is closed, by Propositions 4.22, 4.26, and 4.24. This means that f- 1 is 
continuous , so f is a homeomorphism. 1 

We now show that a version of the Balzano-Weierstrass property holds for compact 
topological spaces. As one might suspect, it is merely necessary to replace sequences 
by nets. 

4.29 Theorem. If X is a topological space, the following are equivalent: 
a. X is compact. 
b. Every net in X has a cluster point. 
c. Every net in X has a convergent subnet. 

Proof. The equivalence of (b) and (c) follows from Proposition 4.20. If X is 
compact and (xa ) is a net in X,  let Ea == { Xf3 : {3 2: a} . Since for any a, {3 E A 
there exists '"Y E A with '"Y 2: a and '"Y 2: {3, the family {Ea }aEA has the finite 
intersection property, so by Proposition 4.2 1 ,  naEA Ea =I= 0. If X E naEA Ea 
and U is a neighborhood of x, then U intersects each Ea , which means that (xa ) 
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is frequently in U, so x is a cluster point of (xa ) . On the other hand, if X is not 
compact, let {U,a } ,B E E  be an open cover of X with no finite subcover. Let A be the 
col lection of finite subsets of B, directed by inclusion, and for each A E A let x A 
be a point in (U,aEA U,a) c . Then (xA )AEA is a net with no cluster point. Indeed, if 
x E X, choose {3 E B with x E U,a . If A E A and A �  {{3} then XA � U,a , so x is 
not a cluster point of (xA ) · 1 

We conclude by mentioning two other useful concepts related to compactness. A 
topological space X is called countably compact if every countable open cover of 
X has a finite subcover, and sequentially compact if every sequence in X has a 
convergent subsequence. Of course, every compact space is countably compact, and 
for metric spaces compactness and sequential compactness are equivalent. However, 
in general there is no relation between compactness and sequential compactness. See 
Exercises 39-43 for further results and examples. 

Exercises 

37. Let 01 denote a point that is is not an element of (- 1 ,  1 ) ,  and let X == (- 1 ,  1 )  U 
{01 } .  Let 'J be the topology on X generated by the sets (- 1 ,  a) , (a ,  1 ) ,  [ (- 1 ,  b) \ 
{O}] U {01 } ,  and ( ( c, 1 )  \ {O}] U {01 }  where -1  < a < 1 ,  0 < b < 1 , and -1  < c < 0. 
(One should picture X as ( - 1 ,  1) with the point 0 split in two.) 

a. Define f, g : (- 1 , 1) ---+ X by f(x) == x for al l x, g (x) == x for x =/= 0, and 
g( 0) == 01 • Then f and g are homeomorphisms onto their ranges. 
b. X is T1 but not Hausdorff, although each point of X has a neighborhood that 
is homeomorphic to ( - 1 ,  1 )  (and hence is Hausdorff). 
c. The sets [- � , � ] and ( [- � , � ] \ { 0} )  U { 01 } are compact but not closed in X, 
and their intersection is not compact. 

38. Suppose that (X, 'J) is a compact Hausdorff space and 'J1 is another topology 
on X. If 'J1  is strictly stronger than 'J, then (X, 'J 1 ) is Hausdorff but not compact. If 
'J 1 is stricti y weaker than 'J ,  then (X, 'J 1 )  is compact but not Hausdorff. 

39. Every sequentially compact space is countably compact. 

40. If X is countably compact, then every sequence in X has a cluster point. If X 
is al so first countable, then X is sequentially compact. 

41. A T1 space X is countably compact iff every infinite subset of X has an accu
mulation point. 

42. The set of countable ordinals (§0.4) with the order topology (Exercise 9) is 
sequentially compact and first countable but not compact. (To prove sequential 
compactness, use Proposition 0. 1 9.) 

43. For x E [0 , 1 ) ,  let 2::� an (x)2-n (an (x ) == 0 or 1 )  be the base-2 decimal 
expansion of x. (If x is a dyadic rational , choose the expansion such that an ( x) == 0 
for n large .) Then the sequence (an ) in {0 ,  1 } [0 , 1 ) has no pointwise convergent 
subsequence. (Hence {0 ,  1 } [0 , 1 ) ,  with the product topology arising from the discrete 
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topology on {0 ,  1 } ,  is not sequentially compact. It is, however, compact, as we shall 
show in §4.6.) 

44. If X is countably compact and f : X ---+ Y is continuous, then f(X) is countably 
compact. 

45. If X is normal , then X is countably compact iff C(X) == BC(X) .  (Use 
Exercises 40 and 44. If (xn ) i s a sequence in X with no cluster point, then { Xn : n E 
N} is closed, and Corollary 4. 17 applies.) 

4.5 LOCALLY COMPACT HAUSDORFF SPACES 

A topological space is called locally compact if every point has a compact neighbor
hood. We shal l be mainly concerned with local ly compact Hausdorff spaces, which 
we call LCH spaces for short. 

4.30 Proposition. If X is an LCH space, U C X is open, and x E U, there is a 
compact neighborhood N of x such that N C U. 

Proof. We may assume U is compact; otherwise, replace U by U n po where 
F is a compact neighborhood of x. By Proposition 4.23 , there are disjoint relatively 
open sets v, w in u with X E v and au c w. Then v is open in X since v c U, 
and V is a closed and hence compact subset of U \ W. Thus we may take N == V. 1 

4.31 Proposition. If X is an LCH space and K C U C X where K is compact and 
U is open, there exists a precompact open V such that K C V C V C U. 

Proof. By Proposition 4.30, for each x E K we can choose a compact neigh
borhood Nx of x with Nx C U. Then {N�}xEK is an open cover of K, so there 
is a finite subcover { N�j }1 .  Let v == u� N�j ; then K c v and v == u� NXj is 
compact and contained in U. 1 

4.32 Urysohn's Lemma, Locally Compact Version. If X is an LCH space and 
K C U C X where K is compact and U is open, there exists f E C(X, [0 , 1 ] ) such 
that f == 1 on K and f == 0 outside a compact subset of U. 

Proof. Let V be as in Proposition 4.3 1 .  Then V is normal by Proposition 4.25 , 
so by Urysohn 's lemma 4. 15 there exists f E C(V, [0, 1 ] ) such that f == 1 on K -c and f == 0 on 8V. We extend f to X by setting f == 0 on V . Suppose that 
E c [0 , 1] is closed. If 0 � E we have f-1 (E) == (J IV) - 1 (E) , and if 0 E E we 
have f- 1 (E) == (J IV) - 1 (E) u Vc == (J IV) - 1 (E) u vc since (J IV) - 1 (E) => av. 
In either case, f-1 (E) is closed, so f is continuous. 1 

4.33 Corollary. Every LCH space is completely regular. 
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4.34 Tietze Extension Theorem, Locally Compact Version. Suppose that X is an 
LCH space and K C X is compact. Iff E C(K), there exists F E C(X) such that 
FIK == f. Moreover, F may be taken to vanish outside a compact set. 

The proof is similar to that of Theorem 4.32; details are left to the reader (Exercise 
46) . 

The preceding results show that LCH spaces have a rich supply of continuous 
functions that vanish outside compact sets. Let us introduce some terminology : If X 
is a topological space and f E C(X) ,  the support of f , denoted by supp(f) , is the 
smallest closed set outside of which f vanishes, that is, the closure of { x : f ( x) =/= 0} . 
If supp(f) is compact, we say that f is compactly supported, and we define 

Cc (X) == { f E C(X) : supp(f) is compact} . 

Moreover, if f E C (X) ,  we say that f vanishes at infinity if for every E > 0 the set 
{ x : I f ( x) I > E} is compact, and we define 

Co (X ) == {!  E C(X) : f vanishes at infinity } . 

Clearly Cc (X) c C0 (X) . Moreover, Co (X) c BC(X) ,  because for f E Co (X) 
the image of the set { x : I f ( x) I > E} is compact, and I f I < E on its complement. 

4.35 Proposition. If X is an LCH space, Co (X) is the closure of Cc (X) in the 
uniform metric. 

Proof. If {fn } is a sequence in Cc (X) that converges uniformly to f E C(X) ,  
for each E > 0 there exists n E N such that l l fn - f l l u  < E. Then l f (x) l < E 
if x � supp (fn ) ,  so f E Co (X) .  Conversely, if f E Co (X) ,  for n E N let 
Kn == {x : l f (x) l > n-1 } .  Then Kn is compact, so by Theorem 4.32 there exists 
9n E Cc (X) with 0 < 9n < 1 and 9n == 1 on Kn. Let fn == 9nf· Then fn E Cc (X) 
and l l fn - f l l u  < n- 1 , so fn ---+ f uniformly. 1 

If X is a noncompact LCH space, it is possible to make X into a compact space 
by adding a single point "at infinity" in such a way that the functions in C0 (X) are 
precisely those continuous functions f such that f ( x) ---+ 0 as x approaches the point 
at infinity. More precisely, let oo denote a point that is not an element of X, let 
X* == X U  { oo } ,  and let 'J be the collection of all subsets of X* such that either (i) 
U is an open subset of X, or (ii )  oo E U and uc is a compact subset of X. 

4.36 Proposition. If X, X*, and 'J are as above, then (X* , 'J) is a compact Haus
dorff space, and the inclusion map i : X ---+ X* is an embedding. Moreover, if 
f E C(X), then f extends continuously to X * iff f == g + c where g E Co (X) and 
c is a constant, in which case the continuous extension is given by f ( oo ) == c. 

The proof is straightforward and is left to the reader (Exercise 47) .  The space X* 
is called the one-point compactification or Alexandroff compactification of X. 

If X i s  a topological space, the space ex of all complex-valued functions on X 
can be topologized in various ways. One way, of course, is the product topology, 
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that is, the topology of pointwise convergence . Another is the topology of uniform 
convergence, which is generated by the sets 

{ g E eX 
: sup i g (x) - f (x) l < n- 1 } 

xEX 

The proof of Proposition 4. 1 3  shows that C(X) is a closed subspace of ex in the 
topology of uniform convergence. Intermediate between these two topologies is the 
topology of uniform convergence on compact sets, which is generated by the sets 

{ g E eX : sup l g (x) - f(x) l < n-1 } 
xEK 

(n E N, f E ex , K c X compact) . 

We shal l now examine this topology in the case where X is an LCH space. 

4.37 Lemma. If X is an LCH space and E C X, then E is closed iff E n K is 
closed for every compact K C X. 

Proof If E is closed, then E n K is closed by Propositions 4.22 and 4.24. If E 
is not closed, pick x E E \ E and let K be a compact neighborhood of x. Then x is 
an accumulation point of E n  K but is not in E n  K, so by Proposition 4. 1 E n  K 
is not closed. 1 

4.38 Proposition. If X is an LCH space, C(X) is a closed subspace of ex in the 
topology of uniform convergence on compact sets. 

Proof. If f is in the closure of C(X) ,  then f i s a uniform limit of continuous 
functions on each compact K c X, so J IK is continuous. If E c e is closed, 
f- 1 (E) n K == (! IK) - 1 (E) is thus closed for each compact K, so by Lemma 4.37 
f-1 (E) i s  closed, whence f i s  continuous. 1 

A topological space X is called u-compact if it is a countable union of compact 
sets. To appreciate the significance of the next two propositions, see Exercise 54. 

4.39 Proposition. If X is a a-compact LCH space, there is a sequence {Un } of 
precompact open sets such that U n c Un+1  for all n and X == U� Un. 

Proof. Suppose X == U� Kn where each Kn is compact. Every compact subset 
of X has a precompact open neighborhood by Proposition 4.3 1 .  Thus we may take 
U1 to be a precompact open neighborhood of K 1 , and then, proceeding inductively, 
take Un to be a precompact open neighborhood of U n-1 U Kn. 1 

4.40 Proposition. If X is a a-compact LCH space and {Un } is as in Proposition 
4. 39, then for each f E ex the sets 

{ g E eX : sup l g (x) - f (x) l < m-1 } 
xEUn 

(m, n E N) 
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form a neighborhood base for f in the topology of uniform convergence on compact 
sets. Hence this topology is first countable, and fJ ---+ f uniformly on compact sets 
iff f1 ---t f uniformly on each U n· 

Proof. These assertions follow easily from the observation that if K c X i s  
compact, then {Un }1 is an open cover of K and hence K C U n for some n. Details 
are left to the reader (Exercise 48). 1 

We close this section with a construction that is useful in a number of situations. 
If X is a topological space and E c X, a partition of unity on E is a collection 
{ha }aEA of functions in C(X, [0 , 1 ] ) such that 

• each x E X has a neighborhood on which only finitely many ha ' s are nonzero; 

• LaEA ha (x) == 1 for x E E. 
A partition of unity { ha } is subordinate to an open cover 11 of E if for each a there 
ex ists U E 11 with supp(ha ) C U. 
4.41 Proposition. Let X be an LCH space, K a compact subset of X, and { Uj } 1 an 
open cover of K. There is a partition of unity on K subordinate to {Uj }1 consisting 
of compactly supported functions. 

Proof. By Proposition 4.30, each x E K has a compact neighborhood Nx 
such that Nx c Uj for some j .  Since {N�} is an open cover of K, there exist 
Xl ' . . .  ' Xm such that K c u� Nxk . Let Fj be the union of those Nxk ' s that 
are subsets of Uj .  Then Fj is a compact subset of Uj , so by Urysohn 's lemma 
there exi st g1 , . . . , gn E Cc (X, (0 , 1] ) with 9J == 1 on Fj and supp (gj ) C Uj . 
Since the Fj ' s cover K we have I:� 9k > 1 on K, so by Urysohn again there 
exists f E Cc (X, [0 , 1 ] )  with f == 1 on K and supp(f) C {x : I:� 9k (x) > 0} . 
Let 9n+ l == 1 - f, so that L�+l 9k > 0 everywhere, and for j == 1 ,  . . .  , n let 
hj == 9J / L�+l 9k ·  Then supp(hj )  == supp(gj ) c UJ and L� hj == 1 on K. 1 

A generalization of this result may be found in Exercise 57. 

Exercises 

46. Prove Theorem 4. 34. 

47. Prove Proposition 4.36. Also, show that if X is Hausdorff but not locally 
compact, Proposition 4.36 remains valid except that X* is not Hausdorff. 

48. Complete the proof of Proposition 4.40. 

49. Let X be a compact Hausdorff space and E c X.  
a. If E is open, then E i s  locally compact in the relative topology. 
b. If E is dense in X and locally compact in the relative topology, then E is 
open . (Use Exercise 1 3 . ) 
c. E i s  locally compact in the relative topology iff E is relatively open in E. 
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SO. Let U be an open subset of a compact Hausdorff space X and U* its one-point 
compactification (see Exercise 49a) . If ¢ : X ---+ U* is defined by ¢(x) == x if x E U 
and ¢( x) == oo if x E uc , then ¢ i s  continuous . 

51. If X and Y are topological spaces, ¢ E C (X, Y) i s  called proper if ¢-1 ( K) is 
compact in X for every compact K c Y. Suppose that X and Y are LCH spaces and 
X* and Y*  are their one-point compactifications. If ¢ E C(X, Y) , then ¢ is proper 
iff ¢ extends continuously to a map from X*  to Y* by setting ¢( oo x) == ooy . 

52. The one-point compactification of JRn is homeomorphic to the n-sphere { x E 
]Rn+ 1  : l x l == 1 } .  
53. Lemma 4.37 remains true if the assumption that X is locally compact is replaced 
by the assumption that X is first countable . 

54. Let <Q have the relative topology induced from JR. 
a. <Q is not locally compact. 
b. <Q is a-compact (it is a countable union of singleton sets), but uniform con
vergence on singletons (i .e . , pointwise convergence) does not imply uniform 
convergence on compact subsets of Q. 

55. Every open set in a second countable LCH space is a-compact. 

56. Define <I> :  [0 , oo ] � [0 , 1] by <I>(t) == tj (t + 1 )  for t E [0 , oo ) and <I>(oo ) == 1 .  
a. <I> is stricti y increasing and <I> ( t + s) < <I> ( t) + <I> ( s) . 

b. If (Y, p) is a metric space, then <I> o p is a bounded metric on Y that defines 
the same topology as p. 
c. If X is a topological space, the function p(f, g) == <I>(supxEX l f(x) - g(x) l ) 
is a metric on ex whose associated topology is the topology of uniform conver
gence. 
d. If X is a a-compact LCH space and {Un }1 is as in Proposition 4.39, the 
function 

p(f, g) = f 2-n<I> ( sup l f(x) - g(x) l) 
1 xEUn 

is a metric on ex whose associated topology is the topology of uniform conver
gence on compact sets. 

57. An open cover 11 of a topological space X is called locally finite if each x E X 
has a neighborhood that intersects only finitely many members of 11. If 11, V are 
open covers of X, V is a refinement of 11 if for each V E V there exists U E 11 
with V c U. X is called paracompact if every open cover of X has a locally finite 
refinement. 

a. If X is a a-compact LCH space, then X is paracompact. In fact, every open 
cover 11 has locally finite refinements {Va } , {Wa } such that V a is compact 
and W a C Va for all a .  (Let {Un }1 be as in Proposition 4.39. For each n, 
{E n (Un+2 \ U n- 1 ) :  E C 11} is an open cover of U n+1 \ Un . Choose a finite 
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subcover to obtain { Va } and mimic the beginning of the proof of Proposition 
4.4 1 to obtain {Wa } .) 
b. If X i s  a a-compact LCH space, for any open cover 11 of X there is a partition 
of unity on X subordinate to 11 and consisting of compactly supported functions . 

4.6 TWO COMPACTN ESS TH EOREMS 

The geometric objects on which one does analysis (Euclidean spaces, manifolds , 
etc .) tend to be compact or locally compact. However, in infinite-dimensional spaces 
such as spaces of functions, compactness is a rather rare phenomenon and is to be 
greatly prized when it is available . Almost all compactness results in such situations 
are obtained via two basic theorems, Tychonoff's theorem and the ArzeUt-Ascoli 
theorem, which we present in this section. 

Tychonoff's theorem has to do with compactness of Cartesian products. To prepare 
for it, we introduce some notation. Recall that an element x of X == Tia EA X a is , 
strictly speaking, a mapping from A into UaEA Xa ; namely, x(a) E Xa is the nth 
coordinate of x, which we generally denote by ?T a (x ) .  If B c A, there is a natural 
map 7rB : X � TiaEB X a ;  namely, 7rB (x) is the restriction of the map x to B.  (In 
particular, 1r {a} is essentially identical to 1r a ,  and we shall not distinguish between 
them.) If p E TiaEB X a and q E TiaEC X a ,  we shall say that q is an extension of p 
if q extends p as a mapping, that is ,  if B c C and p( a) == q(  a) for a E B. 

4.42 Tychonoff's Theorem. If {Xa }aEA is any family of compact topological 
spaces, then X == TiaEA X a (with the product topology) is compact. 

Proof. By Theorem 4.29, it is enough to show that any net (xi ) iEI in X has a 
cluster point. We shall do this by examining cluster points of the nets ( 1r B (Xi ) )  in 
the subproducts of X. To wit, let 

P = U {P E IT Xa : p is a cluster point of (nB (xi ) ) } . 
BCA aEB 

P is  nonempty, because each X a is compact and so ( 1r B (Xi ) )  has cluster points when 
B == {a} . Moreover, P is partially ordered by extension ; that is, p < q if q is an 
extension of p as defined above. 

Suppose that {pz : l E L} is a linearly ordered subset ofP, where pz E TiaEBz X a .  
Let B*  == ulEL Bz , and let p* be the unique element of TiaEB* Xa that extends 
every pz . We claim that p* E P. Indeed, from the definition of the product topology, 
any neighborhood of p* contains a set of the form TiaE B * U a where each U a is open 
in X a and U a == X a for all but finitely many a, say a 1 , . . .  , On . Each of these aj 's 
belongs to some Bz , so by linearity of the ordering they all belong to a single Bz . But 
then TiaEBz Ua i s  a neighborhood of pz ,  so (7rBz (xi ) )  i s  frequently in TiaEBz Ua ; 
hence (7rB * (xi ) )  is frequently in TiaEB* Ua , so p* is a cluster point of (7rB * (xi ) ) .  
Therefore p* is an upper bound for {pz } in P. 
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By Zorn's lemma, then, P has a maximal element p E TiaEB Xa . We claim 
that B == A. If not, pick '"Y E A \ B. By Proposition 4.20 there is a subnet 
{1r8 (xi (j ) ) )j EJ of (1r8 (xi ) )  that converges to p, and since X"'� is compact, there is 
a subnet (7r'Y (xi (j (k ) ) ) ) kEK of (1r'Y (xi (j ) ) ) that converges to some p"'� E X"'� . Let q 
be the unique element of TiaEBu{ "'�} X a that extends both p and p"'� ; then the net 
(7rBu{"Y} (xi (j (k ) ) ) )  kEK converges to q and hence q is a cluster point of (1r Bu{"Y}  (xi ) ) ,  
contradicting the maximality of p. Therefore p is a cluster point of (xi ) ,  and we are 
done. 1 

We now turn to the ArzeUt-Ascoli theorem, which has to do with compactness in 
spaces of continuous mappings . There are several variants of this result; the theorems 
below are two of the most useful ones. See also Exercise 6 1 .  

If X is a topological space and 1' c C(X) ,  1' is called equicontinuous at x E X 
if for every E > 0 there is a neighborhood U of x such that l f (y) - f(x) l < E for all 
y E U and all f E 1', and 1' is called equicontinuous if it is equicontinuous at each 
x E X. Also, 1' is said to be pointwise bounded if {! ( x) : f E 1'} is a bounded 
subset of C for each x E X. 

4.43 Arzela-Ascoli Theorem I .  Let X be a compact Hausdorff space. If 1' is an 
equicontinuous, pointwise bounded subset ofC(X), then 1' is totally bounded in the 
uniform metric, and the closure of1' in C(X) is compact. 

Proof. Suppose E > 0. Since 1' is equicontinuous, for each x E X there is an 
open neighborhood Ux of x such that l f(y) - f(x) l < ! E for al l y E Ux and all 
f E 1'. Since X is compact, we can choose Xl ' . . .  ' Xn E X such that u� Uxj == X. 
Then by pointwise boundedness, {f (xj ) : f E 1', 1 < j < n} i s  a bounded subset 
of C, so there is a finite set { z1 , . . .  , Zm } c C that is ! E-dense in it - that is, 
each f ( x j ) is at a distance less than ! E from some zk .  Let A == { x1 , . . . , Xn } and 
B == { z1 , . . . , Zm } ;  then the set BA of functions from A to B is finite. For each 
¢ E BA, let 

Then clearly U¢EBA 1' <t> == 1', and we claim that each 1' <t> has diameter at most E, so 
we obtain a finite E-dense subset of 1' by picking one f from each nonempty 1' <t> · To 
prove the claim, suppose f, g E 1' <t> · Since I f - ¢ 1 < ! E and lg - ¢ 1 < ! E on A, we 
have I f - g l  < � E on A. If x E X, we have x E UxJ for some j, and then 

l f(x) - g (x) l < l f (x) - f(xj ) l + l f (xj ) - g (xj ) l + lg (xj ) - g (x) l < E . 

This shows that 1' is totally bounded. Since the closure of a totally bounded set is 
totally bounded and C(X) is complete, the theorem is proved. 1 

4.44 Arzela-Ascoli Theorem II. Let X be a a-compact LCH space. If {fn } is an 
equicontinuous, pointwise bounded sequence in C(X), there exist f E C(X) and a 
subsequence of {fn } that converges to f uniformly on compact sets. 
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Proof. By Proposition 4.39 there is  a sequence {Uk } of precompact open sets 
such that U k c Uk+ 1 and X == U� Uk . By Theorem 4.43 there is a subsequence 
{fnj }j 1 of {fn } that is uniformly Cauchy on U 1 ; we denote it by {f] }j 1 . Pro-
ceeding inductively, for k E N we obtain a subsequence {fjk }j 1 of {Jf- 1 }j 1 that 
is uniformly Cauchy on U k · Let 9k == ft ; then {gk } is a subsequence of {fn } which 
i s  (except for the first k - 1 terms) a subsequence of { fjk } and hence is uniformly 
Cauchy on each Uk . Let f == lim gk .  Then f E C(X) and 9k � f uniformly on 
compact sets by Propositions 4.38 and 4 .40 . 1 

Exercises 

58. If {X a }  a E A i s  a family of topological spaces of which infinitely many are 
noncompact, then every closed compact subset of ITaEA X a is nowhere dense. 

59. The product of finitely many locally compact spaces is locally compact. 

60. The product of countably many sequentially compact spaces is sequentially 
compact. (Use the "diagonal trick" as in the proof of Theorem 4.44.) 

61. Theorem 4.43 remains valid for maps from a compact Hausdorff space X into 
a complete metric space Y provided the hypothesis of pointwise boundedness is 
replaced by pointwise total boundedness. (Make this statement precise and then 
prove it .) 

62. Rephrase Theorem 4.44 in a form similar to Theorem 4.43 by using the metric 
in Exercise 56d. 

63. Let K E C( [O , 1 ] x [0 , 1] ) .  For f E C( [O ,  1] ) ,  let Tf(x) == f01 K(x ,  y )f (y) dy. 
Then Tf E C( [O ,  1 ] ) ,  and {Tf : l l ! l l u  < 1 } i s precompact in C( [O , 1] ) .  
64. Let (X, p) be a metric space. A function f E C(X)  is called Holder continuous 
of exponent a (a > 0) if the quantity 

N (f) _ l f(x) - f(y ) l a - sup -----x-:j;y p(x , y )a 

is finite. If X is compact, {! E C(X) : l l ! l l u  < 1 and Na (!) < 1 } i s compact in 
C(X) .  
65. Let U be an open subset of C, and let {fn } be a sequence of holomorphic 
functions on U. If {fn } is uniformly bounded on compact subsets of U, there is a 
subsequence that converges uniform! y to a holomorphic function on compact subsets 
of U. (Use the Cauchy integral formula to obtain equicontinuity. ) 

4.7 TH E STONE-WEI ERSTRASS THEOREM 

In this section we prove a far-reaching generalization of the well-known theorem of 
Weierstrass to the effect that any continuous function on a compact interval [a , b] is 
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the uniform limit of polynomials on [a, b] . Throughout this section, X will denote a 
compact Hausdorff space, and we equip the space C(X) with the uniform metric .  

A subset A of C(X, JR) or C(X) i s said to separate points if for every x ,  y E X 
with x =/= y there exists f E A such that f ( x) =/= f (y). A is called an algebra if it is 
a real (resp . complex) vector subspace of C(X, JR) (resp. C(X)) such that f g E A 
whenever f, g E A. If A c C(X, JR) , A is called a lattice ifmax(f, g) and min(/, g) 
are in A whenever f, g E A. Since the algebra and lattice operations are continuous, 
one easily sees that if A is an algebra or a lattice, so is its closure A in the uniform 
metric .  

4.45 The Stone-Weierstrass Theorem. Let X be a compact Hausdorff space. If A 
is a closed subalgebra of C(X, JR) that separates points, then either A == C(X, JR) 
or A == {f E C(X, JR) :  f (xo ) == O}for some xo E X. Thefirst alternative holds iff 
A contains the constant functions. 

The proof will require several lemmas . The first one, in effect, proves the theorem 
when X consists of two points, and the second one is a special case of the classical 
Weierstrass theorem for X == [- 1 ,  1 ] . After these two we return to the general case. 

4.46 Lemma. Consider JR2 as an algebra under coordinatewise addition and mul
tiplication. Then the only subalgebras oflR2 are JR2, { (0, 0) }, and the linear spans 
of ( 1 , 0) , ( 0 , 1 ) , and ( 1 , 1 ) . 

Proof. The subspaces of JR2 l isted above are evidently subalgebras . If A c JR2 

is a nonzero algebra and (0 , 0) =/= (a, b) E A, then ( a.2 , b2 ) E A. If a =/= 0, b =/= 0, 
and a =/= b, then (a, b) and ( a2 , b2 ) are linearly independent, so A == JR2 . The other 
possibilities - a -:1 0 == b, a == 0 -:1 b, and a == b -:1 0 for all nonzero (a, b) E A -
give the other three subalgebras . 1 

4.47 Lemma. For any E > 0 there is a polynomial P on 1R such that P(O) == 0 and 
l l x l - P(x) i < Efor x E [- 1 ,  1 ] . 

Proof. Consider the Maclaurin series for (1 - t) 112 :  

1 /2 
� (  1 ) ( 1 ) ( 2n - 3 ) tn ( 1  - t) = 1 + 7 - 2 2 . . . 2 n! 

00 (en > 0) . 

By the ratio test, this series converges for I t ! < 1 ;  a proof that its sum is actually 
( 1 - t) 1 12 is outl ined in Exercise 66. Moreover, by the monotone convergence 
theorem (applied to counting measure on N), 

00 00 "'"" Cn == lim "'"' Cntn == 1 - lim ( 1  - t) 1 12 == 1 .  L.._,; t/1 � t/1 1 1 
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It follows from the finiteness of E� en that the series 1 - E� cntn converges 
absolutely and uniformly on [- 1 ,  1 ] ,  and its sum is ( 1  - t) 1 12 there. Therefore, 
given E > 0, by taking a suitable partial sum of this series we obtain a polynomial 
Q such that 1 ( 1  - t) 1 12 - Q(t) l < � E  for t E [- 1 ,  1 ] . Setting t == 1 - x2 and 
R(x ) == Q( 1 - x2 ) , we obtain a polynomial R such that l lx l - R(x) l < � E  for 
x E [- 1 ,  1 ] . In particular, IR(O) I < � E , so if we set P(x) == R(x) - R(O) , P is a 
polynomial such that P(O) == 0 and l lx l - P(x) l < E for x E [- 1 ,  1 ] . 1 

4.48 Lemma. If A is a closed subalgebra of C(X, IR), then I f I E A whenever 
f E A, and A is a lattice. 

Proof. If f E A and f -I- 0, let h == f / l l ! l l u · Then h maps X into [- 1 ,  1 ] , so if 
E > 0 and P is as in Lemma 4.47, we have I I  l h l  - P o  h l l u < E .  Since P(O) == 0, 
P has no constant term, so P o h E A since A is an algebra. Since A is closed and 
E is arbitrary, we have I h I E A and hence I f I == I I  f I I  u I h i E A. This proves the first 
assertion, and the second one follows because 

max(f, g) == � (f + g + l f - g l ) ,  min(j, g) == � (! + g - I f - g l ) .  

I 

4.49 Lemma. Suppose A is a closed lattice in C(X, IR) and f E C(X, IR). If for 
every x ,  y E X  there exists 9xy E A such that 9xy (x) == f (x ) and 9xy (Y) == f (y), 
then f E A. 

Proof. Given E > 0, for each x ,  y E X  let Uxy == {z E X :  f (z) < 9xy (z) + E} 
and Vxy == {z E X : f (z) > 9xy (z) - E} .  These sets are open and contain x and 
y. Fix y; then {Uxy : x E X} covers X, so there is a finite subcover {Uxj y }! .  Let 
9y == max (gx l y , . . .  ' 9xny ) ;  then f < 9y + E on X and f > 9y - E on Vy == n� VXjY ' which i s  open and contains y. Thus {Vy }yEX is another open cover of X, so there is 
a finite subcover {VyJ }! . Let g == min(gy1 , • • •  , gyrn ) ; then I I ! - 9 l l u < E. Since A 
is a lattice, g E A, and since A is closed and E is arbitrary, f E A. 1 

Proof of Theorem 4.45. Given x -I- y E X, let Axy == { (f (x) ,  f (y) )  : f E A} . 
Then Axy is a subalgebra of :IR2 as in Lemma 4.46 because f � (f(x) , f(y) )  is an 
algebra homomorphism. If Axy == JR2 for all x ,  y, then Lemmas 4.48 and 4.49 imply 
that A == C(X, IR) . Otherwise, there exist x, y for which Axy is a proper subalgebra 
of JR2 . It cannot be { (0 , 0) } or the linear span of ( 1 ,  1 )  because A separates points , 
so by Lemma 4.46 Axy is the linear span of ( 1 , 0) or (0 , 1 ) .  In either case there 
exi sts xo E X such that f(xo ) == 0 for all f E A. There is only one such x0 since 
A separates points, so if neither x nor y i s x0 , we have Axy == JR2 . Lemmas 4.48 
and 4.49 now imply that A = { !  E C(X, IR) : f(x0 ) == 0} .  Finally, if A contains 
constant functions , there is no x0 such that f ( x0 ) == 0 for al l f E A, so A must equal 
C(X, IR) . 1 
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We have stated the Stone-Weierstrass theorem in the form that is most natural for 
the proof. However, in applications one is typically dealing with a subalgebra 23 of 
C(X, JR) that is not closed, and one appl ies the theorem to A == 23 .  The resulting 
restatement of the theorem is as follows : 

4.50 Corollary. Suppose 23 is a subalgebra of C(X, JR) that separates points. If 
there exists xo E X such that f(xo )  == 0 for all f E 23, then 23 is dense in 
{! E C(X, JR) : f (xo ) == 0}. Otherwise, 23 is dense in C(X, JR). 

The classical Weierstrass approximation theorem is the special case of this corol
lary where X is a compact subset of IRn and 23 is the algebra of polynomials on lRn 
(restricted to X); here 23 contains the constant functions , so the conclusion is that it 
is dense in C(X, JR) . 

The Stone-Weierstrass theorem, as it stands, is false for complex-valued functions. 
For example, the algebra of polynomials in one complex variable is not dense in C ( K) 
for most compact subsets K of C. (In particular, if K0 =/= 0, any uniform limit of 
polynomials on K must be holomorphic on K0.) Here we shall give a simple proof 
that the function f ( z) == z cannot be approximated uniformly by polynomials on the 
unit circle {eit :  t E [0 , 27r] } .  If P(z) == E� aj zJ , then 

Thus , abbreviating f(eit ) and P(eit ) by f and P, since I l l == 1 on the unit circle we 
have 

{21r 
27f = J 0 f f dt < 

{21r {27r 
Jo 

(! - P)f dt + Jo 
JP dt 

{27r {27r 
Jo 

(! - P)f dt < Jo 
I f - P I dt < 21T I I f - P l l u · 

Therefore, I I  f - Pl lu  > 1 for any polynomial P. 
There is, however, a complex version of the Stone-Weierstrass theorem. 

4.51 The Complex Stone-Weierstrass Theorem. Let X be a compact Hausdorff 
space. If A is a closed complex subalgebra of C(X) that separates points and is 
closed under complex conjugation, then either A == C(X) or A == {!  E C(X) : 
f (xo ) == 0} for some xo E X. 

Proof. Since Re f == (! + f) /2 and Im f == (! - f) /2i , the set AR of real and 
imaginary parts of functions in A is a subalgebra of C (X, 1R) to which the Stone
Weierstrass theorem applies . Since A == {!  + ig : / , g E AR } , the desired result 
follows . 1 

There is also a version of the Stone-Weierstrass theorem for non compact LCH 
spaces . We state this result for real functions ; the corresponding analogue of Theorem 
4.5 1 for complex functions is an immediate consequence. 
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4.52 Theorem. Let X be a noncompact LCH space. If A is a closed subalgebra of 
C0 (X, JR) (== C0 (X) n C(X, IR)) that separates points, then either A == Co (X, JR) 
or A == {f E Co (X, JR) : f (xo ) == O} for some xo E X. 

The proof is outlined in Exercise 67. 

Exercises 

66. Let 1 - E� cntn be the Maclaurin series for ( 1  - t) 112 . 

a. The series converges absolutely and uniformly on compact subsets of (- 1 ,  1 ) ,  
as does the termwise differentiated series - E� ncntn- 1 . Thus, if f (t) == 
1 - E� Cntn , then f' (t) == - E� ncntn- 1 . 

b. By explicit calculation, f (t ) == -2( 1 - t )f' (t) , from which it follows that 
( 1 - t) - 112 f (t) is constant. Since f(O) == 1 ,  f (t) == ( 1 - t) 1 12 . 

67. Prove Theorem 4.52. (If there exists xo E X  such that f (xo ) == 0 for all f E A, 
let Y be the one-point compactification of X \  { x0 } ;  otherwise let Y be the one-point 
compactification of X. Apply Proposition 4.36 and the Stone-Weierstrass theorem 
on Y.) 
68. Let X and Y be compact Hausdorff spaces . The algebra generated by functions 
of the form f(x , y) == g (x)h (y) ,  where g E C(X) and h E C(Y) , is dense in 
C(X X Y) . 

69. Let A be a nonempty set, and let X == [0 , 1 ] A . The algebra generated by the 
coordinate maps 1r a : X � [0 , 1 ] (a E A) and the constant function 1 is dense in 
C(X) .  
70. Let X be a compact Hausdorff space . An ideal in C(X, JR) is a subalgebra J of 
C(X, JR) such that if f E J and g E C(X, JR) then fg E J .  

a. If J is an ideal in C(X, JR) ,  let h(j ) == { x E X : f (x) == 0 for all f E J } .  
Then h(J ) is a closed subset of X,  called the hull of J .  
b. If E c X, let k(E) == { f  E C(X, JR) : f (x) == 0 for al l x E E} . Then k(E) 
is a closed ideal in C(X, JR) ,  called the kernel of E. 
c. If E c X, then h(k (E) )  == E. 
d. If J is an ideal in C(X, JR) , then k(h(J ) )  == J .  ((Hint: k(h(j ) )  may be 
identified with a subalgebra of C0 (U, JR) where U == X \  h(J ) .) 
e. The closed subsets of X are in one-to-one correspondence with the closed 
ideals of C(X, JR) .  

71. (This is a variation on the theme of Exercise 70; i t  does not use the Stone
Weierstrass theorem.) Let X be a compact Hausdorff space, and let M be the set of 
all nonzero algebra homomorphisms from C(X, JR) to JR. Each x E X defines an 
element x of M by x(f) == f(x) . 

a. If ¢ E M, then {!  E C(X, JR) : ¢(!) == 0} is a maximal proper ideal in 
C(X, JR) . 
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b. If J is a proper ideal in C(X, JR) ,  there exists x0 E X such that f(x0 ) == 0 
for all f E J .  (Suppose not; construct an f E J with f > 0 everywhere and 
conclude that 1 E J .  This requires no deep theorems .) 
c. The map x ---+ x is a bijection from X to M. 
d. If M is equipped with the topology of pointwise convergence, then the map 
x � x is a homeomorphism from X to M. (Since M is defined purely alge
braical ly, it follows that the topological structure of X is completely determined 
by the algebraic structure of C(X, JR) .) 

4.8 EMBEDDINGS IN CU BES 

We now present a technique for embedding topological spaces in products of intervals 
and discuss some of its appl ications . (These results will not be used elsewhere in this 
book.) Throughout this section we shall denote the unit interval [0 , 1] by I, and if A 
is any non empty set, we shall call the product space I A a cube. 

If X is a topological space and 1' c C (X, I) , we say that 1' separates points 
and closed sets if for every closed E c X and every x E Ec there exists f E 1' 
such that f ( x) tt f (E) . If :J separates points and closed sets , there is another 
family 9 c C(X, I) with the following slightly stronger property : For every closed 
set E C X and every x E Ec there exists g E 9 with g(x) == 1 and g == 0 on 
E. (Indeed, if f E 1' satisfies f(x) tt f(E) , take g == ¢ o f where ¢ E C(I,  I) , 
¢(f(x) ) == 1 ,  and ¢ == 0 on f (E) . ) It follows that a T1 space X admits a family 1' 
that separates points and closed sets iff X is completely regular. 

Each nonempty :J c C(X, I) canonically induces a map e : X � I9=" by the 
formula 1r f ( e ( x)) == f ( x) , where 1r f : I� � I is the coordinate map. We call e the 
map from X into the cube I9=" associated to 1'. (Evidently this construction can be 
generalized to target spaces other than I; see Exercise 20.) 

4.53 Proposition. Let X be a topological space, 1' C C(X, I) ,  and e : X � I9=" be 
the map associated to 1'. Then 

a. e is continuous. 
b. If� separates points, then e is injective. 
c. If X is T1 and 1' separates points and closed sets, then e is an embedding. 

Proof. (a) follows from Proposition 4. 1 1 , and (b) is obvious . Next, observe that 
if 1' separates points and closed sets and X is T1 , then e is injective by (b) and 
Proposition 4. 7 .  To prove the continuity of the inverse, suppose that U is open in X. 
If x E U, choose f E :J with f(x) tt f(Uc ) and let 

V = 7rf l [f (Uc)r = {p E IT : 7rJ(P) tfc J(Uc)} . 

Then V is open in I9=" and e (x) E V n e(X) c e (U) .  Thus e (U)  is a neighborhood 
of e (x) in e (X)  at every x E U, so e(U) is open in e (X) . It follows that e- 1 is 
continuous . I 
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4.54 Corollary. Every compact Hausdorff space is homeomorphic to a closed subset 
of a cube. 

Proof. By Proposition 4.25 and Urysohn's lemma, we can take 1' == C(X, I) . 1 

4.55 Corollary. A topological space is completely regular iff it is homeomorphic to 
a subset of a compact Hausdorff space. 

Proof. Proposition 4.53 , with 1' == C(X, I) , gives the "only if" implication; the 
converse is left to the reader (Exercise 72). 1 

A compactification of a topological space X is a pair (Y, ¢) where Y is a compact 
Hausdorff space and ¢ is a homeomorphism from X onto a dense subset of Y. 
(Frequently one identifies X with its image ¢(X ) c Y and then speaks simply of "the 
compactification Y of X.") For example, ( [- 1 ,  1 ] , tanh) is a compactification of JR, 
and the one-point compactification (X* , i ) of an LCH space X is a compactification 
in the present sense, where i : X � X* is the inclusion map. 

Suppose X is completely regular. According to Proposition 4.53 ,  if 1' c C(X, I) 
separates points and closed sets, e : X � I� is the associated embedding, and Y is 
the closure of e (X) in I�, then (Y, e) is a compactification of X. It has the property 
that if we identify X with its image e (X) ,  every f E 1' has a continuous extension to 
Y, which is unique since X is dense in Y. Indeed, the identification of X with e (X) 
turns f into the coordinate map 1r f l e (X ) ,  which extends to 1r f I Y .  Moreover, if f and 
g are bounded continuous functions on X that extend continuously to Y, obviously 
so are f + g and f g, and if {In }  is a uniformly convergent sequence of functions on 
X that extend continuously to Y, their extensions converge uniformly on Y since X 
is dense in Y, so f == lim f n also extends continuously. We have proved: 

4.56 Proposition. Suppose that 1' C C(X, I) separates points and closed sets. Let 
(Y, e) be the compactification of X associated to 1', and let A be the smallest closed 
subalgebra of BC(X) that contains 1'. Then every f E A has a continuous extension 
to Y. 

This result has a converse: see Exercise 73 . 
If X is a completely regular space, the compactification of X associated to v 

g:- == C (X, I) is called the Stone-Cech compactification of X and is denoted by 
({3X, e) , or simply by {3X if we identify X with e (X ) .  Every f E BC(X) extends 
continuously to {3X; in fact, a much more general result holds : 

4.57 Theorem. If X is a completely regular space, Y is a compa_E_t Hausdorff space, 
and ¢ E C(X, Y), then ¢ has a unique continuous extension ¢ to {3X - that is, -- --
there is a unique ¢ E C({3X, Y) such that ¢ o e == ¢. If (Y, ¢) is a compactification --
of X, then ¢ is surjective; if also every f E BC(X) extends continuously to Y (i. e. , --! == g o ¢ for some g E C(Y)), then ¢ is a homeomorphism. 

Proof. Let 1' == C(X, I) and 9 == C(Y, I) ,  and let ({3Y, i ) be the Stone-Cech 
compactification of Y. (That is , i : Y � I9 is the embedding associated to 9 ,  
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and {3Y == i (Y) ; {3Y is homeomorphic to Y since Y is compact. ) Given ¢ E 
C(X, Y) , define <I> :  I� � I9 by 1Tg (<I>(p) ) == 1Tgo¢ (p) .  The map <I> is continuous by 
Proposition 4. 1 1 , and 

1Tg (<I>(e (x) ) )  == 1Tgo¢ (e(x) ) == g (¢ (x) )  == 1Tg (i (¢(x) ) ) ,  

that is, <I> o e == i o ¢. It follows that <I>(e(X) )  == i (¢(X ) )  c {3Y and hence that 
<I>(f3X) c {3Y == {3Y . The situation is summarized in the following commutative 
diagram: 

� {3X 
. 4> 1/3X 1 

� {3Y 

Let ¢ == i- 1 o ( <I> If3X) .  Then ¢ o e == i- 1 o <I> o e == ¢, and uniqueness of ¢ 
is clear since e (X) is dense in {3X; thus the first assertion is proved. If (Y, ¢) is a ........ 
compactification of X, then ¢(X) is dense in Y; but then ¢({3X) is dense in Y and 

.......... 
also compact, so that ¢({3X) == Y. Finally, if every f E BC(X) is of the form 

........ 
g o ¢ for some g E C(Y) , then <I> is injective; hence ¢ is bijective and therefore, by 
Proposition 4.28, a homeomorphism. 1 

This theorem shows that {3X is the "largest" compactification of a completely 
regular space X, in the sense that every other compactification is a continuous image 
of it. At the other end of the scale, if X is locally compact, then 1' == Cc (X)n C(X, I) 
separates points and closed sets by Urysohn's lemma. A glance at the construction 
of the compactification (Y, e )  associated to this 1' shows that Y consists of e (X) 
together with the single point of I� all of whose coordinates are zero. It is then easy 
to verify that Y is homeomorphic to the one-point compactification of X constructed 
in §4.5 .  

As a final application of the embedding e : X � I�, we give a partial answer to 
the question : When is a topological space metrizable, that is, when is its topology 
defined by a metric? A necessary condition for X to be metrizable is that X be 
normal (Exercise 3) .  On the other hand: 

4.58 The Urysohn Metrization Theorem. Every second countable normal space 
is metrizable. 

Since every subset of a metrizable space is metrizable (with the same metric), 
this theorem is an immediate consequence of Proposition 4.53 and the following two 
facts, whose proofs are outlined in Exercises 76 and 77 : 

• If X is normal and second countable, there is a countable family 1' c C (X, I) 
that separates points and closed sets .  

• If 1' is countable, Is:- is metrizable. 
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Exercises 

72. Every subset of a completely regular space is completely regular in the relative 
topology. 

73. If X is a completely regular space, a subalgebra A of BC(X) is called com
pletely regular if (i) it is closed and contains the constant functions , and (ii) 
A n C (X, I) separates points and closed sets . 

a. If (Y, e) is a Hausdorff compactification of X, A y == { f o e : f E C (Y) } is 
a completely regular subalgebra of BC(X) .  
b. If (Y, e ) and (Y' , e' ) are Hausdorff compactifications of X such that Ay == 

Ay, , there is a homeomorphism ¢ :  Y � Y' such that ¢ o e == e' . (Adapt the 
proof of Theorem 4.57, which deals with the case Y == {3X .) 
c .  If (Y, e ) is the compactification of X associated to 1' c C(X, I) , then Ay is 
the smallest closed subalgebra of BC(X) that contains 1'. (Use Exercise 69.) 
d. The Hausdorff compactifications of X are in one-to-one correspondence with 
the completely regular subalgebras of BC(X) .  

v 
74. Consider N (with the discrete topology) as a subset of its Stone-Cech compacti-
fication {3N. 

a. If A and B are disjoint subsets of N, their closures in {3N are disjoint. (Hint: 
XA E C(N, I) .) 
b. No sequence in N converges in {3N unless it is eventually constant (so {3N is 
emphatical ly not sequentially compact) . 

75. Suppose X is a completely regular space . The set M of nonzero algebra 
homomorphisms from BC(X, JR.) to JR., equipped with the topology of pointwise 
convergence, is homeomorphic to {3X. (See Exercise 7 1 .  This realization of {3X is 
the natural one from the point of view of Banach algebra theory.) 

76. If X is normal and second countable, there is a countable family 1' c C (X, I) 
that separates points and closed sets. (Let � be a countable base for the topology. 
Consider the set of pairs (U, V) E � x � such that U c V, and use Urysohn 's 
lemma.) 

77. Let { (Xn , Pn ) } 1  be a countable family of metric spaces whose metrics take 
values in [0 ,  1 ] . (The latter restriction can always be satisfied; see Exercise 56b.) 
Let X == Jl� Xn . If x ,  y E X , say x == (x 1 , x2 , . . .  ) and y == (y1 , Y2 , . . .  ) , define 
p(x , y) == E� 2-nPn (xn , Yn ) · Then p is a metric that defines the product topology 
on X. 

4.9 N OTES AND REFERENCES 

The germ of the concept of topological space is clearly present in Riemann's lecture 
[ 1 1 3] on the foundations of geometry, delivered in 1 854, but another half century 
passed before the mathematical world was ready to consider abstract spaces in a 
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systematic way. The first attempt to construct an abstract framework for the study of 
limits and continuity was made in 1 906 by Frechet [52] , who introduced metric spaces 
as well as a more general class of quasi-topological spaces whose properties were 
defined in terms of sequential convergence . A few years later Hausdorff [ 68] devised 
axioms for neighborhoods of points that amount to the definition of a Hausdorff 
space, and he deduced from them many of the basic results of general topology. The 
usefulness of his point of view was quickly recognized, and it became the foundation 
for the further development of the subject. 

There are several good books to which the reader may refer for a more com
prehensive treatment of point set topology, including Bourbaki [20] , Dugundji [34] , 
Engelking [38] ,  Kelley [83] , and Nagata [ 1 02] . Engelking [38] contains extensive 
references and historical notes. 

§4 .2: Urysohn 's lemma and the Tietze extension theorem were both first proved 
in Urysohn [ 1 52] . Special cases of the latter had previously been obtained by several 
authors, including Tietze (see [ 1 52] for references). Examples of completely regular 
spaces that are not normal and regular spaces that are not completely regular, which 
are all rather complicated, were first constructed by Tychonoff [ 1 5 1 ] .  Particularly 
noteworthy is the existence of a regular space that admits no non constant continuous 
functions, a result due to Hewitt [73] .  Examples may also be found in the books cited 
above. 

§4 .3 : The theory of nets is sometimes called the Moore-Smith theory of conver
gence, after its originators [ 1 0 1 ] . Another general theory of convergence, invented 
by H. Cartan and publicized by Bourbaki , is based on the notion of filters . A filter in 
a set X is a family 1' c P(X) with the following properties: 

• If F E 1' and E :=) F, then E E 1'. 

• If E E 1' and F E 1', then E n F E 1' . 

• 0 tt 1'. 

If X is a topological space, a filter 1' in X converges to x E X if every neighborhood 
of x belongs to 1'. Filters and nets are related as follows. If (xa ) aEA is a net in X, 
its derived filter is the collection of all E c X such that (xa ) is eventually in E. 
On the other hand, if 1' is a filter, then 1' is a directed set under reverse inclusion, and 
a net (x F) FE'Y indexed by 1' is said to be associated to 1' if x F E F for all F E 1'. 
It is then easy to verify that a net (xa ) converges to x iff its derived filter converges 
to x, and a filter 1' converges to x iff all of its associated nets converge to x. See 
Bourbaki [20] or Dugundji [34] for more information . 

§4.4: The usage of the term "compact" is not completely standardized. In many 
older works the terms "compact" and "bicompact" were used to mean countably 
compact and compact, respectively, and some authors use "compact" and "quasi
compact" to mean compact Hausdorff and compact, respectively. Synonyms for 
"precompact" that are frequently found in the literature are "conditionally compact" 
and "relatively compact" ; the latter one is infelicitous because it suggests compactness 
in the relative topology, which is quite different. 
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§4.6 : Tychonoff [ 15 1 ] proved that [0 , l] A is compact for any set A; together with 
Corollary 4.54, which is in the same paper, this easily implies that any product of 
compact Hausdorff spaces is compact. The Tychonoff theorem in full generality is v 
due to Cech [23 ] .  The proof we have presented, which is simpler and more elegant 
than the older ones, is due to Chernoff [24] . 

The axiom of choice, usually in the form ofZom 's lemma, is an essential ingredient 
in al l the proofs of Tychonoff's theorem. It is an intriguing fact, discovered by Kelley 
[82], that Tychonoff's theorem in tum implies the axiom of choice. Here is the proof: 

Suppose that {Xa }aEA is a nonempty collection of nonempty sets . Pick a point w 
that is not an element of any X a ,  set X� == X a U  { w } ,  and define a topology on X� 
by declaring the open sets to be 0, X a, { w } ,  and X� . Evidently X� is compact, so 
Tychonoff's theorem implies that X* == IlaEA X� i s  compact. Let Fa == 1ra 1 (Xa ) · 
The sets Fa are closed, and by the axiom of choice for finite collections of sets 
which is provable from the other standard axioms of set theory - they have the 
finite intersection property. Indeed, given a finite set B c A, pick x f3 E X (3 for 
f3 E B; then n{3EB F{3 contains the point X E X such that 1r(3 (x) == Xf3 for f3 E B 
and 7ra (x ) == w for a f/:. B. By Proposition 4.2 1 ,  naEA Fa , which is precisely 
IlaEA Xa , i s  nonempty. 

By elaboration of this argument, one can deduce the axiom of choice from the 
special case of Tychonoff's theorem that X A is compact for any A if X is compact; 
see Ward [ 1 56] . 

The original results of Arzela and Ascoli had to do with functions on JR; see Arzela 
[6] . Other versions of the Arzela-Ascoli theorem, pertaining to the compactness of 
subsets of C(X, Y) under various hypotheses on X and Y, can be found in the books 
cited above and in Royden [ 12 1 ] . 

§4 .7 .  The Stone-Weierstrass theorem first appeared in the middle of a lengthy and 
difficult paper of Stone [ 144] . Later Stone [ 145] wrote a much-simplified exposition 
of the theorem and some of its applications , which still makes good reading. 

§4. 8. The history of this material begins with Urysohn [ 153] ,  where the metrization 
theorem is proved, essentially by the method we have outlined. The technique of 
embedding spaces in cubes is implicit in this paper, but it was first developed explicitly v 
in Tychonoff [ 15 1 ] .  The Stone-Cech compactification, in tum, is implicit in the latter v 
paper, but it was first described explicitly and investigated by Stone [ 144] and Cech 
[23] .  

It is not hard to show that every second countable regular space is normal (see 
Kelley [82, Lemma 4. 1 ] ;  consequently, the hypothesis of normality in the Urysohn 
metrization theorem can be replaced by regularity. Necessary and sufficient condi
tions are known for an arbitrary topological space to be metrizable, but they are not as 
readily verifiable as the conditions in Urysohn 's theorem. See the books cited above. 

Occasionally the term "compactification" is used to mean a continuous injection 
¢ : X � Y from a topological space X onto a dense subset of a compact space 
Y without the requirement that it be an embedding. Such "compactifications" arise 
from subalgebras of C (X) that separate points but are not completely regular in 
the sense of Exercise 73 . An example is provided by the algebra of "uniformly 
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almost periodic" functions on JR., which is the algebra generated by the functions 
f>. ( x) == ei>.x

, ,\ E JR.; the associated "compactification" of JR. is known as the Bohr 
compactification . See Folland [47, §4.7] . 





Elements of Functional 
Analysis 

"Functional analysis" is the traditional name for the study of infinite-dimensional 
vector spaces over JR. or C and the linear maps between them. What distinguishes this 
from mere linear algebra is the importance of topological considerations. On finite
dimensional vector spaces there is only one reasonable topology, and linear maps are 
automatically continuous, but in infinite dimensions things are not so simple. (As 
we have already observed, if {fn } is a sequence of functions on JR., there are many 
things one can mean by the statement "f n --7 f.") As our aim in this chapter is only 
to give a brief introduction to the subject, we shall restrict attention - except in §5 .4 
- to topologies defined by norms on vector spaces. 

5.1  NORMED VECTOR SPACES 

Let K denote either JR. or <C, and let X be a vector space over K. We denote the zero 
element of X simply by 0, relying on context to distinguish it from the scalar 0 E K. 
By a subspace we shall always mean a vector subspace. If x E X, we denote by K x 
the one-dimensional subspace spanned by x. Also, if M and N are subspaces of X, 
M + N denotes the subspace {x + y : x E M, y E N} . 

A seminorm on X i s a function x � l l x l l  from X to [0 , oo) such that 

• l lx + Y l l < l l x l l  + I I Y I I  for all x ,  y E X (the triangle inequality), 

• I I Ax i l == I A I l l x l l  for all x E X and A E K. 
151 
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The second property clearly implies that 1 1 0 1 1  == 0. A seminorm such that l l x l l  == 0 
only when x == 0 is called a norm, and a vector space equipped with a norm is called 
a normed vector space (or normed linear space) . 

If X is a normed vector space, the function p(x , y) == l l x - Y l l  is a metric on X, 
since 

l l x - z l l  < l l x - Y l l  + I I Y - z l l , l l x - Y l l  == l l (- 1 ) (x - Y) l l  == I I Y - x l l . 
The topology it defines is called the norm topology on X. Two norms I I  · ! 1 1 and 
I I · 1 1 2 on X are called equivalent if there exist C1 , C2 > 0 such that 

(x E X) . 

Equivalent norms define equivalent metrics and hence the same topology and the 
same Cauchy sequences. 

A normed vector space that is complete with respect to the norm metric is called 
a Banach space. (Every normed vector space can be embedded in a Banach space 
as a dense subspace. One way to do this is to mimic the construction of JR. from Q 
via Cauchy sequences ; we shall present a simpler way in §5.2 .) The following is a 
useful criterion for completeness of a normed vector space. If { Xn } is a sequence in 
X, the series I:� Xn is said to converge to x if I:� Xn � x as N � oo, and it is 
called absolutely convergent if I:� l l xn I I  < oo. 

5.1 Theorem. A normed vector space X is complete iff every absolutely convergent 
series in X converges. 

Proof If X is complete and I:� l l xn I I < oo, let SN == 2:� Xn . Then for 
N > M we have 

N 
I I SN - SM I I < L l lxn l l  � 0 as M, N � oo , 

M+l 
so the sequence { SN} is Cauchy and hence convergent. Conversely, suppose that 
every absolutely convergent series converges, and let { xn } be a Cauchy sequence. 
We can choose n1 < n2 < · · · such that l l xn - xm l l < 2-j for m, n > nj . Let 
Yl == Xn 1 and Yj == XnJ - Xni - I for j > 1 .  Then E� Yj == Xnk ,  and 

00 00 

L I I Yj I I  < I I Yl l l  + L 2-j == I I Yl I I  + 1 < oo , 

1 1 

so lim Xnk == I:� Yj exists. But since { Xn } is Cauchy, it is easily verified that { Xn } 
converges to the same limit as { Xnk } . 1 

We have already seen some examples of Banach spaces. First, if X is a topolog
ical space, B (X) and BC (X ) are Banach spaces with the uniform norm l l f l l u  == 

supx E X  l f (x) l . Second, if (X, M, JL) is a measure space, L1 (JL) is a Banach space 
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with the L 1  norm l l f l l 1 == J I I I dJ.-t. (Observe that I I  · l h  i s  only a seminorm if we 
think of £1 (J.-t) as consisting of individual functions, but it becomes a norm if we 
iden tify functions that are equal a. e.) That £1 (J.-t) is complete follows from Theorems 
2.25 and 5 . 1 .  Indeed, if 2::� l l fn lh < oo, Theorem 2.25 shows that f == 2::� fn 
exists a.e . ,  and 

N oo J f - L fn dp, < L J I fn i  dp, ----+ 0 as N ----+ 00 .  
1 N+1 

More examples will be found in Exercises 8-1 1  and in subsequent sections. 
If X and 1j are normed vector spaces, X x 1j becomes a normed vector space when 

equipped with the product norm 

I I  ( x ,  Y) I I == max ( I I  x I I , I I Y I I ) · 
(Here, of course, l l x l l  refers to the norm on X while I I Y I I  refers to the norm on 1j .) 
Sometimes other norms equivalent to this one, such as l l (x , y ) l l == l l x l l  + I I Y I I or 
l l (x , Y) l l  == ( l l x l l 2 + I I Y I I 2 ) 1 12 , are used instead. 

A related construction is that of quotient spaces . If M is a vector subspace of 
the vector space X, it defines an equivalence relation on X as follows : x "' y iff 
x - y E M. The equivalence class of x E X is denoted by x + M, and the set of 
equivalence classes, or quotient space, is denoted by XjM. X/M is a vector space 
with vector operations (x + M) + (y +M) == (x +y) +M and A(x +M) == (Ax ) + M. 
If X i s  a normed vector space and M is closed, X/M inherits a norm from X called 
the quotient norm, namely 

l l x + Mil == inf l l x + Y l l ·  
y E M  

See Exercise 12 for a more detailed discussion. 
A linear map T : X � 1j between two normed vector spaces is called bounded if 

there exists C > 0 such that 

I ITx l l < Cl l x l l  for all x E X.  

This is different from the notion of boundedness for functions on a set, according to 
which T would be bounded if I I Tx l l  < C for all x. Clearly no nonzero linear map 
can satisfy the latter condition, since T( Ax) == ATx for all scalars A. The present 
definition means that T is bounded on bounded subsets of X. 

5.2 Proposition. If X and � are normed vector spaces and T : X --4 � is a linear 
map, the following are equivalent: 

a. T is continuous. 
b. T is continuous at 0. 
c. T is bounded. 

Proof That (a) implies (b) is trivial .  If T is continuous at 0 E X, there i s  a 
neighborhood U of 0 such that T(U) c {y E � : I I Y I I  < 1 } ,  and U must contain 
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a ball B == { x E X : l l x l l < 8} about 0; thus I ITx l l  < 1 when l l x l l < 8. Since 
T commutes with scalar multiplication, it follows that I !Tx l l  < a8- 1 whenever 
l l x l l  < a, that is, I I Tx l l  < 8- 1 l l x l l . This shows that (b) implies (c). Finally, 
if I !Tx l l  < Cl l x l l for all x, then I ITx 1 - Tx2 l l  == I IT(x 1 - x2 ) I I < E whenever 
l lx l - x2 1 1 < c- 1 E, so that T is continuous . I 

If X and � are normed vector spaces, we denote the space of all bounded linear 
maps from X to � by L(X, � ) .  It is easily verified that L(X, � )  is a vector space and 
that the function T r--t I I  T I I  defined by 

(5 .3) 

l i T I I  == sup { I I Tx l l  : l ! x l l  == 1 } 
== sup { \ ITx l l . 

X 
-1- o} 

l l x l l . 

== inf { C : I ITx l l < Cl lx l l  for all x } 

is a norm on L (X,  � ) ,  called the operator norm (Exercise 2) . We always assume 
L(X,  � )  to be equipped with this norm unless we specify otherwise. 

5.4 Proposition. If� is complete, so is L(X, � ) . 

Proof Let {Tn } be a Cauchy sequence in L(X, � ) .  If x E X, then {Tn x} is 
Cauchy in � because I ITn x - Tm x l l < I ITn - Tm l l  l l x l l . Define T : X � � by 
Tx == lim Tnx . We leave it to the reader (Exercise 3) to verify that T E L(X, � )  (in 
fact, I I T I I == lim I ITn l l ) and that I ITn - T i l � 0. 1 

Another useful property of the operator norm is the following. If T E L(X , � )  
and S E L(� , Z) , then 

I I STx l l  < I I S I I  I I Tx l l  < I I S I I I IT I I l l x l l , 

so that ST E L(X, Z) and I I ST I I < I I S I I I IT I I . In particular, L(X, X) is an algebra. 
If X is complete, L(X, X) is in fact a Banach algebra: a Banach space that is also 
an algebra, such that the norm of a product is at most the product of the norms. 
(Another example of a Banach algebra is BC(X) , where X is a topological space, 
with pointwise multiplication and the uniform norm.) 

If T E L(X, � ) ,  T is said to be invertible, or an isomorphism, if T is bijective 
and r- 1 is bounded (in other words, I ITx l l > Cl lx l l for some C > 0) . T is called an 
isometry if I !Tx l l == l lx l l  for all x E X. An isometry is injective but not necessarily 
surjective; it is, however, an isomorphism onto its range . 

Exercises 
1 .  If X is a normed vector space over K ( == 1R or <C), then addition and scalar 
multiplication are continuous from X x X and K x X to X. Moreover, the norm is 
continuous from X to [0 , oo ) ; in fact, l l l x l l  - I I Y I I I  < l lx - Y l l · 
2. L(X, � )  is a vector space and the function I I · I I defined by (5.3) i s  a norm on it. 
In particular, the three expressions on the right of (5 .3) are always equal . 



3. Complete the proof of Proposition 5 .4. 
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4. If X , � are normed vector spaces, the map (T, x) � Tx i s  continuous from 
L (X , � )  X X to � .  (That i s , if Tn --+ T and Xn --+ x then TnXn --+ Tx.) 
5. If X i s  a normed vector space, the closure of any subspace of X is a subspace. 

6. Suppose that X is a finite-dimensional vector space. Let e 1 , . . .  , en be a basis 
for X, and define I I 2:� aj ej lh == 2:� l aj I · 

a. I I  · I I  1 i s  a norm on X. 
b. The map ( a1 , . . . , an ) � 2:� aj ej i s  continuous from Kn with the usual 
Euclidean topology to X with the topology defined by I I  · I I I · 
c. { x E X : l l x lh == 1 }  i s  compact in the topology defined by I I  · l h . 
d. All norms on X are equivalent. (Compare any norm to I I  · l h .) 

7. Let X be a Banach space. 
a. If T E L(X ,  X) and I I I - T i l  < 1 where I is the identity operator, then T is 
invertible ; in fact, the series 2:� (I - T)n converges in L(X , X) to T-1 . 
b. If T E L(X , X) i s  invertible and l i S - T i l  < I I T- 1 1 1 - 1 , then S is invertible. 
Thus the set of invertible operators is open in L(X, X) . 

8. Let (X, M) be a measurable space, and let M(X) be the space of complex 
measures on (X, M) . Then I I JL I I  == I JL I (X) i s  a norm on M(X) that makes M(X)  
into a Banach space. (Use Theorem 5 . 1 .) 

9. Let Ck ( [O , 1] ) be the space of functions on [0 , 1 ] possessing continuous deriva
tives up to order k on [0 , 1 ] , including one-sided derivatives at the endpoints . 

a. If f E C( [O , 1] ) ,  then f E Ck ( [O ,  1] ) iff f i s k times continuously differen
tiable on (0 , 1 )  and limx�o f(j ) (x) and limx/1 JU) (x) exist for j < k . (The 
mean value theorem is useful .) 
b. 1 1 ! 1 1 == 2:� l l f(j ) l l u  is a norm on Ck ( [O ,  1 ] ) that makes Ck ( [O ,  1 ] ) into a 
Banach space. (Use induction on k. The essential point is that if {! n } c 
C1 ( [0 ,  1] ) ,  fn --+ f uniformly, and f� --+  g uniformly, then f E C1 ( [0 , 1 ] ) and 
f' , g. The easy way to prove this is to show that f(x) - f(O) == fo

x g(t) dt. ) 
10. Let Lk ( [O ,  1 ] ) be the space of al l f E ck- 1 ( (0 , 1 ] ) such that f(k- l ) i s  absolutely 
continuous on [0 , 1] (and hence f(k) exists a.e. and is in L1 ( [0 ,  1] ) ) . Then 1 1 ! 1 1  == 
2:� J01 I JU) (x) l dx is a norm on Ll ( [O ,  1] ) that makes Ll ( [O ,  1 ] ) into a Banach space. 
(See Exercise 9 and its hint.) 

1 1. If 0 < a < 1, let Aa ( [O ,  1] ) be the space of Holder continuous functions of 
exponent a on [0 , 1] . That is ,  f E Aa ( [O ,  1 ] ) iff I I ! I I Aa < oo, where 

I I J I I Aa = l f (O) I + sup 
x ,yE (0 , 1) ,  x-j.y 

l f (x) - f(y) l 
l x - Y la 

a. I I  · I I Aa is a norm that makes Aa ( [O ,  1] ) into a Banach space . 
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b. Let Aa ( [O , 1 ] ) be the set of all f E Aa ( [O ,  1] ) such that 

1 / (
l
x) - �(y ) l ----> 0 as x ----> y ,  for all y E [0 ,  1] . x - y a 

If a: < 1 ,  Aa ( [O ,  1 ] ) i s  an infinite-dimensional closed subspace of Aa ( [O ,  1 ] ) .  If 
a ==  1, Aa ( [O ,  1] ) contains only constant functions .  

12. Let X be a normed vector space and M a proper closed subspace of X. 
a. l l x + M i l  == inf{ l l x + Y l l  : y E M} is a norm on XjM. 
b. For any E > 0 there exists x E X such that l l x l l  == 1 and l l x + M i l  > 1 - E. 
c .  The projection map 1r(x) == x + M from X to X/M has norm 1 .  
d .  If X i s  complete, so is X jM. (Use Theorem 5 . 1 . ) 
e. The topology defined by the quotient norm is the quotient topology as defined 
in Exercise 28 in §4.2 . 

13. If I I  · I I  i s  a seminorm on the vector space X, let M == { x E X : l l x l l  == 0} .  Then 
M is a subspace, and the map x + M � l l x l l  i s  a norm on XjM. 
14. If X is a normed vector space and M is a nonclosed subspace, then l l x + M i l , as 
defined in Exercise 1 2 , i s  a seminorm on X jM. If one divides by its null space as in 
Exercise 1 3 ,  the resulting quotient space is isometrically isomorphic to X jM. (Cf. 
Exercise 5.) 

15. Suppose that X and � are normed vector spaces and T E L(X, � ) .  Let N(T) == 

{x E X :  Tx == 0} . 
a. N(T) i s  a closed subspace of X. 
b. There is a unique S E L(X/N(T) , � ) such that T == S o  1r where 1r : X --+ 

X /M i s  the projection (see Exercise 1 2) .  Moreover, I I  S l l  == l iT I I . 
16. The purpose of thi s  exercise i s  to develop a theory of integration for functions 
with values in a separable Banach space. Let (X, M, J.-t) be a measure space, � a 
separable Banach space, and L'a the space of all (M, 13}) ) -measurable maps from 
X to � ' and F'a the set of maps f : X --+ � of the form f(x) == 2:� XEj (x)yj 
where n E N, Yj E � ' Ej E M, and J.-t(Ej ) < oo. If f E L}J, since y � I I Y I I 
i s  continuous (Exercise 1 ) , x � l l f (x) l l  i s  (M, 23JR) -measurable, and we define 
l l f l l 1 == J l l f (x) l l  dJ.-t(x) . Finally, let L� == {! E L}J : l l f lh < oo } . 

a. L'a i s  a vector space, F'a and L� are subspaces of it, F'a c L� , and I I · l l 1 i s  a 
seminorm on L� that becomes a norm if we identify two functions that are equal 
a. e. 
b. Let {Yn}1 be a countable dense set in � .  Given E > 0, let B� == {y E � : 
I I Y - Yn I I  < E l l Yn I I } . Then u� B� => � \ {0} .  
c. Iff E L� , there i s  a sequence { hn } C F'a with hn --+ f a.e. and l l hn - J lh --+ 

0. (With notation as in (b), let Anj == B�/j \ U�-\ Blr(j and Enj == f- 1 (Anj ) , 
and consider 9j == 2:� 1 YnXEn1 .) 
d. There is a unique linear map J : L� --+ � such that J YXE == J.-t(E)y for 
y E � and E E M  (J.-t(E) < oo), and I I  J ! I I  < l l f lh · 
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e. The dominated convergence theorem: If {fn } i s a sequence in L� such that 
fn -t f a.e. , and there exists g E £1 such that l l fn (x) I I  < g(x) for all n and a.e . 
x, then J fn -t J f. 
f. If Z is a separable Banach space, T E £(1) , Z) , and f E L� , then T o  f E L� 
and J T o  f == T(f f) . 

5.2 LI NEAR FU NCTIONALS 

Let X be a vector space over K, where K == 1R or <C. A linear map from X to K i s  
called a linear functional on X. If X is a normed vector space, the space L(X ,  K) 
of bounded linear functionals on X i s  called the dual space of X and is denoted by 
X* . According to Proposition 5 .4, X* is a Banach space with the operator norm. 

If X is a vector space over <C, it is also a vector space over JR., and we can consider 
both real and complex linear functionals on X, that is , maps f : X -t 1R that are 
linear over JR. and maps f : X -t C that are linear over <C. The relationship between 
the two is as follows: 

5.5 Proposition. Let X be a vector space over C. Iff is a complex linear functional 
on X and u == Re f, then u is a real linear functional, and f ( x) == u ( x) - i u ( ix) for 
all x E X. Conversely, zfu is a real linear functional on X and f : X -t <C is defined 
by f(x) == u(x) - iu(ix), then f is complex linear. In this case, zfX is normed, we 
have I I  u I I  == I I  f I I · 

Proof. Iff i s  complex linear and u == Re f, u is clearly real linear and Im f ( x) = 
- Re[if(x)] = -u(ix) ,  so f(x) = u(x) - iu(ix) . On the other hand, if u is real 
linear and f(x) == u(x) - iu (ix) ,  then f is clearly linear over JR., and f(ix) == 
u( ix) - iu(-x) == u ( ix) + iu (x) == if(x ) , so f i s  also linear over <C. Finally, if X is 
normed, since l u (x) l == I Re f(x) l < l f (x) l we have ! l u l l  < l l f l l . On the other hand, 
if f(x) =/= 0, let a ==  sgn f(x) . Then l f (x) l == af(x) == f(ax) == u(ax) (since 
f(ax) i s  real) ,  so l f (x) l < l l u l l l l ax l l  == l l u l l l l x l l , whence l l f l l  < ! l u l l . 1 

It i s  not obvious that there are any nonzero bounded linear functionals on an 
arbitrary normed vector space. The fact that such functionals exist in great abundance 
i s  one of the fundamental theorems of functional analysis. We shall now present thi s  
result in  a more general form that has other important applications. 

If X is a real vector space, a sublinear functional on X is a map p : X -t JR. such 
that 

p(x + y) < p(x) + p(y) and p(Ax) = Ap(x) for all x ,  y E X  and A >  0. 

For example, every seminorm is a sublinear functional . 

5.6 The Hahn-Banach Theorem. Let X be a real vector space, p a sublinear func
tional on X, M a subspace of X, and f a linear functional on M such that f ( x) < p( x) 
for all x E M. Then there exists a linear functional F on X such that F(x) < p(x) 
for all x E X and FIM == f. 
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Proof. We begin by showing that if x E X \ M, f can be extended to a linear 
functional g on M + IRx satisfying g (y) < p(y) there . If Yl ,  Y2 E M, we have 

or 

Hence 

sup { f(y) - p(y - x) : y E M} <  inf {p(x + y) - f(y) : y E M} . 

Let a be any number satisfying 

sup { f(y) - p(y - x) : y E M} < a <  inf {p(x + y) - f(y) : y E M} 

and define g : M + IRx --+ IR by g(y + ..\x) == f(y) + ..\a. Then g is clearly linear, 
and g iM == f, so that g(y) < p(y) for y E M. Moreover, if ,\ > 0 and y E M, 

g (y + ..\x) == ..\ [f(yl..\) + a] < ..\ [f(yl..\) + p(x + (yj..\) ) - f(yl..\) ] == p(y + ..\x) , 
whereas if ,\ == -J.-t < 0, 

g (y + ..\x) == J.-l [f (y I J.-l) - a] < J.-l [f (y I J.-l) - f (y I J.-l) + p( (y I J.-l) - x)] == p(y + ..\x) . 
Thus g(z) < p(z) for all z E M + lRx. 

Evidently the same reasoning can be appl ied to any linear extension F of f 
satisfying F < p on its domain, and it shows that the domain of a maximal linear 
extension satisfying F < p must be the whole space X. But the family 1' of all 
linear extensions F of f satisfying F < p is partially ordered by inclusion (maps 
from subspaces of X to IR being regarded as subsets of X x JR) . Since the union of 
any increasing family of subspaces of X is again a subspace, one easily sees that the 
union of a linearly ordered subfamily of 1' lies in 1'. The proof is therefore completed 
by invoking Zorn's lemma. 1 

If p is a seminorm and f : X --+ 1R is linear, the inequality f < p is equivalent to 
the inequality l f l < p, because l f(x) l == ±f(x) == f(±x) and p(-x) == p(x) .  In 
this si tuation the Hahn-Banach theorem also applies to complex linear functionals : 

5.7 The Complex Hahn-Banach Theorem. Let X be a complex vector space, p a 
seminorm on X, M a subspace of X, and f a complex linear functional on M such 
that I f ( x) I < p( x) for x E M. Then there exists a complex linear functional F on X 
such that I F(x ) l < p(x) for all x E X  and FIM == f. 

Proof. Let u == Re f. By Theorem 5 .6 there is a real l inear extension U of u to X 
such that I U(x) l < p(x) for all x E X. Let F(x) == U(x) - iU(ix) as in Proposition 
5 .5 .  Then F is a complex linear extension off , and as in the proof of Proposition 5 .5 ,  
if a == sgn F(x) we have I F(x) I == aF(x) == F(ax) == U( ax) < p( ax) == p(x ) . 1 
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From now on until §5 .5 ,  all of our results apply equally to real or complex vector 
spaces ,  but for the sake of definiteness we shall assume that the scalar field is <C. 
The principal applications of the Hahn-Banach theorem to normed vector spaces are 
summarized in the following theorem. 

5.8 Theorem. Let X be a normed vector space. 
a. IfM is a closed subspace of X and x E X \  M, there exists f E X* such that 

f (x ) =/= 0 and J IM =  0. ln fact, if8  = infyEM I I x - y l l , f can be taken to 
satisfY I I I I I  = 1 and f (x ) = 8. 

b. lfx =/= 0 E X, there exists f E X* such that 1 1 ! 1 1  = 1 and f(x) = l l x l l . 
c. The bounded linear functionals on X separate points. 
d. If X E X, define X : X* --+ <C by x(f) = f (X). Then the map X � X is a linear 

isometry from X into X** (the dual of X* ). 

Proof. To prove (a) , define f on M + <Cx by f(y + Ax) = A8 (y E M, A E <C). 
Then f(x) = 8, J IM =  0, and for A =/=  0, l f(y + Ax) I = I A I 8 < I A I I I A- 1y + x l l  = 
I I Y + Ax i l . Thus the Hahn-Banach theorem can be applied, with p(x) = l l x l l  and M 
replaced by M + CCx. (b) is the special case of (a) with M = {0} , and (c) follows 
immediately :  if x =/= y, there exists f E X* with f(x - y) =/= 0, i .e. , f(x) =/= f(y ) .  
As for (d), obviously x is a linear functional on X*  and the map x � x is linear. 
Moroever, l x(f) l = l f (x) l < 1 1 ! 1 1 l l x l l , so l l x l l  < l l x l l . On the other hand, (b) 
implies that l l x l l  > l l x l l . 1 

-... 
With notation as in Theorem 5. 8d, let X = {x : x E X} . Since X** i s  always 

-... -... 
complete , the closure X of X in X** i s  a Banach space, and the map x � x embeds 

"A" "A" 
X into X as a dense subspace. X i s  called the completion of X. In particular, if X i s  

-... -... 
itself a Banach space then X = X. -... 

If X is finite-dimensional, then of course X = X** ,  since these spaces have the 
same dimension. For infinite-dimensional Banach spaces it may or may not happen -... 
that X = X** ;  if it does, X is called reflexive. The examples of Banach spaces we 
have examined so far are not reflexive except in trivial cases where they turn out to be 
finite-dimensional . We shall prove some cases of this assertion and present examples 
of reflexive Banach spaces in later sections. 

Usually we shall identify x with x and thus regard X** as a superspace of X; 
reflexivity then means that X** = X. 

Exercises 

17. A linear functional f on a normed vector space X is bounded iff f- 1 ( {0})  is 
closed. (Use Exercise 1 2b. ) 

18. Let X be a normed vector space. 
a. If M i s  a closed subspace and x E X \  M then M + <Cx i s  closed. (Use 
Theorem 5 .8a.) 
b. Every finite-dimensional subspace of X is closed. 
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19. Let X be an infinite-dimensional normed vector space. 
a. There is a sequence { Xj } in X such that l l xJ I I  = 1 for all j and l l xJ - Xk I I  > � 
for j =/= k. (Construct Xj inductively, using Exercises 12b and 18 .) 
b. X is not locally compact. 

20. If M is a finite-dimensional subspace of a normed vector space X, there is a 
closed subspace N such that M n N = {0} and M + N = X. 
21. If X and � are normed vector spaces, define a : X* x � * --+ (X x � ) *  by 
a(f, g) (x , y ) = f(x) + g(y) .  Then a is an isomorphism which is isometric if we 
use the norm I I (x ,  y ) I I = max( l l x l l , I I Y I I ) on X x � ' the corresponding operator norm 
on (X x � ) * , and the norm I I (J, g) I I  = I I J I I  + 1 1 9 1 1  on X* x � * . 

22. Suppose that X and � are normed vector spaces and T E L(X, � ) .  
a. Define rt : � * --+ X* by rt J = J o T. Then rt E £(� * , X* ) and 
! ITt I I  = l iT I I . rt is called the adjoint or transpose of T. 
b. Applying the construction in (a) twice, one obtains rtt E L(X** , � ** ) .  If ...- --X and � are identified with their natural images X and � in X** and � * * , then 
rtt l x = T. 
c. Tt is injective iff the range of T is dense in � .  
d. If the range of rt is dense in X* , then T is injective ; the converse is true i f  X 
is reflexive . 

23. Suppose that X is a Banach space. IfM is a closed subspace of X and N is a closed 
subspace of X* , let M0 = {! E X* : J IM =  0} and Nj_ = {x E X :  J(x) = 0 for 
all f E N} . (Thus, if we identify X with its image in X** ,  Nj_ = W n X.) 

a. M0 and N j_ are closed subs paces of X* and X, respectively. 
b. (M0 )j_ = M and (Nj_ )0 � N. If X is reflexive, (Nj_ )0 = N. 
c. Let 1r : X --+ X/M be the natural projection, and define a : (X/M) * --+ X* 
by a(f) = f o 1r. Then a is an isometric isomorphism from (X/M) * onto M0, 
where X /M has the quotient norm. 
d. Define {3 : X* --+ M* by_{3(J) = J IM; then {3 induces a map {3 : X* /M0 

--+ 
JY(* as in Exercise 15 ,  and {3 is an isometric isomorphism. 

24. Suppose that X is a Banach space . 
...- --

a. Let X, (X* }be the natural images of X, X* in X** ,  X*** , and let X0 = { F E 
X*** : F IX =  0} .  Then (X*)n X0 = {0} and (X*)+ X0 = X** * .  
b. X i s  reflexive iff X* is reflexive. 

25. If X i s a Banach space and X* is separable , then X is separable. (Let {Jn }1 
be a countable dense subset of X* . For each n choose Xn E X with l l xn I I  = 1 and 
l fn (xn) l > � l l fn l l · Then the linear combinations of {xn}1 are dense in X.) Note: 
Separability of X does not imply separability of X* . 
26. Let X be a real vector space and let P be a subset of X such that (i) if x ,  y E P, 
then x + y E P, (i i) if x E P and A > 0, then Ax E P, (iii) if x E P and -x E P, 
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then x == 0 .  (Example : If X is a space of real-valued functions, P can be the set of 
nonnegative functions in X.) 

a. The relation < defined by x < y iff y - x E P is a partial ordering on X. 
b. (The Krein Extension Theorem) Suppose that M is a subspace of X such 
that for each x E X there exists y E M with x < y . If f is a linear functional 
on M such that f(x) > 0 for x E M n P, there is a linear functional F on X 
such that F(x) > 0 for x E P and FIM == f . (Consider p(x) == inf{f (y)  : y E 
M and x < y} .) 

5.3 TH E BAI RE CATEGORY TH EOREM AN D ITS CONSEQU ENCES 

In this section we present an important theorem about complete metric spaces and 
use it to obtain some fundamental results concerning linear maps between Banach 
spaces . 

5.9 The Baire Category Theorem. Let X be a complete metric space. 
a. If {Un}! is a sequence of open dense subsets of X, then n� Un is dense in 

X. 
b. X is not a countable union of nowhere dense sets. 

Proof. For part (a), we must show that if W is a nonempty open set in X, 
then W intersects n� Un . Since U1 n W is open and nonempty, it contains a ball 
B(ro ,  xo ) ,  and we can assume that 0 < r0 < 1 .  For n > 0, we choose Xn E X and 
rn E (0 , oo ) inductively as follows: Having chosen x1 and r1 for j < n, we observe 
that Un n B(rn- 1 , Xn- 1 ) is open and nonempty, so we can choose Xn , rn so that 
0 < rn < 2-n and B(rn , Xn ) c Un n B(rn- 1 , Xn- 1 ) .  Then if n, m > N, we see 
that Xn , Xm E B (rN , XN ) , and since rn --4 0, the sequence { xn } is Cauchy. As X 
is complete, x = lim Xn exists . Since Xn E B ( r N , x N ) for n > N we have 

for all N, and the proof is complete . 
As for (b), if {En} is a sequence of nowhere dense sets in X, then { (En )c } is a 

sequence of open dense sets . Since n(En)c =/= 0, we have U En c U En =/= X. 1 
We remark that since the conclusions of the Baire category theorem are purely 

topological , it suffices for X to be homeomorphic to a complete metric space. For 
example, the theorem applies to X = (0 , 1 ) ,  which is not complete with the usual 
metric but is homeomorphic to JR. 

The name of this theorem comes from Baire 's terminology for sets : If X is a 
topological space, a set E c X is of the first category, according to Baire, if E is a 
countable union of nowhere dense sets ; otherwise E is of the second category. Thus 
Baire's theorem asserts that every complete metric space is of the second category 
in itself. A more modem and more descriptive synonym for "of the first category" is 
meager. The complement of a meager set is called residual. 
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The Baire category theorem is often used to prove existence results :  One shows that 
objects having a certain property exist by showing that the set of objects not having 
the property (within a suitable complete metric space) is meager. For example, one 
can prove the existence of nowhere differentiable continuous functions in this way ; 
see Exercise 42. 

We turn to the applications of the Baire category theorem in the theory of linear 
maps. Some terminology : If X and Y are topological spaces , a map f : X --4 Y is 
called open if f ( U) is open in Y whenever U is open in X. If X and Y are metric 
spaces, this amounts to requiring that if B is a ball centered at x E X, then f (B) 
contains a ball centered at f ( x) . Specializing stil l further, if X and Y are normed 
linear spaces and f is linear, then f commutes with translations and di\ations; it 
follows that f is open iff f (B) contains a ball centered at 0 in Y when B is the ball 
of radius 1 about 0 in X. 

5. 10 The Open Mapping Theorem. Let X and 1j be Banach spaces. If T E 
L (X ,  �)  is surjective, then T is open. 

Proof. Let Br denote the (open) ball of radius r about 0 in X. By the preceding 
remarks, it will suffice to show that T( B1 ) contains a ball about 0 in 1j .  Since 
X = U� Bn and T is surjective, we have � = U� T(Bn) .  But � is complete and 
the map y � ny is a homeomorphism of � that maps T(B1 ) to T(Bn) ,  so Baire 's 
theorem implies that T(B1 ) cannot be nowhere dense . That is, there exist y0 E 1j and 
r > 0 such that the ball B(4r, Yo )  is contained in T(B1 ) . Pick Y1 = Tx1 E T(B1 ) 
such that I I Y1 - Yo I I  < 2r; then B(2r , Y1 ) C B(4r, Yo )  C T(B1 ) ,  so if I I Y I I < 2r, 

y = Tx1 + (y - Y1 ) E T (x1 + B1 ) c T(B2 ) . 
Dividing both sides by 2, we conclude that there exists r > 0 such that if I I Y I I  < r 
then y E T(B1 ) .  If we could replace T(B1 ) by T(B1 ) , perhaps shrinking r at the 
same time, the proof would be complete; we now proceed to accomplish this. 

Since T commutes with dilations, it follows that if I I Y I I  < r2-n , then y E 
T(B2-n ) . Suppose I I Y I I  < r /2; we can find x1 E B1;2 such that I I Y  -

Tx1 l l  < r /4, 
and proceeding inductively, we can find Xn E B2- n such that I I Y 

-
2::� Txj I I  < 

r2-n- 1 . Since X is complete, by Theorem 5 . 1 the series 2::� Xn converges, say to 
x. But then l l x l l  < 2::� 2-n == 1 and y = Tx. In other words, T(B1 ) contains all y 
with I I  y I I  < r /2, so we are done. 1 

5. 1 1  Corollary. !J X and � are Banach spaces and T E L(X,  ZJ) is bijective, then 
T is an isomorphism; that is, r-1 E L(� , X). 

Proof. If T is bijective, continuity of r- 1 is equivalent to the openness of T. 1 
For the next results we need some more terminology. If X and 1j are normed 

vector spaces and T is a linear map from X to � ,  we define the graph of T to be 

r(T) = { (x, y) E X  x � :  y = Tx} , 
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which is a subspace of X x 1j .  (From a strict set -theoretic point of view, of course, 
T and r(T) are identical ; the distinction is a psychological one.) We say that T is 
closed if r(T) is a closed subspace of X x � .  Clearly, if T is continuous, then T is 
closed, and if X and � are complete the converse is also true : 

5.12 The Closed Graph Theorem. If X and � are Banach spaces and T : X --4 � 
is a closed linear map, then T is bounded. 

Proof. Let 1r1 and 1r2 be the projections ofr(T) onto X and ZJ ,  that is, 1r1 ( x ,  Tx) == 
x and 1r2 (x , Tx) == Tx. Obviously 1r1 E L(r(T) , X) and 1r2 E L(r(T) , � ) .  S ince 
X and � are complete, so is X x � ' and hence so is r(T) since T is closed. The map 
1r1 is a bijection from r (T) to X, so by Corollary 5 . 1 1 , 1r1 1 is bounded. But then 
T == 1r2 o 1r11 is bounded. 1 

Continuity of a linear map T : X --4 1j means that if Xn --4 x then Txn --4 Tx, 
whereas closedness means that if Xn --4 x and Txn --4 y then y == Tx. Thus the 
significance of the closed graph theorem is that in verifying that Txn --4 Tx when 
Xn � x, we may assume that Txn converges to something, and we need only to 
show that the l imit is the right thing. This frequently saves a lot of trouble. 

The completeness of X and � was used in a crucial way in proving the open 
mapping theorem and hence also in proving the closed graph theorem. In fact, the 
conclusions of both of these theorems may fail if either X or � is incomplete ; see 
Exercises 29-3 1 .  

Our final result in this section is a theorem of almost magical power that allows 
one to deduce uniform estimates from pointwise estimates in certain situations. 

5.13 The Uniform Bounded ness Principle. Suppose that X and 1j are nonned vec
tor spaces and A is a subset of L(X, �) .  

a. lfsupTEA I ! Tx l l  < ooforall x in some nonmeager subset ofX, then supTEA l iT  I I  < 
00. 

b. IfX is a Banach space andsupTEA I ITx l l  < ooforall x E X, then supTEA I IT I I  < 
00. 

Proof. Let 

En == {x E X :  sup I ITx l l  < n} == n {x E X :  I ITx l l  < n} .  
TEA TEA 

Then the En 's are closed, so under the hypothesis of (a) some En must contain 
a nontrivial closed ball B(r, xo ) .  But then E2n ::) B(r, 0) ,  for if l l x l l  < r, then 
x - xo E En and hence 

I ITx l l < I IT (x - xo ) l l  + I ITxo l l  < 2n. 

In other words, I I Tx l l  < 2n whenever T E A and l l x l l  < r, so supTEA l iT I I  < 2njr. 
This proves (a) , and (b) follows by the Baire category theorem. 1 
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Exercises 

27. There exist meager subsets of 1R whose complements have Lebesgue measure 
zero. 

28. The Baire category theorem remains true if X is assumed to be an LCH space 
rather than a complete metric space. (The proof is similar; the substitute for com
pleteness is Proposition 4.2 1 . ) 

29. Let � == L 1 (f.-l) where 1-l is counting measure on N, and let X == {!  E � : 
I:� n l f ( n) I < oo}, equipped with the £1 norm. 

a. X is a proper dense subspace of � ;  hence X is not complete. 
b. Define T :  X --4 1:1 by Tf(n) == nf(n) . Then T is closed but not bounded. 
c. Let S == r- 1 . Then S : � --4 X is bounded and surjective but not open. 

30. Let � == C( [O ,  1 ] ) and X ==  C1 ( [0 ,  1 ] ) ,  both equipped with the uniform norm. 
a. X is not complete . 
b. The map ( d/ dx) : X --4 � is closed (see Exercise 9) but not bounded. 

31. Let X ,  � be Banach spaces and let S : X --4 � be an unbounded linear map (for 
the existence of which, see §5 .6) .  Let r(S) be the graph of S, a subspace of X x � .  

a. r( S) is not complete. 
b. Define T :  X --4 r(S) by Tx == (x , Sx) . Then T is closed but not bounded. 
c. r-1 : r( S) ---+ X is bounded and surjective but not open. 

32. Let I I  · l h and I I  · l l 2 be norms on the vector space X such that I I  · l h < I I  · l l 2 · If 
X is complete with respect to both norms, then the norms are equivalent. 

33. There is no slowest rate of decay of the terms of an absolutely convergent series ;  
that is, there is no sequence {an } of positive numbers such that I: an I en I < oo 
iff {en }  i s  bounded. (The set of bounded sequences is the space B (N) of bounded 
functions on N, and the set of absolutely summable sequences is £1 (f.-l) where 1-l is 
counting measure on N. If such an {an } exists, consider T : B(N) --4 £1 (f.-l) defined 
by T f(n) == anf (n) . The set of f such that f (n) == 0 for all but finitely many n is 
dense in L 1 (f.-l) but not in B(N) .) 
34. With reference to Exercises 9 and 10, show that the inclusion map of Ll ( [O ,  1 ] ) 
into ck- 1 ( [0 ,  1] ) is continuous (a) by using the closed graph theorem, and (b) by 
direct calculation. (This is to il lustrate the use of the closed graph theorem as a 
labor-saving device .) 

35. Let X and � be Banach spaces, T E L(X, }) ) ,  N(T) == { x : Tx == 0} , and 
M == range(T) . Then X/N(T) is isomorphic to M iff M is closed. (See Exercise 
15 . ) 

36. Let X be a separable Banach space and let 1-l be counting measure on N. Suppose 
that { xn }1 is a countable dense subset of the unit ball of X, and define T : £1 (f.-l) --4 
X by T f == I:� f(n)xn . 

a. T is bounded. 
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c. X is isomorphic to a quotient space of L1 (f.-l ) . (Use Exercise 35 .) 

37. Let X and � be Banach spaces . If T : X --4 � is a linear map such that f o T E X* 
for every f E � * , then T is bounded. 

38. Let X and � be Banach spaces, and let {Tn } be a sequence in L(X,  � )  such that 
lim Tnx exists for every x E X. Let Tx == lim Tnx; then T E L(X, � ) .  

39. Let X,  � ,  Z be Banach spaces and let B : X x � --4 Z be a separately continuous 
bilinear map; that is, B(x , · ) E £(� , Z) for each x E X and B( · , y ) E L(X, Z) for 
each y E � .  Then B is jointly continuous, that is, continuous from X x � to Z. 
(Reduce the problem to proving that I I B (x ,  y) l l  < C l l x i i i i Y I I  for some C > 0.) 
40. (The Principle of Condensation of Singularities) Let X and � be Banach 
spaces and {Tjk : j ,  k E N} c L(X, � ) .  Suppose that for each k there exists x E X 
such that sup{ I ITjkX I I  : j E N} == oo .  Then there is an x (indeed, a residual set of 
x 's) such that sup{ I I TjkX I I  : j E N} == oo for all k. 
41. Let X be a vector space of countably infinite dimension (that is , every element 
is a .finite linear combination of members of a countably infinite linearly independent 
set) . There is no norm on X with respect to which X is complete. (Given a norm on 
X, apply Exercise 1 8b and the Baire category theorem.) 

42. Let En be the set of all f E C( [O , 1 ] ) for which there exists xo E [0 , 1] (depending 
on f) such that l f (x) - f (xo ) l < n ix - xo l for all x E [0 , 1 ] . 

a. En is nowhere dense in C( [O ,  1 ] ) .  (Any real f E C( [O ,  1] ) can be uniformly 
approximated by a piecewise linear function g whose linear pieces, finite in 
number, have slope ±2n. If l l h - 9 l l u  is sufficiently small , then h � En .) 
b. The set of nowhere differentiable functions is residual in C ( [0 , 1 ] ) .  

5.4 TOPOLOGICAL VECTOR SPACES 

It is frequently useful to consider topologies on vector spaces other than those defined 
by norms, the only crucial requirement being that the topology should be well behaved 
with respect to the vector operations. Precisely, a topological vector space is a vector 
space X over the field K ( == 1R or <C) which is endowed with a topology such that the 
maps (x , y) --4 x + y and (A ,  x) --4 AX are continuous from X x X and K x X to X. 
A topological vector space is called locally convex if there is a base for the topology 
consisting of convex sets (that is, sets A such that if x ,  y E A then tx + ( 1 - t)y E A 
for 0 < t < 1) . Most topological vector spaces that arise in practice are locally 
convex and Hausdorff. 

The most common way of defining locally convex topologies on vector spaces i s  
in terms of seminorms. Namely, if we are given a family of seminorms on X, the 
"balls" that they define can be used to generate a topology in the same way that the 
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bal ls defined by a norm generate the topology on a normed vector space . The precise 
result is as follows: 

5. 14 Theorem. Let {Pa } aEA be a family of seminorms on the vector space X. If 
x E X, a E A, and E > 0, let 

Uxac = {y E X :  Pa (Y - x) < E } , 
and let 'J be the topology generated by the sets Uxac · 

a. For each x E X, the .finite intersections of the sets Uxac (a E A, E > O)form 
a neighborhood base at x. 

b. If (xi ) iE I  is a net in X, then Xi --4 x if!Pa (xi - x) --4 Ofor all a E A. 

c. (X ,  'J) is a locally convex topological vector space. 

Proof. (a) If X E n� UXj aj Ej '  let Dj = Ej -pa (x-Xj ) . By the triangle inequality, 
we have X E n� Uxaj bj c n� Uxjaj tj . Thus the assertion follows from Proposition 
4.4. 

(b) In view of (a), it suffices to observe that pa (xi - x) --4 0 iff (xi ) is eventually 
in Uxac for every E > 0. 

(c) The continuity of the vector operations follows easily from Proposition 4. 1 9  
and part (b) . Indeed, if xi --4 x and Yi --4 y, then 

so xi + Yi --4 x + y. If also Ai --4 A, then eventually I Ai I < C == I A I + 1 ,  so 

and it follows that AiXi --4 AX. Moreover, the sets Uxa€ are convex, for if y , z E Uxa€ ' 
then 

Pa (x - [ty + ( 1 - t)z] ) < Pa (tx - ty) +Pa ( ( 1 - t)x + ( 1 - t) z) < tE+ ( 1 - t) E  == E. 
The local convexity of the topology therefore follows from (a) . I 

In this context there is an analogue of Proposition 5 .2 :  

5.15 Proposition. Suppose X and � are vector spaces with topologies defined, 
respectively, by the families {Pa } aEA and { q,a } ,BEB of seminorms, and T : X --4 � 
is a linear map. Then T is continuous iff for each {3 E B there exist a1 , . . .  , ak E A 
and C > 0 such that q,a (Tx) < C 2:� Pai (x). 

Proof. If the latter condition holds and (xi ) is a net converging to x E X, by 
Theorem 5 . 14b we have Pa (xi - x) --4 0 for all a, hence q,a (Txi - Tx) --4 0 
for all {3, hence Txi --4 Tx. By Proposition 4. 1 9, T is continuous . Conversely, 
if T is continuous, for every {3 E B there is a neighborhood U of 0 in X such that 
qf3 (Tx) < 1 for X E U. By Theorem 5 . 14a we may assume that u == n� UXaj Ej . Let 
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E � min(E 1 , . . .  , Ek ) ; then qf3 (Tx) < 1 whenever Pai (x) < E for all j .  Now, given 
x E X, there are two possibilities. Ifpaj (x) > 0 for some j ,  let y == Ex/ I:� Pai (x ) .  
Then Pai (y) < E for all j ,  so 

k k 
qf3 (Tx) == L E- 1Pai (x)q{3 (Ty) < E- 1 LPai (x) . 

1 1 
On the other hand, if Pa i ( x) == 0 for all j ,  then Pa i ( rx) == 0 for all j and all 
r > 0, hence rqf3 (Tx) == q(3 (T(rx) )  < 1 for all r > 0, hence q(3 (Tx) == 0. Thus 
qf3 (Tx) < E- 1 I:� Pa1 (x) in this case too, and we are done . 1 

The proof of the following proposition is left to the reader (Exercise 43) . 

5.16 Proposition. Let X be a vector space equipped with the topology defined by a 
family {Pa }aEA ofseminorms. 

a. X is Hausdorff iff for each x =/= 0 there exists a E A such that Pa ( x) =/= 0. 
b. If X is Hausdorff and A is countable, then X is metrizable with a translation

invariant metric (i. e. , p(x ,  y) == p(x + z , y + z ) for all x ,  y ,  z E X). 

If X has the topology defined by the seminorms {Pa }aEA , by Proposition 5 . 1 5  a 
linear functional f on X is continuous iff l f (x) l < C L:� Paj (x) for some C > 0 and 
a1 , . . .  , ak E A. Since a finite sum of seminorms is again a seminorm, the Hahn
Banach theorem guarantees the existence of lots of continuous linear functionals on 
X - enough to separate points, if X is Hausdorff. The set of all such functionals is 
denoted, as before, by X* . There are various ways of making X* into a topological 
vector space, but we shall not consider this question systematically. The simplest 
way is to impose the weakest topology that makes all the evaluation maps f � f(x) 
( x E X) continuous, an idea that we shall discuss further below. 

In a topological vector space X the notion of Cauchy sequence or Cauchy net makes 
sense. Namely, a net (xi ) iE J in X is called Cauchy if the net (xi - xj ) (i ,j ) E i x i  
converges to zero. (Here I x I is directed in the usual way : ( i ,  j )  ;S ( i' , j' )  iff 
i ;S i' and j ;S j' .) Naturally, X is called complete if every Cauchy net converges. 
Completeness is of most interest when X is first countable, in which case it is 
equivalent to the condition that every Cauchy sequence converges (Exercise 44 ). 
More particularly, if X is Hausdorff and its topology is defined by a countable family 
of seminorms, then this topology is first countable by Theorem 5 . 14a; indeed, it 
is given by a translation-invariant metric p by Proposition 5 . 1 6b, and a sequence 
is Cauchy according to the definition just given iff it is Cauchy with respect to 
p. A complete Hausdorff topological vector space whose topology is defined by a 
countable family of semi norms is called a Frechet space. 

Let us now consider some interesting examples of topological vector spaces whose 
topologies are defined by families of seminorms rather than by single norms. We 
have already met a couple of them in previous chapters : 

• Let X be an LCH space . On ex , the topology of uniform convergence 
on compact sets is defined by the seminorms PK (!) == supxEK l f(x) I as 
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K ranges over compact subsets of X. If X is a-compact and {Un } are 
as in Propositions 4.39 and 4.40, this topology is defined by the seminorms 
Pn (f) = supxEU n If (X) I · In this case, ex is easily seen to be complete, so it 
is a Frechet space ; by Proposition 4.38, so is C(X) .  

• The space Lfoc (JR n ) ,  defined in §3 .4, is a Frechet space with the topology 
defined by the seminorms Pk (!) == �x l <k l f (x) l dx. (Completeness follows 
easily from the completeness of £1 .) An obvious generalization of this con
struction yields a locally convex topological vector space Lfoc (X, f.-l) where X 
is any LCH space and f.-l is a Borel measure on X that is finite on compact sets . 

Another class of topological vector spaces arises naturally in connection with 
the theory of differential equations. One often wishes to study the operator d/ dx, or 
more complicated operators constructed from it, acting on various spaces of functions . 
Unfortunately, it is virtually impossible to define norms on most infinite-dimensional 
functions spaces so that d/ dx becomes a bounded operator. Here is one precise result 
along these lines : There is no norm on the space coo ( [0 , 1 ] ) of infinitely differentiable 
functions on [0 , 1] with respect to which d/ dx is bounded. Indeed, if J>. ( x) == e>.x , 
then (djdx)f>. == Af>. ,  so l l d/dx l l  > ! A I for all A no matter what norm is used on 
C00 ( [0 ,  1 ] ) . 

In view of this difficulty, three courses of action are available. First, one can 
consider differentiation as an unbounded operator from X to � where � is a suitable 
Banach space and X is a dense subspace of � ' as in Exercise 30. Second, one can 
consider differentiation as a bounded linear map from one Banach space X to a 
different one � ' such as- X == Ck ( [O ,  1 ] )  and � == ck-1 ( [0 ,  1 ] )  in Exercise 9. Finally, 
one can consider differentiation as a continuous operator on a locally convex space X 
whose topology is not given by a norm. All of these points of view have their uses, but 
it is the last one that concerns us here . It is easy to construct families of seminorms 
on spaces of smooth functions such that differentiation becomes continuous almost 
by definition . For example, the seminorms Pk (f) == supo<x< 1 l f ( k) (x) l (k == 
0 ,  1 ,  2 ,  . . . ) make coo ( [0 , 1 ] ) into a Frechet space (the completeness is proved as 
in Exercise 9), and d/ dx is continuous on this space by Proposition 5 . 1 5  since 
Pk (!' )  == Pk+ 1  (f) .  Other examples are considered in Exercise 45 and in Chapter 9. 

One of the most useful procedures for constructing topologies on vector spaces is 
by requiring the continuity of certain linear maps. Namely, suppose that X is a vector 
space, � is a normed linear space, and {Ta }aEA is a collection of linear maps from 
X to � - Then the weak topology 'J generated by {Ta }  makes X into a locally convex 
topological vector space. Indeed, 'J is just the topology 'J' defined by the seminorms 
Pa (x) == I I Tax l l  according to Theorem 5 . 14. ('J is generated by sets of the form 
{ x : I I  Tax - Yo I I  < E} with Yo E � ' whereas 'J' is generated by sets of the form 
{ x : I I  Tax - Taxa I I  < E} with xo E X. If the Ta 's are surjective, these are obviously 
the same; the general case is left as Exercise 46.) The topology on coo ( [0 , 1 ] ) in 
the preceding paragraph is an example of this construction, with � == C( [O ,  1] ) and 
Tkf == f (k) . We now present some more. 

First, let X be a normed vector space. The weak topology generated by X* is 
known simply as the weak topology on X, and convergence with respect to this 
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topology is known as weak convergence. Thus, if (xa ) is a net in X, Xa --4 x 
weakly iff f (X a ) --4 f ( x) for all f E X* . When X is infinite-dimensional , the weak 
topology is always weaker than the norm topology; see Exercise 49. 

Next, let X be a normed vector space, X* its dual space. The weak topology 
on X* as defined above is the topology generated by X** ;  of more interest is the 
topology generated by X (considered as a subspace of X** ) , which is called the 
weak* topology (read "weak star topology") on X* . X* is a space of functions on X, 
and the weak* topology is simply the topology of pointwise convergence : fa --4 f 
iff !a (x) � f(x) for all x E X. The weak* topology is even weaker than the weak 
topology on X* ; the two coincide precisely when X is reflexive. 

Finally, let X and � be Banach spaces . The topology on L(X, � )  generated by 
the evaluation maps T � Tx (x E X) is called the strong operator topology on 
L(X, � ) , and the topology generated by the linear functionals T � f(Tx) (x E X, 
f E �* ) is called the weak operator topology on L(X , � ) .  Again, these topologies 
are best understood in terms of convergence : Ta --4 T strongly iff Tax --4 Tx in the 
norm topology of � for each x E X, whereas Ta --4 T weakly iff Tax --4 Tx in the 
weak topology of Zl for each x E X. Thus the strong operator topology is stronger 
than the weak operator topology but weaker than the norm topology on L(X, Zl ) .  

The following result concerning strong convergence is almost trivial but extremely 
useful : 

5.17 Proposition. Suppose {Tn}! C L(X, � ) , supn I ITn l l  < oo, andT E L(X, � ) . 
If I I Tnx - Tx l l  --7 0 for all x in a dense subset D of X, then Tn --4 T strongly. 

Proof. Let C == sup{ l iT I I , I IT1 I , I IT2 I I , . . . } . Given x E X and E > 0, choose 
x' E D such that l l x - x' l l  < E/3C. lf n is large enough so that I ! Tnx' - Tx' l l  < E/3, 
we have 

I I Tnx - Tx ll < I ITnx - Tnx' l l  + I ITnx' - Tx' l l  + I !Tx' - Tx l l 
< 2C I I x - x' l l  + ! E < E ,  

so that Tnx --4 Tx. I 
Our final result in this section is a compactness theorem that is one of the main 

reasons for the usefulness of the weak* topology on a dual space . The idea of the 
proof is similar to the techniques discussed in §4.8 .  

5.18 Alaoglu's Theorem. If X is a normed vector space, the closed unit ball B* == 
{f E X* : I I  f I I < 1 }  in X* is compact in the weak* topology. 

Proof. For each x E X  let Dx == {z E CC : l z l < l l x l l } ,  and let D == IlxEx Dx . 
Then D is compact by Tychonoff's theorem. The elements of D are precisely those 
complex-valued functions ¢ on X such that l¢ (x) l < l l x l l  for all x E X, and B* 
consists of those elements of D that are linear. Moreover, the relative topologies that 
B* inheri ts from the product topology on D and the weak* topology on X* both 
coincide with the topology of pointwise convergence, so it suffices to see that B* is 
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closed in D. But this is easy: If (!a ) is a net in B* that converges to f E D, for any 
x ,  y E X  and a , b E  C we have 

f(ax + by) == lim fa (ax + by) == lim[afa (x) + bfa (Y) ] == af(x) + bf(y) ,  

so that f E B* .  I 

Warning: Alaoglu's theorem does not imply that X* is locally compact in the 
weak* topology; see Exercise 49b. 

Exercises 

43. Prove Proposition 5 . 1 6. (For part (b), proceed as in Exercise 56d in §4.5 .) 

44. If X i s  a first countable topological vector space and every Cauchy sequence in 
X converges , then every Cauchy net in X converges. 

45. The space coo (1R) of all infinitely differentiable functions on 1R has a Frechet 
space topology with respect to which fn --4 f iff f�k) --4 f(k) uniformly on compact 
sets for all k > 0. 

46. If X is a vector space, � a normed linear space, 'J the weak topology on X 
generated by a family of linear maps {Ta : X --4 � } , and 'J' the topology defined by 
the seminorms {x � I I Tax l l } ,  then 'J == 'J' .  

47. Suppose that X and � are Banach spaces. 
a. If {Tn }1 C L(X, � ) and Tn --4 T weakly (or strongly), then supn I I Tn l l  < 
00. 

b. Every weakly convergent sequence in X, and every weak*-convergent se
quence in X* , is bounded (with respect to the norm) . 

48. Suppose that X is a Banach space . 
a. The norm-closed unit ball B == { x E X : I I  x l l  < 1 }  is also weakly closed. 
(Use Theorem 5 . 8d.) 
b. If E c X is bounded (with respect to the norm), so is its weak closure. 
c. If F c X* is bounded (with respect to the norm), so is its weak* closure . 
d. Every weak*-Cauchy sequence in X* converges .  (Use Exercise 3 8 .) 

49. Suppose that X is an infinite-dimensional Banach space . 
a. Every nonempty weakly open set in X, and every nonempty weak*-open set 
in X* , is unbounded (with respect to the norm) . 
b. Every bounded subset of X is nowhere dense in the weak topology, and every 
bounded subset of X* is nowhere dense in the weak* topology. (Use Exercise 
48b,c . )  
c. X is meager in itself with respect to the weak topology, and X* is meager in 
itself with respect to the weak* topology. 
d. The weak* topology on X* is not defined by any translation-invariant metric. 
(Use Exercise 48d.) 
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50. If X is a separable normed linear space, the weak* topology on the closed unit 
ball in  X* is second countable and hence metrizable . (But cf. Exercise 49d.) 

51. A vector subspace of a normed vector space X is norm-closed iff it is weakly 
closed. (However, a norm-closed subspace of X* need not be weak*-closed unless 
X is reflexive; see Exercise 52d.) 

52. Let X be a Banach space and let f1 , . . . , f n be linearly independent elements of 
X* . 

a. Define T :  X ---? ccn by Tx == (f1 (x) , . . .  , fn (x) ) . lf N == {x : Tx == 0} and 
JY( is the linear span of f1 , . . .  , f n ' then JY( == N° in the notation of Exercise 23 
and hence M* is isomorphic to (X/N) * .  
b. If F E X** ,  for any E > 0 there exists x E X such that F(fj )  = /j ( x) 
for j = 1 ,  . . . , n and l l x l l  < (1 + E) I I F I I . (F IM can be identified with an 
element of (X /N) ** and hence with an element of X /N since the latter is finite
dimensional .) 
c. If X is considered as a subspace of X** ,  the relative topology on X i nduced 
by the weak* topology on X** is the weak topology on X. 
d. In the weak* topology on X** ,  X is dense in  X** and the closed unit bal l  in 
X is dense in the closed unit ball in X** .  
e. X is reflexive iff its closed unit ball is weakly compact. 

53. Suppose that X is a Banach space and {Tn } , { Sn } are sequences in L(X, X) 
such that Tn ---? T strongly and Sn ---? S strongly. 

a. If { xn } C X and l l xn - x l l  ---? 0, then I I TnXn - Tx l l  ---? 0. (Use Exercise 
47a.) 
b. TnSn ---? TS strongly. 

5.5 HILBERT SPAC ES 

The most important Banach spaces, and the ones on which the most refined analysis 
can be done, are the Hilbert spaces , which are a direct generalization of finite
dimensional Euclidean spaces . Before defining them, we need to introduce a few 
concepts . 

Let 9-C be a complex vector space. An inner product (or scalar product) on 9-C is 
a map (x ,  y) � (x, y) from X x X ---? CC such that: 

i .  (ax + by , z) == a(x ,  z ) + b(y , z) for all x ,  y , z E 9-C and a , b E CC. 

i i .  ( y , X) == (X , y) for all X, y E JC. 

1 1 1 .  (x , x) E (0 ,  oo ) for all nonzero x E X. 
We observe that (i) and (ii) imply that 

( x, a y + b z) == a ( x ,  y) + b ( x ,  z) for all x ,  y , z E 9-C and a, b E CC .  
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(One can also define inner products on real vector spaces : (x, y) is then real , a and b 
are assumed real in (i), and (ii) becomes (y , x) == (x, y) .) 

A complex vector space equipped with an inner product is called a pre-Hilbert 
space. If JC is a pre-Hilbert space, for x E JC we define 

l l x l l  == V{xA. 

5.19 The Schwarz Inequality. I (x, y) I < l l x l l  I I Y I I for all x ,  y E JC, with equality 
iff x and y are linearly dependent. 

Proof. If (x, y) == 0, the result is obvious. If (x , y) =I= 0 (and in particular y =I= 0), 
let a == sgn ( x, y) and z == ay, so that ( x ,  z ) == ( z ,  x) == I ( x ,  y) I and I I  z I I  == I I  y I I . 
Then for t E 1R we have 

The expression on the right is a quadratic function of t whose absolute minimum 
occurs at t == I I Y I I -2 I (x , y) l . Setting t equal to this value, we obtain 

with equality iff x - tz == x - aty == 0, from which the desired result is immediate . 1 

5.20 Proposition. The function x � I I  x I I  is a norm on 9-£. 

Proof. That I I  x I I  == 0 iff x == 0 and that I I  AX I I  == I A I I I  x I I  are obvious from the 
definition . As for the triangle inequality, we have 

so by the Schwarz inequality, 

as desired. I 
A pre-Hilbert space that is complete with respect to the norm l l x l l  == V{xA 

is called a Hilbert space. (One can also consider real Hilbert spaces with real 
inner products . However, Hilbert spaces are usually assumed to be complex unless 
otherwise specified.) 

Example : Let (X, J\1,  J..L) be a measure space, and let L2 (J..L) be the set of all 
measurable functions f : X --4 C such that J 1! 1 2 dJ..L < oo (where, as usual, we 
identify two functions that are equal a.e . ) .  From the inequality ab < � ( a2 + b2 ) ,  
valid for all a , b > 0 ,  we see that if f, g E L2 (J..L) then l fg l < � ( 1 ! 1 2 + lg l 2 ) ,  so that 
f g E L1 (f.-l) . It follows easily that the formula 

(!, g ) = J fg dp, 
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defines an inner product on L2 (f.-l) . In fact, L2 (f.-l) is a Hilbert space for any measure 
1-l· We shall prove completeness in Theorem 6.6; for the present we shal l  take this 
result for granted. 

An important special case of this construction is obtained by taking 1-l to be 
counting measure on (A ,  P(A) ) , where A is any nonempty set; in this situation 
L2 (f.-l) is usually denoted by l2 (A) . Thus, l2 (A) is the set of functions f : A ---? CC 
such that the sum I:aEA l f (a) l 2 (as defined in §0.5) is finite . The completeness of 
l2 (A) is rather easy to prove directly (Exercise 54) . 

For the remainder of this section, 9-{ will denote a Hilbert space. 

5.21 Proposition. If Xn ---? x and Yn ---? y, then (xn , Yn ) ---? (x, y) . 
Proof. By the Schwarz inequality, 

l (xn , Yn ) - (x, y) l == l (xn - X ,  Yn) + (x ,  Yn - Y) l 
< l l xn - x l l  I I Yn l l  + l l x l l  l l Yn - Y l l , 

which tends to zero since I I Yn I I  ---? I I  Y 1 1 . 

5.22 The Parallelogram Law. For all x ,  y E JC, 

I 

( "The sum of the squares of the diagonals of a parallelogram is the sum of the squares 
of the four sides. ") 

Proof. Add the two formulas l l x ± y l l 2 == l l x l l 2 ± 2 Re(x, y) + I I Y I I 2 . 1 
If x ,  y E X, we say that x is orthogonal to y and write x ..l y if (x , y) = 0. If 

E c JC, we define 

Ej_ == { x E JC : (x, y) == 0 for all y E E} . 

It is immediate from Proposition 5 .2 1  and the linearity of the inner product in its first 
argument that Ej_ is a closed subspace of JC. 

5.23 The Pythagorean Theorem. lfx1 , . . .  , Xn E JC and Xj .1. xk for j =/= k, 

Proof. I I  I: Xj 1 1 2 == (I: Xj , I: Xj ) == L:j,k (xj , xk ) · The terms with k =I= j are 
all zero, leaving only I: (xj , Xj ) == I: l l xj 1 1 2 . • 

5.24 Theorem. IJM is a closed subspace ofJC, then JC == M EB Mj_; that is, each 
x E JC can be expressed uniquely as x == y+ z where y E M and z E M...L . Moreo1 ·e1; 
y and z are the unique elements ofM and M j_ whose distance to x is minimal. 
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Proof. Given x E JC, let 8 == inf{ l l x - Y l l : y E M}, and let {Yn } be a sequence 
in M such that I I  x - Yn I I --4 8. By the paralellogram law, 

so since � (Yn + Ym) E M, 

l l Yn - Ym 1 1 2 = 2 I I Yn - x l l 2 + 2 I I Ym - x l l 2 - 4 1 1  � (Yn + Ym ) - x l l 2 
< 2 I I Yn - x l l 2 + 2 I I Ym - x l l 2 - 482 . 

As m, n --4 oo this last quantity tends to zero, so {Yn } is a Cauchy sequence. Let 
y == lim Yn and z == x - y. Then y E M  since M is closed, and l l x - Y i l == 8. 

We claim that z E M j_ . Indeed, if u E M, after multiplying u by a nonzero scalar 
we may assume that (z , u) is real . Then the function 

f(t) == l i z + tu l l 2 == l l z l l 2 + 2t (z , u) + t2 1 l u l l 2 

is real for t E JR, and is has a minimum (namely, 82) at t = 0 because z + tu == 
x - (y - tu) and y - tu E M. Thus 2 (z ,  u) == f' (O) == 0, so z E Mj_ . Moreover, 
if z' is another element of M j_ , by the Pythagorean theorem (since x - z = y E M) 
we have 

with equality iff z == z' . The same reasoning shows that y is the unique element of 
JY( cl osest to x. 

Finally, if x == y' + z' with y' E M and z' E M j_ , then y - y' = z' - z E M n M j_ , 
so y - y' and z' - z are orthogonal to themselves and hence are zero. 1 

If y E JC, the Schwarz inequality shows that the formula fy (x) == (x, y) defines 
a bounded linear functional on JC such that I I  JY I I  == I I  y I I . Thus, the map y --4 f y is 
a conjugate-linear isometry of JC into JC* . It is a fundamental fact that this map is 
surjective : 

5.25 Theorem. Iff E JC* , there is a unique y E JC such that f ( x) == ( x ,  y) for all 
X E X. 

Proof. Uniqueness is easy : If (x , y) == (x, y') for all x, by taking x = y - y' 
we conclude that I I Y  - y' 1 1 2 == 0 and hence y == y' . If f is the zero functional , then 
obviously y == 0. Otherwise, let M == { x E JC : f (x) == 0} .  Then M is a proper 
closed subspace of X, so M j_ =I= {0} by Theorem 5 .24. Pick z E M j_ with l i z I I  == 1 .  
If u == f(x) z - f(z)x then u E M, so 

0 == (u , z) == f(x) l l z l l 2 - f(z) (x , z) == f(x) - (x , f(z)z) . 

Hence f(x) = (x, y) where y == f(z)z .  I 
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Thus, Hilbert spaces are reflexive in a very strong sense: Not only is 9-{ naturally 
isomorphic to 9--(* * ,  it is natural ly isomorphic (via a conjugate-linear map) to J{* . 

A subset {ua }aEA of 9-{ is called orthonormal if l l ua I I  == 1 for all a and 
rua _L Uf3 whenever a # /3. If { xn }1 is a linearly independent sequence in :H, there 
is a standard inductive procedure, called the Gram-Schmidt process, for converting 
{ Xn } into an orthonormal sequence { un} such that the linear span of { xn}f coincides 
with the linear span of { un }f for all N. Namely, the first step is to set u1 == x1 / l l x 1 1 1 . 
Having defined u1 , . . .  , UN- 1 , we set VN == XN - E�- 1 (xN , un)run . Then VN 
is nonzero because x N is not in the linear span of x 1 , . . . , x N _ 1 and hence of 
u 1 , . . .  , UN- I ,  and (vN , um) == (xN , um) - (xN , um) == 0 for all m < N. We can 
therefore take u N == v N / I I  v N 1 1 . 
5.26 Bessel's Inequality. If { ua } aEA is an orthonormal set in Jf, then for any 
.L' E :H, 

L I (x , Ua ) 1 2 < l l x l l 2 · 

aEA 
In particular, {a : ( x , Ua ) =/= 0} is countable. 

Proof. It suffices to show that EaEF I (x , ua ) 1 2 < l l x l l 2 for any finite F C A. 
But 

aEF 

= l l x l l 2 - 2 Re ( x, L (x, uOl )uOl ) + L (x, uOl )uOl 2 
aEF aEF 

= l l x l l 2 - L I (x , ua ) 1 2 , 
aE F 

where the Pythagorean theorem was used in the third line. I 

5.27 Theorem. If { ua } a EA is an orthonormal set in X, the following are equivalent: 
a. (Completeness) If (x ,  ua ) == 0 for all a, then x == 0. 
b. (Parseval's Identity) l l x l l 2 == EaEA I (x, ua ) 1 2 for all x E X. 
c. For each x E X, x == EaEA (x, ua )ua, where the sum on the right has only 

countably many nonzero terms and converges in the norm topology no matter 
how these terms are ordered. 

Proof. (a) implies (c) :  If x E X, let a1 , a2 , . . . be any enumeration of the o 's 
for which (x, ua) =/= 0. By Bessel ' s inequality the series E I (x , Ua1 ) 1 2 converges, so 
by the Pythagorean theorem, 

m 2 m 
L (x ,  Ua1 )ua1 == L I (x , U01 ) 1 2 --7 0 as m, n --7 oo. 
n n 
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The series E ( x ,  ua 1 ) ua 1 therefore converges since 9-C is complete. If y == x -
l:(x, Ua1 ) ua1 , then clearly (y , ua ) == 0 for all a, so by (a) , y == 0. 

(c) implies (b) : With notation as above, as in the proof of Bessel ' s inequality we 
have 

n n 2 l l x l l 2 - L I (x, Ua1 ) 1 2 == x - L (x , Ua1 )ua1 --7 0 as n ---? oo.  
1 1 

Finally, that (b) implies (a) is obvious. I 
An orthonormal set having the properties (a-c) in Theorem 5 .27 is called an 

orthonormal basis for 9-C. For example, let 9-C == l2 (A) . For each a E A, define 
e o:  E l2 (A) by ea (f3) == 1 if f3 == a, ea (f3) == 0 otherwise. The set { ea }aEA i s  
clearly orthonormal, and for any f E l2 (A) we have (!, ea ) == f (a) , from which it 
follows that { ea } is an orthonormal basis. 

5.28 Proposition. Every Hilbert space has an orthonormal basis. 

Proof. A routine application of Zorn's lemma shows that the collection of or
thonormal sets , ordered by inclusion, has a maximal element; and maximality is 
equivalent to property (a) in Theorem 5 .27 . 1 

5.29 Proposition. A Hilbert space 9-C is separable iff it has a countable orthonormal 
basis, in which case every orthonormal basis for 9-C is countable. 

Proof. If { Xn } is a countable dense set in 9-C, by discarding recursively any Xn 
that is in the linear span of x1 , . . .  , Xn- 1 we obtain a linearly independent sequence 
{ Yn } whose linear span is dense in 9-C. Application of the Gram-Schmidt process to 
{ Yn } yields an orthonormal sequence { un} whose linear span is dense in 9-C and which 
is therefore a basis. Conversely, if { un } is a countable orthonormal basis, the finite 
linear combinations of the un 's with coefficients in a countable dense subset of C 
form a countable dense set in 9-C. Moreover, if { Va } aEA is another orthonormal basis, 
for each n the set An == {a E A : (un , va ) =/= 0} is countable . By completeness of 
{ Un } , A == u� An , so A is countable. I 

Most Hi lbert spaces that arise in practice are separable. We discuss some examples 
in Exercises 60-62. 

If 9--( 1 and 9-C2 are Hilbert spaces with inner products ( · , · ) 1 and ( · , · ) 2 , a unitary 
map from 9-C 1 to JC2 is an invertible linear map U : 9-C 1 --7 JC2 that preserves inner 
products : 

( U X ,  U Y) 2 == (X , y) 1 for all X, y E JC 1 · 

By taking y == x, we see that every unitary map is an isometry : I I Ux l l 2 == l l x lh .  
Conversely, every surjective isometry is unitary (Exercise 55) . Unitary maps are the 
true "isomorphisms" in the category of Hilbert spaces ; they preserve not only the 
linear structure and the topology but al so the norm and the inner product. From the 
point of view of this abstract structure, every Hilbert space looks like an l2 space: 
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5.30 Proposition. Let { ea }aEA be an orthonormal basis for X. Then the corre
spondence X � X defined by x( a) == (x, Ua ) is a unitary map from J( to l2 (A) .  

Proof. The map x � x is clearly linear, and i t  i s  an isometry from JC to l2 (A) 
by the Parseval identity l l x l l 2 == E lx(a) l 2 . If f E l2 (A) then E lf (a) l 2 < 00, 
so the Pythagorean theorem shows that the partial sums of the series E f (a) ua (of 
which only countably many terms are nonzero) are Cauchy ; hence x == E f (a )ua 
exists in JC and x == f. By Exercise 55b, x � x is unitary. 1 

Exercises 

54. For any nonempty set A, l2 (A) is complete . 

55. Let JC be a Hilbert space. 
a. (The polarization identity) For any x , y E JC, 

(x, y) == i ( l l x + Y l l 2 + l l x - Y l l 2 + i l l x + iy l l 2 - i l l x - iy l l 2 ) . 
(Completeness is not needed here.) 
b. If JC' is another Hilbert space, a linear map from JC to JC' is unitary iff it is 
isometric and surjective. 

56. If E is a subset of a Hilbert space JC, ( Ej_ ) j_ is the smallest closed subspace of 
JC containing E. 

57. Suppose that 9-C is a Hilbert space and T E L(JC, 9-{) . 
a. There is a unique T* E L(JC, JC) , called the adjoint ofT, such that (Tx ,  y) == 
(x, T*y) for all x ,  y E JC. (Cf. Exercise 22. We have T* == v-1rt v where V 
is the conjugate-linear isomorphism from 9-{ to JC* in Theorem 5 .25 , (Vy) ( x) == 

(x , y) . ) 
b. l iT* I I == I IT I I ,  I IT*T I I  == I I T I I 2 , (aS + bT) * = aS* + bT* , (ST) * = T*S* , 
and T** == T. 
c. Let �and N denote range and nullspace; then �(T)j_ 

= N(T* ) and N(T) j_ = 
�(T* ) .  
d. T is unitary iff T is invertible and r-1 = T* . 

58. Let M be a closed subspace of the Hilbert space JC, and for x E JC let Px be the 
element of M such that x - Px E M j_ as in Theorem 5 .24. 

a. P E L(JC, JC) , and in the notation of Exercise 57 we have P* = P, P2 == P, 
�( P) = M, and N( P) = M j_ . P is called the orthogonal projection onto M. 
b. Conversely, suppose that P E L(JC, JC) satisfies P2 == P* == P. Then �(P) 
is closed and P is the orthogonal projection onto �( P) . 
c. If { ua } is an orthonormal basis for M, then Px = l:(x , ua )ua . 

59. Every closed convex set K in a Hilbert space has a unique element of minimal 
norm. (If 0 E K, the result is trivial ; otherwise, adapt the proof of Theorem 5 .24.) 

60. Let (X, M, JL) be a measure space. If E E M, we identify L2 (E, JL) with the 
subspace of L2 (X, J.-L) consisting of functions that vanish outside E. If {En } is 
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a disjoint sequence in M with X == U� En , then { L2 (En , J.-L) } is a sequence of 
mutually orthogonal subspaces of L2 (X, J.-L) , and every f E L2 (X, J.-L) can be written 
uniquely as f == E� f n (the series converging in norm) where f n E L2 (En , J.-L) . If 
L2 (En , J.-L) is separable for every n, so is L2 (X, J.-L) . 
61. Let (X, M, JL) and (Y, N, v) be a-finite measure spaces such that L2 (JL) and 
L2 (v) are separable. If {fm } and {gn } are orthonormal bases for L2 (J.-L) and L2 (v) 
and hmn (x , y) == fm (x)gn (y) ,  then {hmn } is an orthonormal basis for L2 (J.-L x v) . 

62. In this exercise the measure defining the L2 spaces is Lebesgue measure. 
a. C( [O ,  1] ) is dense in L2 ( [0 ,  1 ] ) .  (Adapt the proof of Theorem 2.26.) 
b. The set of polynomials is dense in L2 ( [0 , 1 ] ) . 
c. L2 ( [0 ,  1 ] ) is separable. 
d. L2 (JR) is separable. (Use Exercise 60.) 
e. L2 (IRn) is separable . (Use Exercise 6 1 . ) 

63. Let X be an infinite-dimensional Hilbert space. 
a. Every orthonormal sequence in X converges weakly to 0. 
b. The unit sphere S == { x : l l x l l  == 1 }  is weakly dense in the unit ball 
B == { x : l l x l l  < 1 } .  (In fact, every x E B is the weak limit of a sequence in S.) 

64. Let X be a separable infinite-dimensional Hilbert space with orthonormal basis 
{un }! .  

a. For k E N, define Lk E L(X, X) by Lk (l:� anun ) == Er; anun-k · Then 
Lk --7 0 in the strong operator topology but not in the norm topology. 
b. For k E N, define Rk E L(X, X) by Rk (l:� anun ) == E� anun+k · Then 
Rk --7 0 in the weak operator topology but not in the strong operator topology. 
c. RkLk --7 0 in the strong operator topology, but LkRk == I for all k. (Use 
Exercise 53 b.) 

65. l2 (A) is unitarily isomorphic to l2 (B) iff card( A) == card( B) . 
66. Let M be a closed subspace of L2 ( [0 , 1 ] , m) that is contained in C ( [0 , 1 ] ) .  

a. There exists C > 0 such that I I  f l l u < Gi l  ! I I  £2 for all f E M. (Use the closed 
graph theorem.) 
b. For each x E [0 , 1 ] there exists 9x E M such that f(x) == (/, 9x ) for all 
f E M, and l l 9x 1 1 £2 < C. 
c. The dimension of M is at most C2 . (Hint: If { /j }  is an orthonormal sequence 
in M, E l/j (x) l 2 < C2 for all x E [0 , 1 ] .) 

67. (The Mean Ergodic Theorem) . Let U be a unitary operator on the Hilbert 
space X, M == { x : U x == x } ,  P the orthogonal projection onto M (Exercise 58) , 
and Sn == n- 1 E�- 1 UJ . Then Sn --7 P in the strong operator topology. (If x E M, 
then Snx == x; if x == y - Uy for some y, then Snx --7 0. By Exercise 57d, 
M = { x : U*x == x } .  Apply Exercise 57c with T == I - U.) 
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Functional analysis is a vast subject of which we have barely scratched the surface 
here . For the reader who wishes to learn more, Reed and Simon [ 1 12] and Rudin 
[ 126] are good places to start; one should also familiarize oneself with the treatises 
of Dunford and Schwartz [35] and Yosida [ 1 63] .  

Functional analysis has roots in a number of classical problems, particularly in 
the theory of differential and integral equations. The study of particular infinite
dimensional function spaces began in earnest around 1 907 with work of F. Riesz, 
Frechet, Schmidt, Helly, and others , and the notion of an abstract normed vector space 
appeared in papers by several authors about 1 920. The research of the succeeding 
decade culminated in Banach 's classic book [9] , which marked the emergence of 
functional analysis as an established discipline. Detailed historical accounts can be 
found in Dieudonne [33] and in the notes in Dunford and Schwartz [35] .  

§5 . 1 :  The integral for vector-valued functions developed in Exercise 16 i s  called 
the Bochner integral. The hypothesis that 1j is separable can be dropped, but the 
functions in L� must then be required to have separable range (after modification on 
a null set) . A more detailed account can be found in Cohn [27] or Yosida [ 1 63] . 

Another approach to vector-valued integrals is as follows . Suppose that (X, M, J.-L) 
is a measure space and 1j is a topological vector space on which the continuous linear 
functionals separate points . A function f : X --4 1j is called weakly integrable if (i) 
¢ o f E L 1 (J.-t) for all ¢ E 1j * ,  and (ii) there exists y E 1j (necessarily unique) such 
that J ¢ o f dJ.-t = ¢(y) for all ¢ E ZJ * .  In this case we set J f dJ.-t = y . If 1j is a 
separable Banach space, this notion of integral coincides with the Bochner integral. 
See Yosida [ 1 63] and Rudin [ 1 26] . 

§5 . 3 :  The open mapping and closed graph theorems are due to Banach [9] . See 
Grabiner [58] for an interesting comment on the relation between the proofs of the 
open mapping theorem and the Tietze extension theorem. 

The uniform boundedness principle, as we have stated it, is due to Banach and 
Steinhaus [ 1 0] ;  however, the second part of the theorem - that if X is a Banach 
space and supTEA I I Tx l l  < oo for all x E X, then supTEA I I T i l  < oo - had been 
proved previously by what Dieudonne [33] calls the "method of the gliding hump." 
This rather pretty (and elementary) argument has been largely neglected in recent 
years, but a modern exposition of it can be found in Bennefeld [7 1 ] .  

It is simple to construct examples of unbounded linear maps T : X --4 1j from one 
normed vector space to another when X is incomplete (see Exercises 29 and 30), but 
virtually impossible to do so when X is complete without using the axiom of choice. 
The standard method is as follows: Start with an unbounded T : X0 --4 1j where 
Xo is incomplete, and let X be the completion of Xo . Pick a basis { ua }aEA for Xo 
(meaning that every x E X0 is a .finite linear combination of the ua 's) ,  and extend it 
to a basis { ua }aEB (B � A) for X. (This is where the axiom of choice comes in.) 
Let M be the linear span of { ua }aEB\A '  so that each x E X can be written uniquely 
as x = x0 + XI where XI E Xo and XI  E M. Then T can be extended to X by setting 
T(xo + xi )  = Txo . 
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§5 .4 :  Treves [ 1 50] contains a readable account of the general theory of topolog
ical vector spaces, with many concrete examples. 

Alaoglu's theorem, which was first announced in Alaoglu [3] and proved in detail 
in Alaoglu [4] ,  supersedes a number of earlier results dealing with special cases . It 
was discovered independently by Bourbaki [ 1 9] .  

§ 5  .5 : The space envisaged by Hilbert himself was l2 (N) ; the notion of an abstract 
Hilbert space was introduced by von Neumann [ 1 54] in his work on the mathematics 
of quantum mechanics . Theorem 5 .25 is originally due to F. Riesz [ 1 1 5] in the setting 
of L2 spaces . It is one of several representation theorems for linear functionals on 
various spaces that bear his name, the others being Theorems 6. 15 ,  7 .2, and 7. 1 7 . To 
avoid confusion, we reserve the name "Riesz representation theorem" for the latter 
two, which are closely related. 

In the literature of quantum physics, scalar products are customarily denoted by 
(x l y) and are taken to be linear in the second variable and conjugate-linear in the 
first. 



LP Spaces 

LP spaces are a class of Banach spaces of functions whose norms are defined in terms 
of integrals and which generalize the L1 spaces discussed in Chapter 2. They furnish 
interesting examples of the general theory of Chapter 5 and play a central role in 
modem analysis . 

6.1  BASIC TH EORY OF LP SPACES 

In this chapter we shall be working on a fixed measure space (X, M, 1-l) . If f is a 
measurable function on X and 0 < p < oo, we define 

I I  f l i P = [/ I J I P dJ-L] l/p 
(allowing the possibility that I I f l i P = oo ) ,  and we define 

£P (X, M, 1-l) = { f : X --4 CC : f is measurable and I I f l i P < oo } . 

We abbreviate LP (X, M, J.-t) by LP (J.-t) , LP (X) ,  or simply LP when this will cause no 
confusion. As we have done with £1 , we consider two functions to define the same 
element of LP when they are equal almost everywhere. 

If A is any nonempty set, we define lP (A) to be LP (J.-t) where 1-l is counting measure 
on (A , P(A) ) , and we denote lP (N) simply by lP . 

LP is a vector space, for if f, g E LP , then 

I f + g iP < [2 max( l / l , l g i ) ] P < 2P ( I J IP + l g i P ) , 
181 
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so that f + g E LP . Our notation suggests that I I · I I  P i s  a norm on LP . Indeed, i t  is 
obv ious that I I  f l i P == 0 iff f = 0 a.e. and l l c/ l l p = l e i I I / I l P , so the only question is 
the triangle inequality. It turns out that the latter is valid precisely when p > 1 ,  so 
our attention will be focused almost exclusively on this case. 

Before proceeding further, however, let us see why the triangle inequality fails for 
p < 1 .  Suppose a > 0, b > 0, and 0 < p < 1 .  For t > 0 we have tP- 1 > (a + t )P- 1 ,  
and by integrating from 0 to b we obtain aP + bP > (a + b )P .  Thus, if E and 
F are disjoint sets of positive finite measure in X and we set a == J.-t(E) 1 1P and 
b = J.-t( F) 1/P ,  we see that 

I I XE + XF I I p = (aP + bP ) 1 1P > a + b = l l xE I I p + l l xF I I p · 
The cornerstone of the theory of LP spaces is Holder's inequality, which we now 

derive. 

6.1 Lemma. If a > 0, b > 0, and 0 < ,\ < 1, then 

a>.b1->. < ..\a + ( 1  - ..\ ) b , 

with equality iff a = b. 
Proof. The result is obvious if b = 0; otherwise, dividing both sides by b and 

setting t = a/ b, we are reduced to showing that t>. < ..\t + ( 1 - ,\) with equality iff 
t = 1 .  But by elementary calculus, t>. - ..\t is strictly increasing for t < 1 and strictly 
decreas ing for t > 1 ,  so its maximum value, namely 1 - ..\, occurs at t = 1 .  1 

6.2 Holder's Inequality. Suppose 1 < p < oo and p- 1 + q- 1 = 1 (that is, q = 
pj (p - 1 )). Iff and g are measurable functions on X, then 

(6.3) 

In particular, iff E LP and g E Lq , then f g E £1 , and in this case equality holds in 
(6.3) iffa l f !P = ,B ig l q a.e. for some constants a , ,B with a,B =/= 0. 

Proof. The result is trivial if I I  f l i P = 0 or l l 9 l l q = 0 (since then f == 0 or g = 0 
a.e . ) ,  or if I I  f l i P == oo or l l 9 l l q = oo. Moreover, we observe that if (6.3) holds for a 
particular f and g, then it al so holds for all scalar multiples of f and g, for if f and g 
are replaced by af and bg, both sides of (6.3) change by a factor of l ab ! . It therefore 
suffices to prove that (6.3) holds when I I  f l i P = l l 9 l l q = 1 with equality iff I J IP = l g l q 
a.e. To this end, we apply Lemma 6. 1 with a = l f (x) ! P , b = l g (x) l q ,  and ,\ = p- 1 
to obtain 
(6.4) l f (x)g (x) l < p- 1 l f (x) IP + q- 1 l g (x) l q · 
Integration of both sides yields 

l l /9 1 1 1 < P- 1 J I J IP + q- 1 J l g l q = P- 1 + q- 1 = 1 = 1 1 / l l p l l g l l q · 

Equal ity holds here iff it holds a.e . in (6.4), and by Lemma 6. 1 this happens precisely 
when I J I P = l g l q a.e .  1 
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The condition p- 1 + q- 1 = 1 occurring in Holder's inequality turns up frequently 
in LP theory. If 1 < p < oo, the number q = pj (p - 1 )  such that p- 1 + q- 1 = 1 is 
called the conjugate exponent to p. 

6.5 Minkowski's Inequality. /f 1 < p < oo and f, g E LP, then 

Proof. The result is obvious if p == 1 or if f +  g = 0 a.e. Otherwise, we observe 
that 

I f +  g i P < ( I l l + 1 9 1 ) I f +  g l p- 1 
and apply Holder's inequality, noting that (p - 1 )q = p when q is the conjugate 
exponent to p: 

Therefore, [ ] 1 - ( 1 /q) 
I I ! + g i i P = I I f + g i P < 1 1 / l l p + l l g l l p · 

This result shows that, for p > 1 ,  LP is a normed vector space . More is true: 

6.6 Theorem. For 1 < p < oo, LP is a Banach space. 

I 

Proof. We use Theorem 5 . 1 .  Suppose { !k } c LP and I:� l l fk l l p  == B < oo . 
Let Gn == I:� l !k l and G = I:� l fk l · Then I I Gn l l p < L� l l fk l l p < B for all n, 
so by the monotone convergence theorem, J GP = lim J G� < BP . Hence G E LP, 
and in particular G(x) < oo a.e . ,  which implies that the series I:� fk converges 
a.e. Denoting its sum by F, we have IF I < G and hence F E LP ; moreover, 
IF - L� fk IP < (2G)P E £1 , so by the dominated convergence theorem, 

Thus the series I:� fk converges in the LP norm. I 

6.7 Proposition. For 1 < p < oo , the set of simple functions f = L� ajXEi '  where 
J.-t(Ej )  < oo for all j, is dense in LP. 

Proof. Clearly such functions are in LP . If f E LP, choose a sequence { f n } 
of simple functions such that f n --4 f a. e . and I fn I < I f I , according to Theorem 
2. 1 0 . Then f n E LP and I fn - J IP < 2P I J IP E £1 , so by the dominated convergence 
theorem, l l fn - f l i P --4 0. Moreover, if fn = L ajXEj where the Ej are disjoint and 
the aj are nonzero, we must have J.-t(Ej )  < oo since L l aj iPJ.-t(Ej )  = J I f n iP < oo. 1 
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To complete the picture of LP spaces, we introduce a space corresponding to the 
l imiting value p = oo . If f is a measurable function on X, we define 

1 1 / l l oo = inf{a > O : ,u ( {x :  l f (x) l > a} ) = 0} , 

with the convention that inf 0 = oo. We observe that the infimum is actually attained, 
for 

00 
{ x :  l f (x) l > a } = U{ x :  l f (x) l > a + n- 1 } ,  

1 
and if the sets on the right are null ,  so is the one on the left. I I  f I I  00 is called the 
essential supremum of I l l and is sometimes written 

We now define 

I I  f I I  oo = ess sup x Ex I f ( x) I · 

L 00 == L 00 (X, M, 1-l) = { f : X --4 CC : f is measurable and I I  f I I  oo < oo} , 
with the usual convention that two functions that are equal a.e. define the same 
element of L00• Thus f E L00 iff there is a bounded measurable function g such that 
f == g a.e . ;  we can take g = fXE where E = {x : l f (x) l < l l ! l l oo } · 

Two remarks : First, for fixed X and M, L00 (X, M, f.-l) depends on 1-l only insofar 
as 1-l determines which sets have measure zero; if 1-l and v are mutually absolutely 
continuous, then L 00- (f.-l ) == L 00 ( v) . Second, if 1-l is not semi finite, for some purposes 
it is appropriate to adopt a slightly different definition of L00• This point will be 
explored in Exercises 23-25 . 

The results we have proved for 1 < p < oo extend easily to the case p == oo, as 
follows: 

6.8 Theorem. 

a. If f  and g are measurable functions on X, then 1 1 !9 1 1 1 < l l ! l l 1 1 1 9 l l oo ·  If 
f E L1 and g E L00, l l fg lh == 1 1 / lh l l 9 l l oo W l g (x) l = l l 9 l l oo a.e. on the set 
where f (x) =/= 0. 

b. I I · l l oo is a norm on L00• 
c. l l fn - f l l oo --4 0 (ff there exists E E M such that J-l(Ec ) = 0 and fn --4 f 

uniformly on E. 
d. L00 is a Banach space. 
e. The simple functions are dense in L00• 

The proof is left to the reader (Exercise 2) . 
In view of Theorem 6.8a and the formal equality 1 - 1 + oo - 1 == 1 ,  it is natural to 

regard 1 and oo as conjugate exponents of each other, and we do so henceforth. 
Theorem 6.8c shows that I I  · I I  oo is closely related to, but usually not identical 

with, the uniform norm I I · l l u · However, if we are dealing with Lebesgue measure, or 
more generally any Borel measure that assigns positive values to all open sets, then 
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I I  f I I  oo = I I  f I I  u whenever f is continuous, since { x : I f ( x) I > a} is open. In this 
situation we may use the notations l l ! l l oo and l l ! l l u interchangeably, and we may 
regard the space of bounded continuous functions as a (closed !) subspace of L00 • 

In general we have LP C/- Lq for all p =/= q; to see what is at issue, it is instructive 
to consider the following simple examples on ( 0 ,  oo ) with Lebesgue measure. Let 
!a (x) = x-a, where a > 0. Elementary calculus shows that faX(o , 1 ) E LP iff 
p < a- 1 , and !aX( 1 ,oo) E LP iff p > a- 1 . Thus we see two reasons why a function 
f may fail to be in LP : either I J I P blows up too rapidly near some point, or it 
fails to decay sufficiently rapidly at infinity. In the first situation the behavior of 
I f IP becomes worse as p increases, while in the second it becomes better. In other 
words, if p < q, functions in LP can be locally more singular than functions in Lq , 
whereas functions in Lq can be globally more spread out than functions in LP . These 
somewhat imprecisely expressed ideas are actually a rather accurate guide to the 
general situation, concerning which we now give four precise results . The last two 
show that inclusions LP c Lq can be obtained under conditions on the measure space 
that disallow one of the types of bad behavior described above; for a more general 
result, see Exercise 5 .  

6.9 Proposition. IfO < p < q < r < oo, then Lq C LP + Lr; that is, each f E Lq 
is the sum of a function in LP and a function in Lr. 

Proof. If f E Lq , let E = {x : l f (x) l > 1 }  and set g = !XE and h == fXEc · 
Then Jg JP == I J IPXE < l ! l qXE , so g E LP , and l h l r == l ! l rXEc < l ! l qXEc , so 
h E Lr . (For r = oo, obviously l l h l l oo < 1 .) I 

6.10 Proposition. If 0 < p < q < r < oo, then LP n Lr C Lq and l l f l l q < 

I I J I I ; I I J I I ;-,\, where A E (0 ,  1 )  is defined by 

- 1 - 1 q - r - 1 \ - 1 ( 1 ' ) - 1 h . \ q = /\p + - /\ r , t at zs, /\ = p_ 1 _ r_ 1 . 

Proof. If r == oo, we have l f l q < l l f i i�P I J IP and A =  pjq, so 

I I  f I I  q < I I  f I I  �1 q I I  f I I  � (p 1 q) = I I  f I I ; I I f I I�,\ · 

If r < oo, we use Holder's inequality, taking the pair of conjugate exponents to be 
pj Aq and r / ( 1 - A)q: 

Taking qth roots, we are done. I 
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6.11  Proposition. If A is any set and 0 < p < q < oo, then ZP (A) c zq (A) and 
I I f I I q < I I f I I  p · 

Proof. Obviously 1 1 ! 1 1� = supa l f (a) IP < Ea l f (a) IP ,  so that l l f l loo  < I I  f l i p · 
The case q < oo then follows from Proposition 6. 1 0: if ,\ = pjq, 

I 

6.12 Proposition. If J.-t(X) < oo and 0 < p < q < oo, then LP (J.-t) � Lq (J.-t) and 
l l f i i P < l l f l l qJ.-t(X) ( 1 /p) - ( 1 /q) _ 

Proof. If q = oo, this is obvious : 

1 1 ! 1 1 �  = J I J IP < 1 1 ! 1 1� J 1 = 1 1 / l l�,u(X) . 

If q < oo, we use Holder's inequality with the conjugate exponents qj p and q / ( q -p) : 

I 
We conclude this section with a few remarks about the significance of the LP 

spaces. The three most obviously important ones are £1 , £2 , and L00• With £1 we 
are already familiar; £2 is special because it is a Hilbert space; and the topology 
on L00 is closely related to the topology of uniform convergence. Unfortunately, 
£1 and L00 are pathological in many respects, and it is more fruitful to deal with 
the intermediate LP spaces . One manifestation of this is the duality theory in §6.2 ; 
another is the fact that many operators of interest in Fourier analysis and differential 
equations are bounded on LP for 1 < p < oo but not on £1 or L00• (Some examples 
are mentioned in §9.4.) 

Exercises 

1. When does equality hold in Minkowski 's inequality? (The answer is different 
for p = 1 and for 1 < p < oo . What about p = oo?) 

2. Prove Theorem 6.8 . 

3. If 1 < p < r < oo , LP n Lr is a Banach space with norm l l f l l  = I I  f l i P + l l f l l r , 
and if p < q < r, the inclusion map LP n Lr --4 Lq is continuous. 

4. If 1 < p < r < oo, LP + Lr is a Banach space with norm 1 1 ! 1 1 = inf{ l l g i i P + 
l l h l l r : f = g + h } ,  and if p < q < r, the inclusion map Lq --4 LP + Lr is continuous . 

5. Suppose 0 < p < q < oo. Then LP C/- Lq iff X contains sets of arbitrarily small 
positive measure, and Lq C/- LP iff X contains sets of arbitrarily large finite measure . 
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(For the "if" implication: In the first case there is a disjoint sequence {En } with 
0 < f.-L(En ) < 2-n , and in the second case there is a disjoint sequence {En } with 
1 < f.-l(En ) < oo. Consider f = L anXEn for suitable constants an .) What about 
the case q = oo? 

6 .  Suppose 0 < Po < PI < oo. Find examples of functions f on (0 , oo) (with 
Lebesgue measure), such that f E LP iff (a) Po < p < PI, (b) po < p < PI, (c) 
p = po . (Consider functions of the form f (x) = x-a l log x ! b . ) 

7. If f E LP n £00 for some p < oo, so that f E Lq for all q > p, then 
1 1 / l l oo = limq�oo 1 1 / l l q · 
8. Suppose J.-t(X) = 1 and f E LP for some p > 0, so that f E Lq for 0 < q < p. 

a. log 1 1 / l l q > f log I f ! . (Use Exercise 42d in §3 .5 ,  with F(t) == et .) 
b. (f l ! l q - 1 ) /q > log 1 1 / l l q , and (J l ! l q - 1 ) /q --4 f log I l l as q --4 0. 
c. limq�o l l f l l q = exp(f log I l l ) .  

9. Suppose 1 < p < oo . If l l fn - f l i P --4 0, then fn --4 f in measure, and hence 
some subsequence converges to f a. e. On the other hand, if f n --4 f in measure and 
I fn i < g E LP for all n, then l l fn - f l i P --4 0. 

10. Suppose 1 < p < oo. If fn , f  E LP and fn --4 f a.e . ,  then l l fn - f l i P --4 0 iff 
I I  f n l i P --4 H f l i p · (Use Exercise 20 in §2 .3 .) 

11 .  If f i s  a measurable function on X, define the essential range R f of f to be the 
set of all z E CC such that { x : I f  ( x) - z I < E} has positive measure for all E > 0. 

a. R f is closed. 
b. If f E L00, then Rt is compact and l l ! l l oo == max{ l z l : z E Rt } .  

12. If p =/= 2 ,  the LP norm does not arise from an inner product on LP , except in 
trivial cases when dim(LP) < 1 . (Show that the parallelogram law fails .) 

13. LP (JRn , m) is separable for 1 < p < oo. However, L00(1Rn , m) is not separable. 
(There is an uncountable set 1' c L 00 such that I I  f - g I I  00 > 1 for all f, g E 1' with 
f =I= g.) 
14. If g E L 00, the operator T defined by T f = f g is bounded on LP for 1 < p < oo. 
Its operator norm is at most I I  g I I  00 , with equality if 1-l is semifinite. 

15. (The Vitali Convergence Theorem) Suppose 1 < p < oo and {fn }1 c LP . 
In order for { f n } to be Cauchy in the LP norm it is necessary and sufficient for the 
following three conditions to hold: (i) {! n } is Cauchy in measure; (ii) the sequence 
{ I f n IP } is uniformly integrable (see Exercise 1 1  in §3 .2) ; and (iii) for every E > 0 
there exists E C X such that J.-l (E) < oo and f Ec I fn I P < E for all n. (To prove 
the sufficiency: Given E > 0, let E be as in (ii i), and let Amn = { x E E : 
l fm (x) - fn (x) l > E} . Then the integrals of l fn - fm iP over E \ Amn , Amn , and 
Ec are small when m and n are large - for three different reasons.) 

16. If O < p < 1, the formula p(f, g) = J I f - g iP defines a metric on LP that makes 
LP into a complete topological vector space. (The proof of Theorem 6.6 still works 
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for p < 1 if I I  f I I  P i s  replaced by J I f I P, as it uses only the triangle inequality and not 
the homogeneity of the norm.) 

6.2 TH E DUAL OF LP 

Suppose that p and q are conjugate exponents . Holder's inequality shows that each 
g E Lq defines a bounded linear functional ¢9 on LP by 

</>g (f) = J fg , 

and the operator norm of ¢9 is at most I I  g I I  q . (If p = 2 and we are thinking of £2 as 
a Hilbert space, it is more appropriate to define ¢9 (f) = J f g. The same convention 
can be used for p =/= 2 without changing the results below in an essential way.) In 
fact, the map g --4 ¢9 is almost always an isometry from Lq into (LP ) * .  

6.13 Proposition. Suppose that p and q are conjugate exponents and 1 < q < oo. 
If g E Lq , then 

If f.-L is semifinite, this result holds also for q = oo. 

Proof. Holder's inequality says that I I  ¢9 I I  < I I  g I I  q , and equality is trivial if g == 0 
(a.e . ) .  If g =/= 0 and q < oo, let 

Then 

so 
> J = f lg l q = I I  c/Jg I I  _ 

f g 
I I  g i l  g- 1 I I  g l l q · 

(If q == 1 ,  then f == sgn g, I I  f I I  oo = 1 ,  and J f g = I I  g I h .) If q = oo, for E > 0 let 
A = {x : l g (x) l > l l 9 l l oo - E} . Then f.-L(A) > 0, so if f.-l is semifinite there exists 
B c A with 0 < f.-l(B) < oo. Let f = f.-L(B) - 1xBsgn g; then I I  ! I I  1 = 1 ,  so 

Since E is arbitrary, I I  ¢9 I I  = I I  g I I  oo . I 



THE DUAL OF LP 189 

Conversely, if f ---+ J f g is a bounded linear functional on LP , then g E Lq in 
almost all cases. In fact, we have the following stronger result. 

6.14 Theorem. Let p and q be conjugate exponents. Suppose that g is a measurable 
function on X such that f g E £1 for all f in the space � of simple functions that 
vanish outside a set of finite measure, and the quantity 

Mq (g) = sup { J fg : f E E and 1 / f l l v = 1 } 
is finite. Also, suppose either that 89 = { x : g( x) f= 0} is a-finite or that JL is 
semifinite. Then g E Lq and Mq (g) = l lg l l q · 

Proof First, we remark that if f is a bounded measurable function that vanishes 
outside a set E of finite measure and I I J I I P = 1 ,  then I J fg l < Mq (g) . Indeed, 
by Theorem 2. 1 0  there is a sequence {fn } of simple functions such that I fn i < l f l 
(in particular, fn vanishes outside E) and fn ---t f a.e. Since I fn i < l l f l l ooXE and 
XE9 E L1 , by the dominated convergence theorem we have I J fg l = lim I J fng l < 
Mq (g) .  

Now suppose that q < oo. We may assume that 89 is a-finite, as this condition 
automatically holds when J-L is semi finite; see Exercise 1 7 . Let {En } be an increasing 
sequence of sets of finite measure such that 89 = U� En . Let { ¢n } be a sequence 
of simple functions such that ¢n ---t g pointwise and I ¢n I < I g I , and let 9n = ¢n X En . 
Then 9n ---t g pointwise, l 9n l < l g l , and 9n vanishes outside En . Let 

l 9n l q- 1 sgn g fn = 
I Jgn l l �- 1 . 

Then as in the proof of Proposition 6. 1 3  we have l l fn i i P = 1 ,  and by Fatou's lemma, 

l l g l l q < lim inf l l gn l l q = lim inf J l fngn l 

< lim inf J l fng l = lim inf J fng < Mq (g) . 

(For the last estimate we used the remark at the beginning of the proof.) On the other 
hand, Holder's inequality gives Mq (g) < l l 9 l l q , so the proof is complete for the case 
q < 00. 

Now suppose q = oo. Given E > 0, let A =  {x : lg(x) l > M00 (g) + E } .  If 
t-L(A) were positive, we could choose B c A with 0 < J-L(B) < oo (either because 
f-L is semifinite or because A c 89). Setting f = J-L(B) - 1xnsgn g, we would then 
have l l f l l 1 = 1 , and J fg = J-L(B) - 1 J8 jg j > M00(g) + E . But this is impossible by 
the remark at the beginning of the proof. Hence l l g l l oo < M00(g) , and the reverse 
inequality is obvious. 1 

The last and deepest part of the description of (LP ) * is the fact that the map 
g ---t ¢9 is, in almost all cases, a surjection. 
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6.15 Theorem. Let p and q be conjugate exponents. If 1 < p < oo, for each 
¢ E (LP ) *  there exists g E Lq such that ¢(!) =  J fgfor all f E LP, and hence Lq 
is isometrically isomorphic to (LP ) * .  The same conclusion holds for p = 1 provided 
fL is a-finite. 

Proof. First let us suppose that fL is finite, so that all simple functions are in 
LP . If ¢ E (LP ) * and E is a  measurable set, let v (E) == ¢(XE ) · For any disjoint 
sequence { Ej }, if E == u� Ej we have XE == L� XEj where the series converges 
in the LP norm: 

n oo oo 1 ; 
XE - L XEi = L XEi = fl ( U Ej ) P 

� 0 as n � oo. 
1 p n+ 1 p n+1 

(It is at this point that we need the assumption that p < oo.) Hence, since ¢ is linear 
and continuous, 00 00 

v(E) = L ¢(XEi ) = L v(Ej ) ,  
1 1 

so that v is a complex measure . Also, if J.L( E) = 0, then XE = 0 as an element 
of LP , so v(E) == 0; that is, v << fL· By the Radon-Nikodym theorem there exists 
g E L1 (J.L) such that ¢(XE ) == v( E) == J E g dJ.L for all E and hence ¢(!) = J f g dJ.L 
for all simple functions f. Moreover, I J fg l < 1 1 ¢ 1 1 1 1 / I I P , so g E Lq by Theorem 
6. 14. Once we know this, it follows from Proposition 6. 7 that ¢(!) = J f g for all 
f E LP . 

Now suppose that fL is a-finite. Let {En }  be an increasing sequence of sets such 
that 0 < J.L(En) < 00 and X = u� En, and let us agree to identify LP (En)  and 
Lq (En)  with the subspaces of LP (X) and Lq (X) consisting of functions that vanish 
outside En . The preceding argument shows that for each n there exists 9n E Lq (En )  
such that ¢(/) == J fgn for all f E LP (En) ,  and l l 9n l l q = I I ¢ 1 £P (En) l l < 1 1 ¢ 1 1 · 
The function gn i s  un ique modulo alterations on nullsets, so 9n = 9m a.e. on En for 
n < m, and we can define g a.e. on X by setting g = 9n on En . By the monotone 
convergence theorem, l l g l l q = lim l l 9n l l q < 1 1 ¢ 1 1 , so g E Lq . Moreover, if f E LP, 
then by the dominated convergence theorem, fXEn ---4 f in the LP norm and hence 
¢(f) =  1im ¢(fXEn ) = lim JEn fg = J fg. 

Finally, suppose that fL is arbitrary and p > 1 ,  so that q < oo. As above, for each 
a-finite set E C X there is an a.e.-unique 9E E Lq (E) such that ¢(!) = J fgE for 
al l f E LP (E) and I I 9E I I q < 1 1 ¢ 1 1 - If F is a-finite and F :> E, then gp = 9E a.e . 
on E, so I I 9F I I q > I I 9E I I q · Let M be the supremum of I I 9E I I q as E ranges over all 
a-finite sets, noting that M < 1 1 ¢ 1 1 - Choose a sequence {En}  so that I I 9En l l q ---4 M, 
and set F == u� En . Then F is a-finite and I I9F I I q > I I 9En l l q for all n, whence 
I I 9F l l q == M. Now, if A is a a-finite set containing F, we have 

J / gF / 9 + J / gA\F / 9  = J /gA / 9 < Mq = J / gF / 9 , 
and thus 9A\F = 0 and 9A = gp a.e. (Here we use the fact that q < oo.) But if 
f E LP, then A =  F U {x : f(x) =I 0} is a-finite, so ¢(!) == J fgA = J fgp. Thus 
we may take g == gp , and the proof is complete. 1 
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We conclude with some remarks on the exceptional cases p = 1 and p = oo. For 
any measure fL, the correspondence g � ¢9 maps L 00 into ( L1 ) * , but in general it is 
neither injective nor surjective. lnjectivity fails when fL is not semifinite. Indeed, if 
E c X is a set of infinite measure that contains no subsets of positive finite measure, 
and f E £1 , then { x : f (x) i= 0} is a-finite and hence intersects E in a null set. 
It follows that ¢xE = 0 although XE -:/= 0 in L 00• This problem, however, can be 
remedied by redefining L00 ; see Exercises 23-24. The failure of surjectivity is more 
subtle and is best illustrated by an example; see also Exercise 25 . 

Let X be an uncountable set, fL = counting measure on (X, P(X) ) ,  M = the a
algebra of countable or co-countable sets, and J.Lo = the restriction of fL to M. Every 
f E L1 (J.L) vanishes outside a countable set, and it follows that L1 (J.L) = L1 (J.Lo ) . 

On the other hand, L 00 (J.L) consists of all bounded functions on X, whereas L 00 (J.Lo ) 
consists of those bounded functions that are constant except on a countable set. With 
this in mind, it is easy to see that the dual of £1 (J.Lo ) is L00 (J.L) and not the smaller 
space L00 (J.Lo ) .  

As for the case p = oo: the map g ---t ¢9 is always an isometric injection of L1 
into ( L00) * by Proposition 6 .  r3, but it is almost never a surjection. We shall say more 
about this in §6.6; for the present, we give a specific example. (Another example can 
be found in Exercise 19. )  

Let X = [0, 1] , fL = Lebesgue measure. The map f � f(O) i s a bounded linear 
functional on C(X) , which we regard as a subspace of L00 • By the Hahn-Banach 
theorem there exists ¢ E (£00) *  such that ¢(!) = f(O) for all f E C(X) . To see 
that ¢ cannot be given by integration against an £1 function, consider the functions 
fn E C(X) defined by fn (x) = max( 1 - nx, 0) . Then ¢ (fn ) = fn (O) = 1 for all n, 
but f n ( x) ---t 0 for all x > 0, so by the dominated convergence theorem, J f n9 ---t 0 
for all g E £1 . 

Exercises 

17. With notation as in Theorem 6. 14, if fL is semifinite, q < oo, and Mq(g) < oo, 
then {x : l g(x) l > E} has finite measure for all E > 0 and hence 89 is a-finite .  

18. The self-duality of £2 follows from Hilbert space theory (Theorem 5 .25), and this 
fact can be used to prove the Lebesgue-Radon-Nikodym theorem by the following 
argument due to von Neumann. Suppose that J.L, v are positive finite measures on 
(X, M) (the a-finite case follows easily as in §3 .2) , and let ,\ = fL + v. 

a. The map f � J f dv is a bounded linear functional on £2 (,\) , so J f dv = 
J fg d,\ for some g E £2 (,\) .  Equivalently, J !( 1  - g) dv = J fg dJ-L for 
f E L2 (,\) . 
b. 0 < g < 1 ,\-a.e. , so we may assume 0 < g < 1 everywhere. 
c. Let A =  {x : g (x) < 1 } , B = {x : g(x) = 1 } , and set va (E) = v(A n E) , 
v8 (E) = v(B nE) .  Then V8 j_ fL and lla << J.L; in fact, dva = g ( 1 - g) - 1 XA df-L.  
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19. Define ¢n E (Z00 ) *  by ¢n (f) = n- 1 I:� f (j ) .  Then the sequence { ¢n } has 
a weak* cluster point ¢, and ¢ is an element of (zoo ) *  that does not arise from an 
element of Z 1 • 
20. Suppose supn I I  f n l i P < oo and f n ---t f a.e . 

a. If 1 < p < oo, then fn ---t f weakly in LP . (Given 9 E Lq , where q is 
conjugate to p, and E > 0, there exist (i) 8 > 0 such that JE l9 l q < E whenever 
J-L(E) < 8, (ii) A c X such that J-L(A) < oo and fx\A l 9 l q < E, and (iii) B c A 
such that J-L(A \ B) < 8 and fn ---t f uniformly on B.) 
b. The result of (a) is false in general for p = 1 .  (Find counterexamples in 
L 1 (IR, m) and Z 1 .) It is, however, true for p = oo if J1 is a-finite and weak 
convergence is replaced by weak* convergence. 

21. If 1 < p < oo, fn ---t f weakly in ZP (A) iff supn l l fn l i P < oo and fn ---t f 
pointwise .  

22. Let X = [0 ,  1 ], with Lebesgue measure . 
a. Let fn (x) = cos 21rnx. Then fn ---t 0 weakly in £2 (see Exercise 63 in §5.5) , 
but f n f+ 0 a. e. or in measure . 
b. Let fn (x) = nx(0, 1 /n) · Then fn ---t 0 a.e. and in measure, but fn f+ 0 
weakly in LP for any p. 

23. Let (X, M, J1) be a measure space . A set E E M is called locally null if 
J-L( E n  F) == 0 for every F E M such that J-L( F) < oo. If f : X ---t C is a measurable 
function, define 

1 1 ! 1 1 * = inf{ a : {x : l f (x) l > a} is locally null} , 

and let /:.;00 = /:.;00 (X, M, J-L) be the space of all measurable f such that I I I I I * < oo. 

We consider J, 9 E /:.;00 to be identical if { x : f(x) # g(x) } is locally nul l .  
a. If E is locally null , then J-L( E) i s either 0 or oo. If J1 i s semi finite, then every 
locally null set is null . 
b. I I  · I I * is a norm on /:.; 00 that makes /:.; 00 into a Banach space. If J1 is semi finite, 
then /:.; 00 == L 00 •  

24. If 9 E /:.;00 (see Exercise 23), then 1 1 9 1 1 * = sup{ I J !9 1 : l l f lh = 1 } ,  so the 
map g � ¢9 is an isometry from /:.;00 into (£1 ) * . Conversely, if Moo(9) < oo as in 
Theorem 6. 14, then 9 E /:.;00 and Moo(9) = 1 1 9 1 1 * · 
25. Suppose J1 is decomposable (see Exercise 1 5  in §3 .2) .  Then every ¢ E (£1 ) * i s  
of the form ¢(!) = J !9 for some 9 E /:.;00 , and hence (£1 ) * 1"-.J /:.;00 (see Exercises 
23 and 24 ). (If � is a decomposition of J1 and f E £1 , there exists { Ei } c � such 
that f = I:� fXEi where the series converges in £1 . )  
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6.3 SOME USEFUL IN EQUALITI ES 

Estimates and inequalities lie at the heart of the applications of LP spaces in analysis .  
The most basic of these are the Holder and Minkowski inequalities. In this section 
we present a few additional important results in this area. The first one is almost a 
triviality, but it is sufficiently useful to warrant special mention . 

6.17 Chebyshev's Inequality. Iff E LP (0 < p < oo), then for any a > 0, 

JL ({x : l f (x) l > a}) < [ l l� l v r . 
Proof. Let Ea = {x : l f (x) l > a} . Then 

1 1 ! 1 1 � = J I J IP > r I J IP > aP r 1 = aP JL(Ea ) · }Eo }Eo 
I 

The next result is a rather general theorem about boundedness of integral operators 
on LP spaces. 

6.18 Theorem. Let (X, M, J.L) and (Y, N, v) be a-finite measure spaces, and let K 
be an (M 0 N)-measurable function on X x Y. Suppose that there exists C > 0 
such that J IK(x, y) l dJ.L(x) < C for a. e. y E Y and J IK(x, y) l dv(y) < C for a.e. 
x E X, and that 1 < p < oo. Iff E LP (v), the integral 

Tf(x) = j K(x, y)f(y) dv(y) 

converges absolutely for a. e. x E X, the function T f thus defined is in LP (J.L ), and 
l i T f l i P < Cl l f l l p· 

Proof. Suppose that 1 < p < oo. Let q be the conjugate exponent to p. By 
applying Holder's inequality to the product 

IK(x ,  y)f(y) ! == IK(x, Y) l 1 1q ( IK(x, Y) ! 1 1P i f (y) l )  
we have 

[ ] 1/q [ ] 1 /p j IK(x, y)f(y) l dv(y) < j IK(x ,  Y) l dv (y) j IK(x, Y) l l f (y) IP dv (y) 

< clfq [! IK(x , y) l l f (y) IP dv (y)] l /p 
for a. e . x E X. Hence, by Tonelli 's theorem, 

j [j IK(x , y)f(y) l dv(y)r dJL(x) < cvfq jj IK (x, y) l l f(y) IP dv(y) dJL (x ) 

< c<vfq)+ l J l f (y) IP dv (y) .  
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Since the last integral is finite, Fubini 's theorem implies that K ( x, · ) f E L 1 ( v) for 
a.e .  x, so that T f is well defined a.e . , and 

J ITJ (x) IP dJL(x) < cCv/q)+l l l f l l � ·  

Taking pth roots, we are done. 
For p == 1 the proof is similar but easier and requires only the hypothesis 

J IK(x , y) I dJ.L (x) < C; for p = oo the proof is trivial and requires only the hy
pothesis J IK(x, y) l dv(y) < C. Details are left to the reader (Exercise 26) . 1 

Minkowski 's inequality states that the LP norm of a sum is at most the sum of 
the LP norms. There is a generalization of this result in which sums are replaced by 
integrals: 

6.19 Minkowski 's Inequality for Integrals. Suppose that (X, M, J.L) and (Y, N, v) 
are a-finite measure spaces, and let f be an (M ®N) -measurablefunction on X x Y. 

a. Iff > 0 and 1 < p < oo, then 

b. lf 1  < p < oo, !( · , y) E £P (J.L) for a.e. y, and the function y � I I ! ( · , y) I I P is 
in L1 (v ) , then f( x, · )  E £1 (v) for a. e. x, the function x � J f( x, y) dv(y) is 
in LP (J.L ) , and 

j !( · , y) dv(y) < j I I ! ( · , y) l l v  dv(y) .  
p 

Proof. If p = 1 , (a) is merely Tonelli 's theorem. If 1 < p < oo, let q be the 
conjugate exponent to p and suppose g E Lq (J.L) . Then by Tonelli 's theorem and 
Holder's inequality, 

J [! f(x , y) dv(y)] l g (x) l dJL (x) = JJ f(x, y) lg (x) l dJL(x) dv(y) 

< l l g l l q J [f J(x, y)P dJL(x)f 1p 
dv(y) .  

Assertion (a) therefore follows from Theorem 6. 14. When p < oo, (b) follows from 
(a) (with f replaced by I f ! ) and Fubini 's theorem; when p = oo, it is a simple 
consequence of the monotonicity of the integral . 1 

Our final result is a theorem concerning integral operators on (0, oo) with Lebesgue 
measure. 
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6.20 Theorem. Let K be a Lebesgue measurable function on (0, oo ) x (0 , oo ) such 
that K(Ax, AY) = A  - 1  J( (x , y) for all A > 0 and J0

00 IK(x, 1 )  lx- 11P dx = C < oo 
for some p E ( 1 , oo], and let q be the conjugate exponent to p. For f E LP and 
g E Lq, let 

T f (y) = 100 
K(x, y)f (x) dx, Sg(x) = 100 

K(x, y)g(y) dy. 

Then Tf and Sg are defined a. e. , and l i T f l i P < C I I J I I P and I I Sg l l q < C l l g l l q · 
Proof. Setting z = xjy, we have 

100 
IK(x, y)f(x) l dx = 100 IK(yz , y)f (yz) l y dz = 100 IK(z , 1 )/z (Y) I dz 

where fz (Y) = f(yz) ; moreover, [ roo ] 1 /p [ roo ] 1 /p 
1 1 /z l l v = 

Jo l f (yz) IP dy = Jo l f (x) IPz- 1 dx = z- 1 /P I I f l l v · 

Therefore, by Minkowski 's inequality for integrals, T f exists a. e. and 

I I TJ I I v < 100 
IK(z ,  1 ) 1 1 1 /z l l v dz = l l f l l v 100 IK(z , 1 ) l z- 1 IP dz = C l l f l l v · 

Finally, setting u = y- 1 ,  we have 

100 
IK( 1 , y) l y- 1 /q dy = 100 

IK(y- 1 ' 1 ) IY- 1 - ( 1 /q) dy 

= 100 
IK(u , 1 ) lu- 1 /P du = C, 

so the same reasoning shows that S g is defined a. e. and that I I  S g I I q < C I I  g I I q . 1 

6.21 Corollary. Let 

TJ(y) = y- 1  1Y f(x) dx , 

Then for 1 < p < oo and 1 < q < oo, 

I I T/ I I v < 
P � 1 1 1 / l l v , 

Proof. Let K(x, y) = y- 1 XE (x, y) where E = { (x , y) : x < y} .  Then 
J0

00 IK(x , 1 ) l x- 11P dx = J0
1 x- 1 /P dx = pf (p - 1 )  = q, where q is the conjugate 

exponent to p, so Theorem 6.20 yields the result. 1 
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Corollary 6.2 1 is a special case of Hardy's inequalities; the general result is in 
Exercise 29. 

Exercises 

26. Complete the proof of Theorem 6. 1 8  for the cases p = 1 and p = oo. 
27. (Hilbert's Inequality) The operator Tf(x) == J000 (x + y) - 1 f(y) dy satisfies 
l iT f l i P < CP I I ! I I P for 1 < p < oo, where Cp == f000 x- 11P (x + 1 ) - 1  dx. (For those 
who know about contour integrals :  Show that CP == 1r esc ( 1r jp ) .) 
28. Let I a be the nth fractional integral operator as in Exercise 6 1  of §2.6, and let 
Iaf(x) == x-a Iaf(x) . 

a. I a is bounded on LP (O , oo) for 1 < p < oo; more precisely, 

b. There exists f E £1 (0 , oo) such that J1 f tt L1 (0 , oo ) .  
29. Suppose that 1 < p < oo, r > 0, and h is a nonnegative measurable function on 
(0 ,  oo ) .  Then : 

roo [ {X ] p p p rOO Jo x-r- 1  Jo h(y) dy dx < (J Jo xp-r- 1h (x)P dx , 

roo [ roo ] p p p roo Jo xr- 1  
Jx 

h(y) dy dx < (J Jo xP+r- 1 h (x)P dx. 

(Apply Theorem 6.20 with K(x, y) = xf3- 1y-f3X(O ,oo) (y - x) , f(x) = x' h(x ) , and 
g (x ) == x8 h(x) for suitable ,8, /' ,  8.) 

30. Suppose that K is a nonnegative measurable function on (0 , oo ) such that 
J000 K(x)xs- 1 dx == ¢(s) < oo for O < s < 1 .  

a. If 1 < p < oo, p- 1 + q- 1 = 1 ,  and f, g are nonnegative measurable functions 
on (0, oo ) , then (with J = J000) 

b. The operator Tf(x) == J000 K(xy)f(y) dy is bounded on L2 ( (0 , oo) ) with 
norm < ¢( � ) . (Interesting special case : If K ( x) == e-x , then T is the Laplace 
transform and ¢( s) == r( s ) .) 

31. (A Generalized Holder Inequality) Suppose that 1 < Pj < oo and I:� pj 1 == 
r- 1 < 1 .  If fj E LP1 for j = 1 ,  . . .  , n, then TI� fj E Lr and I I  TI� fj l l r  < 
TI� I I fj I I Pj . (First do the case n == 2.) 
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32. Suppose that (X, M, J-L) and (Y, N, v) are a-finite measure spaces and K E 
L2 (J-L x v) . If f E L2 (v) , the integral T f(x) = J K(x , y)f(y) dv(y) converges 
absolutely for a.e. x E X; moreover, Tf E L2 (J-L) and I I TJ I I 2 < I IK I I 2 I I f l l 2 · 
33. Given 1 < p < oo, let T f(x) = x-1/P fox f(t) dt. If p- 1 + q- 1 = 1 ,  then T is 
a bounded linear map from Lq ( (0 , oo)) to C0 ( (0 , oo) ) . 
34. If f is absolutely continuous on [c, 1] for 0 < E < 1 and J01 x l f' (x) IP dx < oo, 
then limx�o f ( x) exists (and is finite) if p > 2 , I f ( x) I / I log x 1 1 12 � 0 as x � 0 if 
p = 2, and l f (x) l /x1 - (2/P) � 0 as x � 0 ifp < 2. 

6.4 DISTRIBUTION FU NCTIONS AND WEAK £P 

If f is a measurable function on (X, M, J-L) , we define its distribution function 
AJ : (O , oo) � [O , oo] by 

AJ (a) = J-L ({x : l f(x) l > a}) . 

(This is closely related, but not identical , to the "distribution functions" discussed in 
§ 1 .5 and § 1 0. 1 . ) We compile the basic properties of AJ in a proposition : 

6.22 Proposition. 

a. A f is decreasing and right continuous. 
b. lf I f I < l g l , then AJ < A9• 
c. if Ifn I increases to I f I , then A f n increases to A f .  
d. Iff =  g + h, then AJ (a) < A9 ( � a) + Ah ( � a) .  

Proof. Let E (a ,  f) = { x : If ( x) I > a} . The function A f is decreasing since 
E( a,  f) :) E({3, f) if a < {3, and it is right continuous since E( a, f) is the increasing 
union of {E(a + n- 1 , !) }1 . If I f I < l g l , then E (a , f) C E (a , g) , so AJ < A9 • 
If l fn I increases to I f I , then E( a, f) is the increasing union of { E( a, fn ) } ,  so A fn 
increases to A f .  Finally, if f = g + h, then E( a, f) C E( � a , g) U E( � a , h) , which 
implies that AJ (a) < A9 ( �a) + Ah ( �a) .  1 

Suppose that A f (a) < oo for all a > 0. In view of Proposition 6.22a, A f 
defines a negative Borel measure v on (0, oo) such that v ( (a , b] ) = AJ (b) - AJ (a) 
whenever 0 < a < b. (Our construction of Borel measures on IR in § 1 .5 works 
equally well on (0, oo ) .) We can therefore consider the Lebesgue-Stieltjes integrals 
J ¢ dA f = J ¢ dv of functions ¢ on (0, oo ) . The fol lowing result shows that the 
integrals of functions of I f I on X can be reduced to such Lebesgue-Stieltjes integrals .  

6.23 Proposition. lf A f (a) < oo for all a > 0 and ¢ is a nonnegative Borel 
measurable function on (0 , oo ) , then 
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Proof. If v is the negative measure determined by A f ,  we have 

v( (a , b] ) = AJ (b) - AJ (a) = -J-L ({x : a < l f(x) l < b} ) == -J-L ( I f l - 1 ( (a , b] ) ) . 
It follows that v(E) = -J-L( If i - 1 (E) ) for all Borel sets E C (0 , oo) , by the 
uniqueness of extensions (Theorem 1 . 14) . But this means that fx ¢ o 1 ! 1 dJ-L = 

- f000 ¢(a) dA f (a) when ¢ i s the characteristic function of a Borel set, and hence 
when ¢ is simple. The general case then follows by virtue of Theorem 2. 1 0  and the 
monotone convergence theorem. 1 

The case of this result in which we are most interested is ¢(a) = aP, which gives 

A more usefuJ form of this equation is obtained by integrating the right side by parts 
(Theorem 3 . 36) to obtain J l f iP dJ-L = p f000 aP- 1 AJ (a) da. The validity of this 
calculation is not clear unless we know that aP A f (a) � 0 as a � 0 and a � oo; 
nonetheless, the conclusion is correct. 

6.24 Proposition. lfO < p < oo, then 

Proof If A f (a) = oo for some a > 0, then both integrals are infinite . If not, 
and f is simple, then A f i s  bounded as a � 0 and vanishes for a sufficiently large, so 
the integration by parts described above works. (It is also easy to verify the formula 
directly in this case .) For the general case, let {gn } be a sequence of simple functions 
that increases to l f l ; then the desired result is true for gn , and it follows for f by 
Proposition 6.22c and the monotone convergence theorem. 1 

A variant of the LP spaces that turns up rather often is the following. If f is a 
measurable function on X and 0 < p < oo, we define 

and we define weak LP to be the set of all f such that [f]p < oo. [ · ]p is not a norm; 
it is easily checked that [cf]p = l e i [f]p , but the triangle inequality fails. However, 
weak LP is a topological vector space ; see Exercise 35 .  

The relationship between LP and weak LP i s  as follows. On the one hand, 

LP C weak LP, and [f]p < I I f l i p · 
(This is just a restatement of Chebyshev 's inequality.) On the other hand, if we 
replace A f (a) by ( [f]p /a )P in the integral p f000 aP-1 A f (a) da, which equals I I f I I � ' 
we obtain a constant times J000 a-1 da, which is divergent at both 0 and oo - but 
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just barely. One needs only slightly stronger estimates on A f near 0 and oo to obtain 
f E £P .  (See also Exercise 36.) The standard example of a function that is in weak 
LP but not in LP is f(x) = x- l/p on (0 , oo) (with Lebesgue measure) . 

Frequently it is convenient to express a function as the sum of a "small" part and 
a "big" part. The following is a way of doing this that gives a simple formula for the 
distribution functions. 

6.25 Proposition. If f is a measurable function and A > 0, let E( A) == { x : 
l f (x) l > A}, and set 

hA == fXX\E(A) + A(sgn f)XE(A) , 
Then 

9A == f - hA == (sgn f) ( I J I - A)XE(A) ·  

The proof is left to the reader (Exercise 37). 

Exercises 

35. For any measurable f and g we have [cf]P == l c l [f]p and [! + g] p < 2 ( [!]� + 
[g]� ) 1 /P ; . hence weak LP is a vector space. Moreover, the "balls" {g : [g - f]p < r} 
(r > 0, f E weak LP) generate a topology on weak LP that makes weak LP into a 
topological vector space . 

36. If f E weak LP and J.L( {x : f(x) # 0}) < oo, then f E Lq for all q < p. On 
the other hand, if f E (weak LP) n £00, then f E Lq for all q > p. 

37. Prove Proposition 6.25 .  

38. f E £P iff 2:::00 
00 

2kp AJ (2k ) < 00 . 

39. If f E £P, then lima--+0 a_P A f (a) == lima--+oo o;P A f (a) == 0. (First suppose f i s  
simple .) 

40. Iff is a measurable function on X, its decreasing rearrangement is the function 
f* : (0 , oo) ---t [0 , oo] defined by 

f* (t) = inf {a : A1 (a) < t} (where inf 0 = oo) . 

a. f* is decreasing. If f* (t) < oo then AJ (f* (t) ) < t, and if AJ (a) < oo then 
f* (AJ (a) ) < a. 
b. A f = A f* , where A f* is defined with respect to Lebesgue measure on ( 0 ,  oo) . 
c. If AJ (a) < oo for all a > 0 and lima--+oo AJ (a) == 0 (so that f* (t) < oo 
for all t > 0), and ¢ is a nonnegative measurable function on ( 0, oo),  then 
fx ¢ o 1 ! 1  dJ.L == J0

00 ¢ o f* (t) dt . In particular, I I  f l i P == l l f* I I P for 0 < p < oo. 
d. lf O < p < 00 , [f]p = SUPt>o t 1 1PJ* (t) .  
e. The name "rearrangement" for f* comes from the case where f is a nonneg
ative function on ( 0 ,  oo).  To see why it is appropriate, pick a step function on 
(0 , oo) assuming four or five different values and draw the graphs of f and !* . 



200 LP SPACES 

6.5 I NTERPOLATION OF LP SPAC ES 

If 1 < p < q < r < oo, then (LP n Lr) c Lq c (LP + Lr) , and it is natural to 
ask whether a linear operator T on LP + Lr that is bounded on both LP and Lr is 
also bounded on L q . The answer is affirmative, and this result can be generalized in 
various ways. The two fundamental theorems on this question are the Riesz-Thorin 
and Marcinkiewicz interpolation theorems, which we present in this section . We 
begin with the Riesz-Thorin theorem, whose proof is based on the following result 
from complex function theory. 

6.26 The Three Lines Lemma. Let ¢ be a bounded continuous function on the strip 
0 < Re z < 1 that is holomorphic on the interior of the strip. If I ¢( z) I < Mo for 
Re z == 0 and 1 ¢(z) l < M1 for Re z == 1, then l ¢(z) l < MJ-t Mf for Re z = t, 
0 < t < 1 . 

Proof For E > 0 let ¢€ (z) = ¢(z)M�-l M!z exp( Ez (z - 1) ) . Then ¢€ satisfies 
the hypotheses of the lemma with Mo and M1 replaced by 1, and also l ¢€ (z) l � 0 
as I Im z l � oo. Thus l ¢€ (z ) l < 1 on the boundary of the rectangle 0 < Re z < 1 ,  
-A < Im z < A provided that A is large, and the maximum modulus principle 
therefore implies that I ¢€ ( z) I < 1 on the strip 0 < Re z < 1 .  Letting E � 0, we 
obtain the desired result: 

I 

6.27 The Riesz-Thorin Interpolation Theorem. Suppose that (X, M, J-L) and 
(Y, N, v) are measure spaces and Po , P1 , qo , q1 E (1 , oo ] .  If qo = q1 == oo, suppose 
also that v is semifinite. For 0 < t < 1, define Pt and qt by 

1 
Pt 

1 - t t 
-- + - ,  Po Pl 

1 1 - t t 
-- + - .  qt qo q1 

IfT is a linear map from £Po (JL) + £Pt (J-L) into Lqo (v) + Lq1 (v) such that l i T J l l qo < 
Mo I I I I I  Po for f E £Po (JL) and l i T f l l q1 < M1 I I J I I Pt for f E £Pt (JL), then l i T J l l qt < 
MJ-tMf i i ! I I Pt for f E £Pt (JL), 0 < t < 1 . 

Proof. To begin with, we observe that the case Po = p1 follows from Proposition 
6. 10 :  If p = Po == Pl , then 

Thus we may assume that po i= p1 , and in particular that Pt < oo for 0 < t < 1 .  
Let �x (resp. �Y ) be the space of all simple functions on X (resp. Y) that vanish 

outside sets of finite measure. Then �x c LP (JL) for all p and �x is dense in LP (JL) 
for p < oo, by Proposition 6.7 ;  similarly for �Y . The main part of the proof consists 
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of showing that I ITf l l qt < MJ-tMf l l f i i Pt for all f E �x . However, by Theorem 
6. 14, 

l i T / l l qt = sup { j (T f)g dv : g E Ey and l l g l l q; = 1 } , 
where q� i s  the conjugate exponent to qt . (Note that T f E Lqo nLq1 , so {y : T f(y) i= 
0} must be a-finite unless q0 = q1 == oo; hence the hypotheses of Theorem 6. 14 are 
satisfied.) Moreover, we may assume that f i= 0 and rescale f so that I I ! I I Pt = 1 .  
We therefore wish to establish the following claim: 

• If f  E �x and I I ! I I Pt == 1 ,  then I f(T f)g dv l < MJ-t Mf for all g E �Y such 
that l l g l l q� = 1 .  

Let f = I:� CjXEi and g = I:� dkXFk where the Ej 's and the Fk 's are disjoint 
in X and Y and the Cj 's and dk 's are nonzero. Write Cj and dk in polar form: 
Cj = l cj l ei8i , dk = l dk l ei'l/Jk . Also, let 

a(z) = ( 1 - z)p0 1 + zp! 1 , 
thus a(t) = pf: 1 and {3(t) = q"t 1 for 0 < t < 1 .  Fix t E (0 , 1 ) ;  we have assumed 
that Pt < oo and hence a(t) > 0, so we may define 

m 

fz = L l cj l a (z) /a (t) ei8j XEj . 
1 

If {3( t) < i ,  we define 

n 

9z = L l dk I ( 1-,B(z) ) / ( l -,B(t) )  ei'l/Jk XFk , 
1 

while if {3(t) = 1 we define 9z = g for all z. (We henceforth assume that {3(t) < 1 
and leave the easy modification for {3(t) == 1 to the reader.) Finally, we set 

Thus, 
¢(z) = L Ajk l cj l a (z) /a (t) j dk i ( 1-,B(z) ) / ( 1-,B(t) )  

j ,k 
where 

Aik = ei (IJ; +..Pk ) J (TXE; )XFk dv, 
so that ¢ is an entire holomorphic function of z that is bounded in the strip 0 < 
Re z < 1 .  Since f(T f)g dv = ¢(t) , by the three lines lemma it will suffice to sho\v 
that l ¢(z ) l < Mo for Re z == 0 and l ¢(z) l < M1 for Re z == 1 .  However, since 
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for s E JR, we have 

Therefore, by Holder's inequality, 

A similar calculation shows that I ¢( 1 + is ) I < M 1 , so the claim is proved. 
We have now shown that I ITf l l qt < MJ-tMi i i ! I I Pt for f E �x , so in view of 

Proposition 6.7, T l�x has a unique extension to £Pt (JL) satisfying the same estimate 
there . It remains to show that this extension i s  T itself, that is, that T satisfies this 
estimate for all f E £Pt (JL) . Given such an f, choose a sequence {fn } in �x such 
that Ifn i < l f l and fn ---t f pointwise. Also, let E = {x : l f(x) l > 1 } ,  g = fXE , 
9n = fnXE , h = f - g, and hn == fn - 9n · Then if Po < P1 (which we may assume, 
by relabeling the p's), we have g E £Po (J.L) , h E £P1 (J.L) , and by the dominated 
convergence theorem, l l fn - f i i Pt ---t 0, l l 9n - g i i Po � 0, and l l hn - h l l p1 � 0. 
Hence I I Tgn - Tg l l qo ---t 0 and I I Thn - Th l l q1 ---t 0, so by passing to a suitable 
subsequence we may assume that Tgn ---t Tg a.e. and Thn � Th a.e. (Exercise 9) . 
But then T fn � T f a.e. , so by Fatou's lemma, 

and we are done. I 
The conclusion of the Riesz-Thorin theorem can be restated in a slightly stronger 

form. Let M(t) be the operator norm of T as a map from £Pt (J.L) to Lqt (v) . We have 
shown that M(t) < MJ-t M{ . It is possible for strict inequality to hold; however, 
if 0 < s < t < u < 1 and t = ( 1  - r )s + ru, the theorem may be applied again 
to show that M(t ) < M( s ) 1-r M( u)r . In short, the conclusion is that log M(t) i s  a 
convex function of t. 

We now tum to the Marcinkiewicz theorem, for which we need some more 
terminology. Let T be a map from some vector space 1) of measurable functions on 
(X, M, fL) to the space of all measurable functions on (Y, N, v) .  

• T is called sublinear if IT (f + g) l < ITJ I + ITg l and IT (cf) l = c iTJ I for 
all f, g E 1> and c > 0. 

• A sublinear map T is strong type (p, q) (1 < p, q < oo) if LP (J.L) c 1>, T 
maps LP (J.L) into Lq (v) ,  and there exists C > 0 such that l iT f l l q < G i l f l i P for 
all f E LP ( fL) . 

• A sublinear map T i s  weak type (p, q) (1 < p < oo, 1 < q < oo) if 
LP (J.L) c 1>, T maps LP(J.L) into weak Lq (v) ,  and there exists C > 0 such that 
[Tf ] q < C I I J I I P for all f E LP (J.L) . Also, we shall say that T is weak type 
(p, oo ) iff T is strong type (p, oo ) . 
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6.28 The Marcinkiewicz Interpolation Theorem. Suppose that (X, M ,  JL) and 
(Y, N, v) are measure spaces; Po , P1 , qo , q1 are elements of [ 1 , oo ] such that po < qo, 
Pl < q1, and qo i- q1 ; and 

1 
p 

1 - t t 1 1 - t t 
-- + - and - ==  + - ,  where 0 < t < 1 . 
Po Pl q qo q1 

If T is a sub linear map from £Po (JL) + £P1 (JL) to the space of measurable functions 
on Y that is weak types (po , qo ) and (Pl , q1 ), then T is strong type (p, q) . More 
precisely, if [T f] qi < Cj i i ! I I Pi for j == 0 ,  1, then l iT  J l l q < Bp i i ! I I P where Bp 
depends only on Pj , qj , Cj in addition to p; and for j == 0 ,  1, Bp IP - Pj I ( resp. Bp) 
remains bounded as p ---t Pj if Pj < oo ( resp. Pj == oo ). 

Proof. The case Po == p1 is easy and is left to the reader (Exercise 42) .  Without 
loss of generality we may therefore assume that p0 < p1 , and for the time being 
we also assume that qo < oo and q1 < oo (whence also Po < p1 < oo). Given 
f E LP (JL) and A > 0, let 9A and hA be as in Proposition 6.25 . Then by Propositions 
6.24 and 6.25, 

J i gA iPo dJL = Po loo f3Po - 1 AgA ((3) d(3 = Po loo f3Po - 1). t (f3 + A) d(3 

(6 .29) = Po ioo ((3 - A)Po - l At (f3) df3 < Po ioo f3Po - l At (f3) d(3, 

J ihA iP1 dJL = Pl loo f3P1 - l AhA ((3) d(3 = Pl loA 
f3P1 - 1 At (f3) d(3. 

Likewise, 

Since T is sublinear, by Proposition 6.22d we have 

(6.3 1 )  

This i s  true for all a > 0 and A > 0, so we may take A to depend on a .  We now 
make a specific choice of A. Namely, it follows from the equations defining p and q 
that 

( 6.32) 
Po ( qo - q) - P -1 ( q - 1 - q() 1 ) - P - 1 ( q- 1 - q 1 1 ) 

-
Pl ( ql - q) . 

qo (Po - P) - q-1 (p- 1 - Po 1 ) - q- 1 (p- 1 - P1 1 ) - ql (Pl - P) ' 
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we denote the common value of these quantities by a ,  and we take A == aa . Then 
by (6 .29), (6.30), (6 .3 1 ) , and the weak type estimates on T, 

(6.33) 

where, denoting by xo and x1 the characteristic functions of { (a , {3) : {3 > aa } and 
{ (a , {3) :  {3 < aa} , 

Since qo/Po > 1 and q1 /P1 > 1 ,  we may apply Minkowski 's inequality for integrals 
to obtain 

(6. 34) 

1oo [1oo ¢J (a , f3)df3] qi /Pi da 

< [100 [100 ¢J (a , {3)qi /Pi dari /qi d{3ri /Pi . 

Let r == 1/ a .  If q1 > qo ,  then q - qo and a are positive and the inequality {3 > a a 
is equivalent to a < {3r ,  so 

1oo [1oo c/Jo (a , {3) qo /Po da ro fqo d{3 

= 100 [1fJT Qq-qo - 1 da ro I qo f3Po - 1 >. f ({3) d{3 

= (q _ qo) -Po/qo 100 f3Po- l+po (q-qo ) /qoa At (f3) d{3 

= ( q - qo ) -po fqo 1oo f3P- 1At (f3) df3 

== l q - qo l -po/qoP- 1 1 1 ! 1 1 � , 

where we have used (6 .32) to simplify the exponent of {3. On the other hand, if 
q1 < qo ,  then q - qo and a are negative and the inequality {3 > a a is equivalent to 



a > {3r ,  so as above, 
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roo [ roo ] Po /qo roo [ roo ] Po /qo Jo Jo 
c/Jo (cx , {3) qo /Po dcx d{3 = Jo Jw cxq-qo - 1dcx f3Po - 1 At (f3) d{3 

== (qo - q) -Po /qo 1oo 
f3P- 1 At (f3) d{3 

== l q  - qo � -po fqo P- 1 1 1  ! I I � · 

A similar calculation shows that 100 [100 ¢1 (a, {3) q1 /Pl dar1 1ql d{3 = l q - q1 l -pl /q1P- 1 I I t l l � · 

Combining these results with (6.33) and (6.34), we see that 

sup{ l i T f l l q : I I  f l i P = 1 } < Bp = 2q1fq [� Cji (PJ !P) qi /Pi l q - qj l - 1 r /q
. 

But since ! T(cf) l == cjTJ I for c > 0, this implies that I I Tf l l q < Bp i i ! I I P for all 
f E £P (JL) , and we are done. (The verification of the asserted properties of Bp is left 
as an easy exercise.) 

It remains to show how to modify this argument to deal with the exceptional cases 
qo == oo or q1 == oo. We distinguish three cases . 

Case I: P1 == q1 = oo (so po < qo < oo ) . Instead of taking A == aa in the 
decomposition of f , we take A = a/C1 . Then I I ThA I I oo < C1 l l hA I I oo < a, so 
AThA (a) == 0, and we obtain (6 .33) with ¢1 = 0 and aa replaced by a/C1 in the 
definition of ¢0 • The same argument as above then gives 

Case II : Po < P1 < oo, qo < q1 == oo. Again the idea is to choose A so that 
AThA (a) == 0, and the proper choice is A == (a/ d)O" where d == c1 [P1 1 1  f 1 1 � /P] 

1/Pl 
and a == P1/ (P1 - p) (the limiting value of the a defined by (6 .32) as q1 � oo ) .  
Indeed, since P1 > p, we have 

A 
I IThA I I� < Cf1 l l hA I I �: = Cf1P1 

1 aP1 - 1 At ( a) dcx 

< Cflp1AP1 -P 1A 
(Xp- 1At (cx) dcx = Cfl � [�rl 1 1 ! 1 1 �  = aPl . 

As in Case I, then , we find that ¢1 == 0 in (6 . 33) and the integral involving ¢o is 
majorized by a constant Bp when I I  f l i P == 1 ,  which yields the desired result. 

Case III: Po < P1 < oo, q1 < q0 == oo. The argument is essentially the same as 
in Case II, except that we take A == (a/ d) a with d chosen so that ATgA (a) == 0. 1 
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The lengthy formulas in this proof may seem daunting, but the ideas are reasonably 
simple . To elucidate them, we recommend the exercise of writing out the proof for two 
special (but important) cases : (i) Po = qo = 1 ,  P1 = q1 = 2, and (ii) Po = qo = 1 ,  
P1 = q1 = oo. 

Let us compare our two interpolation theorems. The Marcinkiewicz theorem 
requires some restrictions on p1 and q1 that are not present in the Riesz-Thorin 
theorem; these restrictions, however, are satisfied in all the interesting applications. 
Apart from this, the hypotheses of the Marcinkiewicz theorem are weaker: T is 
allowed to be sublinear rather than linear, and it needs only to satisfy weak-type 
estimates at the endpoints . The conclusion in both cases is that T is bounded from 
LP (JL) to Lq (v) , but the Riesz-Thorin theorem produces a much sharper estimate for 
the operator norm of T. Thus neither theorem includes the other. 

We conclude with two applications of the Marcinkiewicz theorem. The first one 
concerns the Hardy-Littlewood maximal operator H discussed in §3 .4, 

Hf(x) = sup (B� ) )  { l f(y) i dy r>O m r, X j B(r,x) 

H is obviously sublinear and satisfies I IH f l l oo < l l f l l oo for all f E L00• Moreover, 
Theorem 3 . 1 7  says precisely that H is weak type ( 1 ,  1 ) .  We conclude : 

6.35 Corollary. There is a constant C > 0 such that if1 < p < oo and f E £P (1Rn ) , 
then 

Our second application is a theorem on integral operators related to Theorem 6. 1 8 . 

6.36 Theorem. Suppose (X, M, JL) and (Y, N, v) are a-finite measure spaces, and 
1 < q < oo. Let K be a measurable function on X x Y such that, for some C > 0, 
we have [K(x ,  · ) ] q < C for a. e. x E X and [K( · , y) ] q < C for a. e. y E Y. If 
1 < p < oo and f E LP (v), the integral 

T f(x) = J K (x , y)f(y) dv (y) 

converges absolutely for a. e. x E X, and the operator T thus defined is weak 
type ( 1 ,  q) and strong type (p, r) for all p, r such that 1 < p < r < oo and 
p- 1 + q- 1 = r- 1  + 1 .  More precisely, there exist constants Bp independent of K 
such that 

Proof. Let p' , q' be the conjugate exponents to p, q ;  then 

- 1 - 1 + - 1 1 - 1 ( ' )- 1 - 1 ( ' )- 1 r = p q - = p  - q == q  - p ' 
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so p < q' and q < p' . Suppose 0 i= f E £P (1 < p < q') ;  by multiplying f and K 
by constants, we may assume that I I  f l iP = C = 1 .  Given a positive number A whose 
value will be fixed later, define 

E == { (x , y) : IK(x , y) l > A} , K1 == (sgn K) ( IK I - A)xE , K2 == K - K1 , 
and let T1 , T2 be the operators corresponding to K 1 , K2 . Then by Propositions 6.24 
and 6.25 , since q > 1 we have 

and likewise J A1-q IK1 (x, y) l dfL (x) < 
q _ 1 . 

Hence, by Theorem 6. 1 8, the integral defining T1 f ( x) converges for a.e. x and 

A 1-q A 1-q I I T1 f l l p < 1 1 1 f l l p == 1 " q - q -
(6.37) 

Similarly, since q < p' ,  

A j iK2 (x , y) I P' dv(y) = p' 1 aP' - l_xK(x , - ) (a) da 

< p' o:.P' - 1-q do: = p I • 1A 'AP' -q 
0 p - q 

Therefore, by Holder's inequality, the integral defining T2J(x) converges for every 
x, and 

(6.38) I I T2f l l oo < [p����q rfp' 
l l f l l v  = [�f/p' 

Aqfr . 

We have thus established that T f = T1 ! + T2! is well defined a.e. 
Next, given o:. > 0, we wish to estimate AT f ( o:.) . But by Proposition 6.22d, 

ATJ (o:.) < ATI J ( � o:.) + AT2 J ( � o:.) , 
and by (6 .38) , if we choose 

we will have I I  T2 f I I  00 < � o:., so that AT2 f ( � o:.) = 0. With this choice of A, then, by 
(6 .37) and Chebyshev 's inequality we obtain 
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because I I ! I IP == 1 and 

( 1  - q)pr 
- p = p ( -r - 1) == -p . r 

== -r. 
q q' p 

A simple homogeneity argument now yields the estimate ATJ (a) < Cp ( I I ! I I P/a) r 
with no restriction on I I  f l iP ' so we have shown that T is weak type (p , r ) , and in 
particular (for p == 1) weak type ( 1 ,  q) . 

Finally, given p E ( 1 ,  q' ) ,  choose p E (p, q' ) and define rby r- 1 == p-- 1 - (q' ) - 1 . 
Then T is weak types ( 1 ,  q) and (p, r) ,  so it follows from the Marcinkiewicz theorem 
that T is strong type (p , r ) . 1 

Exercises 

41. Suppose 1 < p < oo and p- 1 + q- 1 == 1 .  If T is a bounded operator on LP 
such that f (T f)g == J f(Tg) for all J, g E £P n Lq, then T extends uniquely to a 
bounded operator on Lr for all r in [p , q] (if p < q) or [q , p] (if q < p) . 

42. Prove the Marcinkiewicz theorem in the case Po == P1 · (Setting p == Po == P1 , 
we have ATJ (a) < (Co i i ! I I P/a) qo and ATJ (a) < (C1 I I J I I P/a) q1 • Use whichever 
estimate is better, depending on a, to majorize q J000 aq- 1 ATJ (a) da. ) 
43. Let H be the Hardy-Littlewood maximal operator on JR. Compute H X(o, 1 ) 
explicitly. Show that it is in LP for all p > 1 and in weak L1 but not in L1 , and that 
its LP norm tends to oo like (p - 1 ) - 1 as p ----7 1 , although I I X(0 , 1 ) l i P == 1 for all p. 

44. Let I a be the fractional integration operator of Exercise 6 1  in §2.6. If O < a < 1 ,  
1 < p < a- 1 , and r- 1 = p- 1 - a, then Io: is weak type ( 1 ,  ( 1  - a) - 1 ) and strong 
type (p, r)  with respect to Lebesgue measure on (0 ,  oo ) . 
45. If 0 < a < n, define an operator Ta on functions on IRn by 

Taf(x) = J l x - Y l -a f(y) dy. 

Then To: is weak type ( 1 ,  (n - a)- 1 ) and strong type (p, r) with respect to Lebesgue 
measure on IRn, where 1 < p < na- 1 and r- 1 == p- 1 - an- 1 . (The case n = 3, 
a == 1 is of particular interest in physics: If f represents the density of a mass or 
charge distribution, - ( 47r) - 1T1 f represents the induced gravitational or electrostatic 
potential .) 

6.6 NOTES AND REFERENCES 

The importance of the space L2 ( [a , b] ) was recognized soon after the invention of the 
Lebesgue integral because of its connection with Fourier series and other orthogonal 
expansions; and one of the early triumphs of the Lebesgue theory was the discovery 
in 1907 by Fischer [44] and F. Riesz [ 1 14] that L2 ( [a , b] ) is isomorphic to Z2 , or 
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what amounts to the same thing, that L2 ( [a , b] ) is complete . The spaces LP ( [a , b] ) 
for 1 < p < oo were first investigated by F. Riesz [ 1 17] , who proved all of the major 
results in §,§6. 1-2 for them as well as the weak sequential compactness of the closed 
unit ball in LP . The fact that (£1 ) * = L00 was first proved by Steinhaus [ 143 ] .  

In some respects it i s  unfortunate that LP spaces were not named L11P spaces, for 
- as one sees in the conjugacy relation p-1 + q- 1 = 1 and in the results of §6.5 -
relationships among different LP spaces usually involve linear equations in p- 1 . 

A di scussion of some of the deeper aspects of LP spaces and their applications in 
other areas of analysis can be found in Lieb and Loss [93] . 

§6. 1 :  Holder's inequality, in the case p = 2, is commonly associated with the 
names of Cauchy (who proved it for finite sums) and Buniakovsky and Schwarz (who 
proved it, independently, for integrals). For general p it was discovered independently 
by Holder and Rogers. Minkowski 's original inequality was for finite sums. (See 
Hardy, Littlewood, and P6lya [66] for references.) A neat proof of Holder's inequality 
using complex function theory can be found in Rubel [ 1 22] . 

The relations among the spaces LP + L q, defined in Exercise 4, are studied in 
Alvarez [5] . See Romero [ 1 20] for a discussion of Exercise 5 , including some other 
conditions for the inclusion LP c Lq to hold, and Miamee [ 1 00] for a discussion of 
the more general relation LP (J.L) c Lq (v) .  

§6.2: A quite different approach to the LP duality theory for 1 < p < oo 
can be found in Hewitt and Stromberg [76, § 15] . J. Schwartz [ 1 30] has found a 
characterization of ( £1 ) * that is valid on arbitrary measure spaces . 

The proof of Theorem 6. 1 5  breaks down for p = oo because the set function 
v ( E) = ¢(XE) need not be countably additive. It is, however, a bounded, finitely 
additive complex measure on (X, M) that is absolutely continuous with respect to J-L in 
the sense that v( E) == 0 whenever J.L( E) == 0. Conversely, given a bounded, finitely 
additive complex measure v on (X, M) , one can define the integral of a bounded 
measurable function with respect to v. (One defines J f dv in the obvious way when 
f is simple and then shows that I J f dv l < Cl lf l l u , so that the integral extends to 
all uniform lilnits of simple functions.) In this way one obtains a representation of 
( L 00) * as a space of finitely additive complex measures. See Hewitt and Stromberg 
[76, §20] , and for a more general treatment of finitely additive integrals, Dunford and 
Schwartz [35, Chapter 3 ] .  (The example of a ¢  E (£00) *  \ £1 that we presented at the 
end of §6.2 shows how horrible finitely additive measures can be: If v( E) == ¢(XE) , 
then v << m, but v behaves like the point mass at zero when integrated against any 
continuous function.) 

§6. 3 :  Theorem 6. 1 8  generalizes results of Schur [ 129] (for the case p == 2) and 
W. H. Young [ 1 64] (for the case K(x, y) = k(x - y) ;  see §8 .2). Theorem 6.20 is 
also essentially due to Schur [ 1 29] . 

The reader whose appetite for inequalities is not satisfied by this section can find 
a feast in Hardy, Littlewood, and P6lya [ 66] . 

§6.4: The weak LP spaces first appeared implicitly in weak-type estimates, 
instances of which go back to the 1920s; see also the notes for §6.5 below. Decreasing 
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rearrangements (Exercise 40) were introduced by Hardy and Littlewood [65] , who 
give an entertaining motivation of their principal theorem on rearrangements in terms 
of cricket averages. 

§6.5 : The Riesz-Thorin theorem was first proved by M. Riesz (F. Riesz's younger 
brother) [ 1 1 8] under the assumption that pj < qj for j = 0, 1 ;  the proof in the general 
case and the idea of using the three lines lemma are due to Thorin [ 149] . E. M. Stein 
has proved a very powerful generalization of the Riesz-Thorin theorem. It deals 
with a family {Tz : 0 < Re z < 1 }  of operators that (roughly speaking) depend 
holomorphically on z and sati sfy some mild growth conditions as I Im z l � oo, and 
it asserts that if Tz is bounded from £Pi to Lqi for Re z = j (j = 0 ,  1), then Tz is 
bounded from £Pt to Lqt for Re z = t (0 < t < 1), where Pt , qt are defined as in the 
Riesz-Thorin theorem. The precise statement and proof can be found in Bennett and 
Sharpley [ 15 , §4.3 ] ,  Stein and Weiss [ 142, §V.4] , or Zygmund [ 167, §XII. l ] .  For a 
further extension of these ideas, see Coifman et al . [28] . 

The Marcinkiewicz interpolation theorem was announced by Marcinkiewicz [97] 
for the case Pj == qj (j = 0 ,  1) ; after his untimely death in World War II, the work 
was completed by Zygmund [ 1 66] . The theorem can be proved under still weaker 
hypotheses on T; an extra twist to the argument we have given yields the same result 
under the sole assumption that I T(f + g) l < C( IT ! I  + I Tg l ) for some constant C. 
See Zygmund [ 1 66] , [ 167, §XII.4] . The spaces LP and weak LP form part of a two
parameter family { L(p, q) : 1 < p, q < oo} of function spaces, the so-called Lorentz 
spaces, such that LP = L(p, p) and weak LP = L(p, oo ) , and the Marcinkiewicz 
theorem can be extended to a result about interpolation of operators on the L(p, q) 
spaces. See Bennett and Sharpley [ 1 5 , §4.4] , or Stein and Weiss [ 142, §5 .3] 

There are many other examples of "continuous families" of Banach spaces for 
which interpolation theorems can be proved - for example, the spaces Aa discussed 
in Exercise 1 1  in §5 . 1 and the S0bolev spaces di scussed in §9.3 . There are also two 
general techniques for constructing "intermediate spaces" between pairs of Banach 
spaces, known as the "complex method" and the "real method," which may be 
regarded as abstract forms of the Riesz-Thorin and Marcinkiewicz theorems . An 
account of these theories and their applications can be found in Bergh and Lofstrom 
[ 16] ; see also Bennett and Sharpley [ 1 5] the real method and its applications . 

Corollary 6.35 is due to Hardy and Littlewood [65] . Theorem 6.36 appears first 
in Folland and Stein [5 1 ] ,  but the essential idea of the pr0of was discovered by Stein 
several years earlier (see, e.g. , Stein [ 140, §5. 1 ] ), and the special case discussed in 
Exercise 44 goes back to Hardy and Littlewood [64] . 



Radon Measures 

The subject of this chapter is measure and integration theory on local ly compact 
Hausdorff (LCH) spaces. We have seen in §2.6 that Lebesgue measure on JR.n 
interacts nicely with the topology on JR.n 

- measurable sets can be approximated by 
open or compact sets, and integrable functions can be approximated by continuous 
functions - and it is of interest to study measures having similar properties on 
more general spaces. Moreover, it turns out that certain linear functionals on spaces 
of continuous functions are given by integration against such measures. This fact 
constitutes an important link between measure theory and functional analysis, and it 
also provides a powerful tool for constructing measures. 

Throughout this chapter, X will denote an LCH space. We continue to employ 
the terminology developed in Chapter 1 in the context of metric spaces : '13 x will 
denote the Borel a -algebra on X, that is, the a -algebra generated by the open sets ; 
measures on 'B x will be called Borel measures ; countable unions (intersections) of 
closed (open) sets will be called Fa (G8) sets , and so forth. 

7.1 POSITIVE LINEAR FUNCTIONAL$ ON Cc (X) 

We recall that C c (X) i s  the space of continuous functions on X with compact support. 
A linear functional I on Cc (X) will be called positive if I(f) > 0 whenever f > 0. 
In this definition there is no mention of continuity, but i t  i s worth noting that positivity 
itself implies a rather strong continuity property. 

21 1 
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7.1 Proposition. If I is a positive linear functional on Cc (X), for each compact 
K C X there is a constant CK such that I I(f) l < CK I I ! I I u for all f E Cc (X) such 
that supp(f) C K. 

Proof. It suffices to consider real-valued f. Given a compact K, choose ¢ E 
Cc (X, [0 ,  1 ] ) such that ¢ = 1 on K (Urysohn 's lemma) . Then if supp(f) C K, 
we have l f l < l l f l l u¢, that is, l l f l l u¢ - f > 0 and l l f l l u¢ + f > 0. Thus 
l l f l l ul(¢) - I(f) > 0 and l l f l l ul(¢) + l(f) > 0, so that II(!) I < J(¢) 1 1 f l l u · I 

If fL i s  a Borel measure on X such that J.L( K) < oo for every compact K c X, 
then clearly Cc (X) C L1 (J.L) , so the map f � J f dJ.L i s  a positive linear functional 
on Cc (X) . The principal result of this section is that every positive linear functional 
on Cc (X) arises in this fashion; moreover, one can impose some additional regularity 
conditions on fL, subject to which fL is unique. These conditions are as follows. 

Let J.-L be a Borel measure on X and E a Borel subset of X. The measure J.-L is 
called outer regular on E if 

J.L(E) = inf {J.L(U) : U :) E, U open } 

and inner regular on E if 

J.-L(E) = sup{J.-L(K) : K c E, K compact} . 

If J.-L is outer and inner regular on all Borel sets, fL is called regular. It turns out that 
regularity is a bit too much to ask for when X is not a-compact, so we adopt the 
fol lowing definition. A Radon measure on X is a Borel measure that is finite on all 
compact sets, outer regular on all Borel sets , and inner regular on all open sets . We 
shall show in §7.2 that Radon measures are also inner regular on all of their a-finite 
sets . 

One further bit of notation: If U is open in X and f E C c (X) ,  we shall write 

f -< U 

to mean that 0 < f < 1 and supp(f) c U. (This is slightly stronger than the 
condition 0 < f < xu , which implies only that supp(f) c U.) 

7.2 The Riesz Representation Theorem. If I is a positive linear functional on 
Cc (X), there is a unique Radon measure fL on X such that I(f) = J f dJ.L for 
all f E Cc (X). Moreover, J.-L satisfies 

(7 .3) J.L(U) = sup { I(f) : f E Cc (X) ,  f -< U} for all open U C X 

and 

(7 .4) J.L(K) = inf { I(f) : f E Cc (X) , f > XK } for all compact K C X. 

Proof. Let us begin by establishing uniqueness. If fL is a Radon measure such 
that !(!) = J f dJ.L for all f E Cc (X) , and U C X is open, then clearly J(f) < J.L(U) 
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whenever f -< U. On the other hand, if K c U is compact, by Urysohn 's lemma there 
is an f E Cc (X) such that f -< U and f = 1 on K, whence J-L(K) < J f dJ-L = I(f) . 
Since J1 is inner regular on U, it follows that (7 .3 )  is satisfied. Thus J1 is determined 
by I on open sets, and hence on all Borel sets because of outer regularity. 

This argument proves the uniqueness of J1 and also suggests how to go about 
proving existence. Namely, we begin by defining 

J-L(U) = sup { I(J) : f E Cc (X) , f -< U} 

for U open, and we then define J-L* (E) for an arbitrary E c X by 

11* (E) == inf {J-L(U) : U :) E, U open } . 

Clearly J-L(U) < JL(V) if U c V, and hence 11* (U) = J-L(U ) if U is open. 
The outline of the proof is now as follows. We shall establish that 

i .  11* is an outer measure . 

i i . Every open set is J1 * -measurable . 

At this point it follows from Caratheodory's theorem that every Borel set is JL* 
measurable and that J1 == J1 * I 'B x is a Borel measure. (The notation is consistent 
because J1 * (U) = J-L( U) for U open. )  The measure J1 is outer regular and satisfies 
(7 .3) by definition. We next show that 

i i i .  J1 satisfies (7 .4) . 

This clearly implies that J1 is finite on compact sets , and inner regularity on open sets 
also follows easily. Indeed, if U is open and a < JL(U) , choose f E Cc (X) such 
that f -< U and I(f) > a, and let K = supp(f) . If g E Cc (X) and g > XK , then 
g - f > 0 and hence I(g) > I(f) > a. But then J-L(K) > a  by (7 .4), so JL is inner 
regular on U. Finally, we prove that 

iv. I(f) == J f dJ-L for all f E Cc (X) . 
With this, the proof of the theorem will be complete . 

Proof of (i) : It suffices to show that if {U1 } is a sequence of open sets and 
u == u� Uj , then JL(U) < E� JL(Uj ) . Indeed, from this it follows that for any 
E c X , 

00 00 
JL* (E) = inf{l:: JL(U1 ) : U1 open, E c u uJ } , 

1 1 

and the expression on the right defines an outer measure by Proposition 1 . 1  0. If U = 
U� U1 , f E Cc (X) , and f -< U, let K == supp (f) . Since K is compact, we have 
K c U� U1 for some finite n, so by Proposition 4.4 1 there exist 91 , . . .  , 9n E Cc (X) 
wi th g1 -< U1 and E� g1 == 1 on K. But then f == E� Jg1 and fgj -< Uj , so 

n n oo 
I(f) == L I(fgj )  < L J-L(Uj )  < L JL(Uj ) . 

1 1 1 
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Since this is true for any f -< U, we conclude that J.L( U) < I:� J.L( Uj ) as desired. 
Proof of (ii) : We must show that if U is open and E is any subset of X such that 

J.L* (E) < oo, then J.L* (E) > J.L* (E n U) + J.L* (E \ U) .  First suppose that E is open . 
Then E n  U is open, so given E > 0 we can find f E Cc (X) such that f -< E n  U 
and I(!) > J.L(E n U) - E . Also, E \ (supp(f) ) is open, so we can find g E Cc (X) 
such that g -< E \ supp(f) and I(g) > J.L(E \ supp(f) ) - E. But then f + g -< E, so 

J.L(E) > !(f) + I(g) > J.L(E n U) + J.L(E \ supp(f) ) - 2E 
> J.L* (E n U) + J.L* (E \ U) - 2E . 

Letting E ---t 0, we obtain the desired inequality. For the general case, if fL * (E) < oo 
we can find an open V :)  E such that J.L(V) < J.L* (E) + E, and hence 

J.L* (E) + E > J.L(V) > J.L* (V n U) + JL* (V \ U) 
> JL* (E n U) + JL* (E \ U) .  

Letting E ---t 0, we are done. 
Proof of (iii) : If K is compact, f E Cc (X) , and f > XK , let U€ = {x : f (x) > 

1 - E } . Then U€ is open, and if g -< U€ , we have ( 1 - E) - 1 f - g > 0 and so 
I(g) < ( 1 - E) - 1 I(f) . Thus J.L(K) < J.L (U€ ) < ( 1 - E) - 1 I(f) , and letting E ---t 0 
we see that J.L(K) < I(f) . On the other hand, for any open U :) K, by Urysohn 's 
lemma there exists f E Cc (X) such that f > XK and f -< U, whence I(f) < J.L(U) . 
Since fL is outer regular on K, (7 .4) follows. 

Proof of (iv): If suffices to show that I(f) = J f dJ.L if f E Cc (X, [0 , 1 ] ) ,  as 
Cc(X) is the linear span of the latter set. Given N E N, for 1 < j < N let Kj = 
{x : f(x) > jN- 1 } and let Ko = supp(f) . Also, define !1 , . . .  , !N E Cc (X) 
by fj (x) = 0 i f  x tt Kj- 1 , fj (x) = f(x) - (j - 1)N- 1 if x E Kj-1 \ Kj , and 
fj (x) = N- 1 if x E Kj . In other words, 

. { { j - 1 } 1 } fj = m1n max f - N , 0 , N . 

Also, if U is an open set containing Kj-1 we have Nfj -< U and so I(fj )  < 
N-1 J.L(U) . Hence, by (7 .4) and outer regularity, 



Moreover, f == I:� fj , so that 

It follows that 
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Since J.L( supp(f) ) < oo and N i s arbitrary, we conclude that I (f) == J f dJ.L. 1 
The proof of this theorem yields something stronger than the statement: We obtain 

not just a Borel measure fL but an extension fL of fL to the a-algebra of J.L* -measurable 
sets . However, it follows from outer regularity that for any E c X, 

J.L* (E) == inf {J.L (B) : B E 'Bx , B � E} , 

so fL * is the outer measure induced by fL in the sense of § 1 .4. According to Exercise 
22 in § 1 .4, therefore, fL is the completion of fL if fL is a-finite and is the saturation of 
the completion of J-L in general . 

On the other hand, some authors prefer to restrict attention to a smaller a-algebra 
than 'B x ,  namely, the a-algebra 'B� generated by Cc (X ) (that is, the smallest a
algebra with respect to which every f E Cc (X ) is measurable) . The elements of 'B� 
are called Baire sets. For more about Baire sets , see Exercises 4-6. 

Exercises 

1. Let X be an LCH space, Y a closed subset of X (which is an LCH space in 
the relative topology), and fL a Radon measure on Y. Then J(f) == J(J IY) df.-l is a 
positive linear functional on Cc (X) , and the induced Radon measure v on X is given 
by v(E) == J-L(E n Y) .  
2. Let fL be a Radon measure on X. 

a. Let N be the union of all open U c X such that J.L (U) == 0 .  Then N i s  open 
and J.L (N) == 0. The complement of N is called the support of fL· 
b. x E supp(J.L) iff J f dJ.L > 0 for every f E Cc (X, [0 , 1 ] ) such that f(x) > 0 .  

3. Let X be the one-point compactification of a set with the discrete topology. If J1 
is  a Radon measure on X, then supp(J.-L) (see Exercise 2) is countable . 

4. Let X be an LCH space. 
a. If f E Cc (X , [0 , oo ) ) , then f- 1 ( [a , oo ) )  is a compact G0 set for all a > 0 .  
b. If K C X is a compact G0 set, there exists f E Cc (X, [0 , 1] ) such that 
K == f-1 ( { 1 } ) .  
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c. The a -algebra 'B � of Baire sets is the a -algebra generated by the compact 
G8 sets . 

5. Let X be a second countable LCH space. 
a. Every compact subset of X is a G 8 set. 
b. 23x = 23� . 

6. Let X be an uncountable set with the discrete topology, or the one-point com
pactification of such a set. Then 23 x i= 13�. 

7.2 R EGULARITY AND APPROXIMATION THEOREMS 

In this section we explore the properties of Radon measures in more detai l .  

7.5 Proposition. Every Radon measure is inner regular on all of its a-finite sets. 

Proof. Suppose that fL is Radon and E is a-finite . If J.L( E) < oo, for any E > 0 
we can choose an open U :) E such that J.L(U) < J-L(E) + E and a compact F C U 
such that J.L(F) > J.L(U) - E. Since J.L(U \ E) < E, we can also choose an open 
V � U \ E such that J.L(V) < E. Let K = F \ V. Then K is compact, K c E, and 

J.L(K) = J.L(F) - J.L(F n V) > J.L(E) - E - J.L(V) > J-L(E) - 2E. 

Thus J-L is inner regular on E. On the other hand, if J.L(E) = oo, E is an increasing 
union of sets Ej with J-L( Ej ) < oo and J.L( Ej ) ---t oo. Thus for any N E N there exists 
j such that J-L( Ei ) > N and hence, by the preceding argument, a compact K c Ei 
with J.L(K) > N. Hence fL is inner regular on E. 1 

7.6 Corollary. Every a-finite Radon measure is regular. If X is a-compact, every 
Radon measure on X is regular. 

For an example of a nonregular Radon measure, see Exercise 12 . 

7.7 Proposition. Suppose that fL is a a-finite Radon measure on X and E is a  Borel 
set in X. 

a. For every E > 0 there exist an open U and a closed F with F C E C U and 
J.L(U \ F) < E. 

b. There exist an Fa setA anda G8 set B such that A C E C B andJ.L(B\A) = 0. 

Proof. Write E = U� Ei where the Ei 's are disjoint and have finite measure. 
For each j, choose an open Ui :) Ej with J.L(Uj )  < J.L(Ej )  + E2-i- l and let 
u = u� uj . Then u is open, u :) E, and J-L(U \ E) < I:� J.L(Uj \ Ej ) < E/2. 
Applying the same reasoning to Ec, we obtain an open V :) Ec with J.L(V\Ec ) < E/2. 
Let F = vc . Then F is closed, F c E, and 

J.L(U \ F) = J.L(U \ E) + J.L(E \ F) = J.L(U \ E) + J.L(V \ Ec) < E . 

This proves (a), and (b) follows easily; details are left to the reader. I 
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7.8 Theorem. Let X be an LCH space in which every open set is a-compact (which 
is the case, for example, if X is second countable). Then every Borel measure on X 
that is finite on compact sets is regular and hence Radon. 

Proof. If fL is a Borel measure that is finite on compact sets, then Cc (X ) C £1 (J.L ) , 
so the map I (f) = J f dJ.L is a positive linear functional on C c (X) . Let v be 
the associated Radon measure according to Theorem 7.2. If U c X is open, let 
U = U� Kj where each Kj is compact. Choose !1 E Cc (X ) so that f -< U and 
f == 1 on K1 . Proceeding inductively, for n > 1 choose fn E Cc (X) so that fn -< U 
and fn = 1 on U� Kj and on U�-1 supp(fj ) .  Then fn increases pointwise to xu 
as n ---t oo, so 

JL(U) = lim J fn dj.L = lim J fn dv = v(U) 

by the monotone convergence theorem. Next, if E is any Borel set and E > 0, by 
Proposition 7.7 there exist an open V :) E and a closed F c E with v(V \ F) < E. 
8 ut  V \ F is open, so J.L(V \ F) = v(V \ F) < E. In particular, J.L (V) < J.L( E) + E, 
so  J-L is outer regular. Also, J.L(F) > J.L(E) - E, and F is a-compact (since X is), so 
there exist compact Kj c F with J.L(Kj )  ---t J.L (F) , whence fL is inner regular. Thus 
f-1 i s  regular (and equal to v, by the uniqueness part of Theorem 7 .2.) 1 

Examples of non-Radon measures are considered in Exercises 1 3-15 .  In particular, 
Exercise 1 5  exhibits an example of a finite, non-Radon Borel measure on a compact 
Hausdorff space. 

We now tum to some approximation theorems for measurable functions. 

7.9 Proposition. If fL is a Radon measure on X, Cc (X) is dense in LP(J.L ) for 
1 < p < 00. 

Proof. Since the LP simple functions are dense in LP (Proposition 6. 7), it suffices 
to show that for any Borel set E with J.L(E) < oo, XE can be approximated in 
the LP norm by elements of Cc (X) . Given E > 0, by Proposition 7.5 we can 
choose a compact K c E and an open U :) E such that J.L(U \ K) < E, and by 
Urysohn 's lemma we can choose f E Cc (X) such that XK < f < xu . Then 
I I XE - f l i P < J.L(U \ K) 11P < E1/P , so we are done. 1 

7.10 Lusin's Theorem. Suppose that fL is a Radon measure on X and f : X ---t C 
is a measurable function that vanishes outside a set of finite measure. Then for any 
E > 0 there exists ¢ E Cc (X ) such that ¢ = f except on a set of measure < E. Iff 
is bounded, ¢ can be taken to satisfy l l ¢ 1 1 u  < l l f l l u · 

Proof. Let E = {x : f (x) i= 0}, and suppose to begin with that f is bounded. 
Then f E L1 (J.L) , so by Proposition 7.9 there is a sequence {gn } in Cc (X ) that 
converges to f in £1 , and hence by Corollary 2.32 a subsequence (still denoted b y  
{gn } )  that converges to f a.e. By Egoroff's theorem there is a set A C E such that 
J.L(E \ A) < E/3 and 9n � f uniformly on A, and there exist a compact B C A and 
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an open U :) E such that J-L(A \ B) < E/3 and J-L(U \ E) < E/3 . Since 9n ---t f 
uniformly on B, J IB is continuous, so by Theorem 4.34 there exists h E Cc (X) 
such that h = f on B and supp(h) c U. But then {x : f(x) i= h(x) } i s  contained 
in U \ B, which has measure < E. 

To complete the proof for f bounded, define ,{3 :  C ---t C by ,B(z) = z if l z l < l l f l l u 
and ,8(z) = l l f l l u sgn z if l z l > l l f l l u , and set ¢ =  ,{3 o h. Then ¢ E Cc(X) since ,{3 
is continuous and ,8(0) == 0. Moreover, l l ¢ 1 1 u < l l f l l u , and ¢ =  f on the set where 
h == f, so we are done. 

If f is unbounded, let An = {x : 0 < l f(x) l < n}. Then An increases to E as 
n ---t oo, so J-L(E \ An ) < E/2 for sufficiently large n. By the preceding argument 
there exists ¢ E Cc(X) such that ¢ == fXAn except on a set of measure < E/2, and 
hence ¢ = f except on a set of measure < E. 1 

Our final group of results in this section concerns semicontinuous functions. If X 
is a topological space, a function f : X ---t ( -oo, oo] is called lower semicontinuous 
(LSC) if {x : f (x) > a} is open for all a E IR, and f : X � [-oo ,  oo) is called 
upper semicontinuous (USC) if { x : f ( x) < a} is open for all a E JR. 

7.11  Proposition. Let X be a topological space. 
a. JfU is open in X, then xu is LSC. 
b. Iff is LSC and c E [0 , oo ), then cf is LSC. 
c. If 9 is a family of LSCfunctions and f(x) = sup{g(x) : g E 9 }, then f is 

LSC. 
d. If !1 and !2 are LSC, so is !1 + !2-
e. If X is an LCH space and f is LSC and nonnegative, then 

f(x) = sup{g (x) : g E Cc (X) ,  0 < g < f } . 

Proof (a) and (b) are obvious, and (c) follows from the observation that 

f- 1 ( (a , oo] ) == U g- 1 ( (a , oo] ) . 
gE9 

As for (d) , if !1 (xo ) + !2 (xo ) > a, choose E > 0 so that !1 (xo ) > a - !2 (xo ) + E. 
Then 

which is a neighborhood of xo .  Thus f1 + f2 is LSC. Finally, if X is LCH, f(x) > 0, 
and 0 < a < f(x) , then U == {y : f(y) > a} is an open set containing x, so by 
Urysohn's lemma there exists g E Cc (X) such that g(x) = a and 0 < g < axu < f. 
This establishes (e) when f(x) > 0, and (e) is trivial when f(x) == 0. 1 

There is, of course, a corresponding set of results for USC functions, whose 
formulation is left to the reader. The following result is a monotone convergence 
theorem for nets of LSC functions. 
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7.12 Proposition. Let 9 be a family of nonnegative LSCfunctions on an LCH space 
X that is directed by < (that is, for every 91 , 92 E 9 there exists g E 9 such that 
91 < g and 92 < g). Let f = sup{g : g E 9 }. If fL is any Radon measure on X, then 
J f dfL = sup{f g dfL : g E 9 }. 

Proof. By Proposition 7 . 1 1c, f is LSC and hence Borel measurable, and clearly 
J f dfL > sup{f g dtt} .  To prove the reverse inequality, consider the sequence ¢n of 
simple functions increasing to f that was constructed in Theorem 2. 10: 

By the monotone convergence theorem, given a < J f dfL we can fix n large enough 
so that 2-n Li JL(Unj )  = J ¢n dfL > a. Since Unj is open, there exist compact 
Kj C Unj (1 < j < 22n) such that 2-n Lj JL(Kj )  > a. Let 'ljJ = 2-n Lj XKJ . For 
each X E uj Kj we have f(x) > ¢n (x) > 'l/J(x) ,  so we can pick 9x E 9 such that 
9x (x) > 'l/J(x) . But -xxi is LSC, so 9x - 'ljJ is LSC by Proposition 7 . 1 1d, and hence 
the set Vx = {y : 'l/J(y) < 9x (Y) }  is open. Thus {Vx : X E uj Kj } is an open cover 
of Ui Ki , so there is a finite subcover Vx1 , • • •  , Vxrn . Pick g E 9 such that 9xk < g 
for k = 1 ,  . . . , m; then '¢ < g, so J g dfL > a. Since a was any number less than 
J f dfL, we are done. 1 

7.13 Corollary. If fL is Radon and f is nonnegative and LSC, then 

J f dfJ = sup {/ g dfl : g E Cc (X) , 0 < g < f} . 
Proof. Combine Propositions 7. 1 1 e and 7. 1 2. I 

7.14 Proposition. If fL is a Radon measure and f is a nonnegative Borel measurable 
function, then 

J f dfl = inf { J g dfl : g > f and g is LSC} . 
If { x : f(x) > 0} is a-finite, then 

J f dfJ = sup {/ g dfl : 0 < g < f and g is USC} . 
Proof. Let { ¢n } be a sequence of nonnegative simple functions that increase 

pointwise to f. Then f = ¢1 + L�(¢n - c/Jn- 1 ) ,  and each term in this series is a 
nonnegative simple function, so we can write f = E� aiXEj where ai � 0. Given 
E > 0, for each j choose an open Ui :) Ei such that JL(Ui ) < JL( Ei ) +E/ (21 ai ) .  Then 
g = L� aiXUi is LSC by Proposition 7 . 1 1 , g > f, and J g dfL < J f dJ-L + E. This 
establishes the first assertion. For the second, if a < J f dfL, let N be large enough 
so that E� ajJL(Ej )  > a. Since the Ei 's are a-finite, by Proposition 7 .5 there are 
compact sets Ki c Ei such that E� ajJL(Kj )  > a. Thus if g = L� aiXKj ' then g 
i s USC, g < f, and J g dfL > a. I 
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Exercises 

7. If J1 is a a-finite Radon measure on X and A E 13x, the Borel measure J1A 
defined by J1A (E) = J1(E n A) i s  a Radon measure. (See also Exercise 1 3 .) 

8. Suppose that J1 is a Radon measure on X. If ¢ E £1 (/1) and ¢ > 0, then 
v(E) = JE ¢ dJ1 is a Radon measure . (Use Corollary 3 .6.) 

9. Suppose that j1 is a Radon measure on X and ¢ E C(X , (O , oo) ) . Let v(E) = 
J E ¢ dJ1, and let v' be the Radon measure associated to the functional f � J f ¢ dJL 
on Cc (X) .  

a. If U i s  open, v(U) = v' (U) .  (Apply Corollary 7 . 1 3  to ¢xu .) 
b. v is outer regular on all Borel sets . (Hint: The open sets Vk = { x : 2k < 
¢(x) < 2k+2 } , k E Z, cover X.) 
c. v = v' , and hence v i s  a Radon measure. (See also Exercise 1 3 .) 

10. If J1 is a Radon measure and f E £1 (/1) is real-valued, for every E > 0 there exi st 
an LSC function g and a USC function h such that h < f < g and J (g - h) dJ1 < E .  

11 . Suppose that J-t is a Radon measure on X such that JL( { x} ) = 0 for all x E X, 
and A E 13x satisfies 0 < J1(A) < oo. Then for any a such that 0 < a < J1(A) 
there is a Borel set B c A such that J1( B) = a. 

12. Let X = JR. x IR.d, where JR.d denotes JR. with the discrete topology. If f is a 
function on X, let fY (x) = f(x, y) ; and if E c X, let EY = {x : (x , y) E E} . 

a. f E Cc (X) iff fY E Cc (IR.) for all y and fY = 0 for all but finitely many y. 
b. Define a positive linear functional on Cc (X) by l(f) = EyEIR J f (x , y) dx, 
and let J1 be the associated Radon measure on X. Then J1(E) = oo for any E 
such that EY =/= 0 for uncountably many y. 
c. Let E = {0} x JR.d . Then J1(E) = oo but J1(K) = 0 for all compact K c E. 

13. In the setting of Exercise 1 2, let A =  (JR. \ {0} ) x JR.d and ¢(x, y) = jx j . Then 
the measures J-LA (E) = J1(A n E) and v(E) = JE ¢ dJ1 are not Radon . (Thus, the 
hypotheses that J1 be a-finite in Exercise 7, that ¢ E £1 (JL) in Exercise 8 ,  and that 
¢ > 0 in Exercise 9, cannot be dropped.) 

14. Let J1 be a Radon measure on X, and let J1o be the semi finite part of J1 (see 
Exercise 1 5  in § 1 .3) . 

a. /10 is inner regular on all Borel sets . 
b. J1o is outer regular on all Borel sets E such that J1(E) < oo. 
c .  J f dJ1 = J f dJ1o for all f E Cc (X ) . 
d. If J1 is the measure of Exercise 12  and m is Lebesgue measure on JR., then 
J1o (E) = LyEIR m(EY ) for any Borel set E. 

15. Let 0 be the set of countable ordinals, w1 the first uncountable ordinal ,  and 0* = 0 U { w1 } .  Let 0* be endowed with the order topology (see Exercise 9 in §4. 1 ) .  
a. 0* i s  a compact Hausdorff space. (Hint: 0* contains no infinite strictly 
decreasing sequences.) 
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b. n is an open set in !1* that is not a-compact. 
c. A subset E of n is uncountable iff for each X E n there exists y E E such 
that x < y. 
d. If {En } is a sequence of uncountable closed sets in !1* , then n� En is 
uncountable. (If {xi } is an increasing sequence in n such that each En contains 
infinitely many Xj 's, then limj-+oo Xj exists and is in n� En .) 
e. If E c 'Bn* , then either E U { w1 } or Ec U { w1 } contains an uncountable 
closed set. (Hint: The set of all E satisfying the latter condition is a a-algebra.) 
f. Define fL on 'Bn* by J.L(E) == 1 if E U { w1 } contains an uncountable closed 
set, J.L(E) == 0 otherwise. Then fL is a measure, J.L( { w1 } )  == 0, but J.L( U) == 1 for 
every open U containing w1 . 
g. If f E C(O* ) ,  there exists X E n such that f(y) == f(wl ) for y > X. (If 
En == {x : IJ (x) - f(wl ) l < n- 1 } ,  then E� is countable.) 
h. With fL as in (f), the Radon meausre on 0* associated to the functional 
f � J f dJ.L is the point mass at w1 . 

7 .3 TH E DUAL OF C0 (X) 

We recal l that for any LCH space X, C0 (X) i s  the uniform closure of Cc (X) 
(Proposition 4.35), and hence if fL is a Radon measure on X, the functional I (f) == 
J f dJ.L extends continuously to C0 (X) iff it is bounded with respect to the uniform 
norm. In view of the equality 

(a special case of (7 .3)) together with the fact that I J f dJ.L I < J 1 ! 1 dfL, this happens 
precisely when J.L(X) < oo, in which case J.L(X) is the operator norm of I. 

We have therefore identified the positive bounded linear functionals on Co (X) : 
they are given by integration against finite Radon measures . Our object in this section 
i s  to extend this result to give a complete description of C0 (X) * .  The key fact is that 
real linear functionals on C0 (X, IR) have a "Jordan decomposition ." 

7.15 Lemma. If I E C0 (X, IR) *, there exist positivefunctionals I± E Co (X, IR) * 
such that I =  I+ - I-.  

Proof. If f E Co (X, [0 , oo) ) , we define 

I+ (j) == sup {I(g) :  g E Co (X, IR) , 0 < g < f} . 

S ince II(g) l < I I I I I I I 9 I I u  < I I I I I I I ! I I u  for 0 < g < f, and I(O) == 0, we have 
0 < J+ (J) < I I I I I I I ! I I u ·  We claim that I+ is the restriction to Co (X, [0 , oo ) )  of 
a linear functional ; the proof is much the same as the proof of the linearity of the 
integral in §2 .3 .  
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Obviously J+ ( cf) == ci+ (f) if c > 0. Also, whenever 0 < 91 < !1 and 
0 < 92 < !2 we have O < 91 +92 < !1 +!2 , so that i+ (f1 +!2 ) > I(91 ) +I(92 ) , and 
it follows that J+ (f1 +!2 ) > J+ (f1 )+J+ (f2 ) · On the other hand, if O < 9 < !1 +!2 , 
let 91 == min(9 , !1 ) and 92 == 9 - 91 · Then 0 < 91 < !1 and 0 < 92 < !2 , so 
!(9) == I(91 ) +I(92 ) < I+ (f1 ) +I+ (f2 ) ;  therefore i+ (f1 + !2 ) < I+ (f1 ) +J+ (f2 ) · 
In short, I+ (f1 + !2 ) == J+ (f1 ) + J+ (f2 ) · 

Now, if f E C0 (X, JR) , then its positive and negative parts J+ and f- are in 
C0 (X, [0 , oo) ) , and we define J+ (J) == I+ (J+ ) - I+ (J- ) .  If also f == 9 - h where 
9 , h > 0, then 9 + f- == h + J+ , whence I+ (9) + I+ (J- ) == I+ (h) + I+ (J+ ) .  
Thus J+ (f) == J+ (9) - J+ (h) , and it follows easily as in the proof of Proposition 
2.2 1 that J+ is linear on Co (X, 1R) . Moreover, 

I J+ (J) I < max ( I+ (!+ ) ,  J+ (J- ) ) < I I I I I max( I I J+ I I u ,  1 1 !- l l u )  == I I I I I I I ! I I u ,  

so that I I I+ I I  < I I I  I I · 
Finally, let I- == I+ - I. Then I- E C0 (X, JR) * ,  and it is immediate from the 

definition of I+ that J+ and I- are positive. 1 
Any I E Co (X) * is uniquely determined by its restriction J to C0 (X, JR) , and 

we have J == J1 + iJ2 where J1 , J2 are real linear functionals. We therefore 
conclude from Lemma 7 . 1 5  and the discussion preceding it that for any I E C0 (X) * 
there are finite Radon measures fL1 , . . .  , fL4 such that I (f) == J f dJ.L where fL == 
fL1 - fL2 + i (J.L3 - J.L4 ) · 

At this point we need some more definitions. A signed Radon measure is 
a signed Borel measure whose positive and negative variations are Radon , and a 
complex Radon measure is a complex Borel measure whose real and imaginary 
parts are signed Radon measures. (It is worth noting that on a second countable LCH 
space, every complex Borel measure is Radon. This follows from Theorem 7 .8 since 
complex measures are bounded.) We denote that space of complex Radon measures 
on X by M(X) , and for fL E M(X) we define 

where, of course, I fL I is the total variation of fL· 

7.16 Proposition. If fL is a complex Borel measure, then fL is Radon WIJ.L I is Radon. 
Moreover, M (X) is a vector space and fL � I I J.L I I is a norm on it. 

Proof. We observe that a finite positive Borel measure v is Radon iff for every 
Borel set E and every E > 0 there exist a compact K and an open U such that 
K c E c U and v ( U \ K) < E, by Propositions 7.5 and 7 .  7 .  The first assertion 
follows easily from this . Indeed, if fL == J.L 1 - fL2 + i (J.L3 - J.L4 ) and IJ.L I (U \ K) < E, 
then J.Lj (U \ K) < E for all j; conversely, if J.Lj (Uj \ Kj ) < E/4 for all j, then 
J.L(U \ K) < E where K = Ui Kj and u = ni uj . The same argument shows that 
M (X ) is closed under addition and scalar multiplication . Finally, that I I  · I I  is a norm 
on M (X ) follows from Proposition 3 . 14. 1 
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7.17 The Riesz Representation Theorem. Let X be an LCH space, and for fL E 
M(X) and f E Co (X) let Ip, (f) = J f dJ.L. Then the map fL � Ip, is an isometric 
isomorphism/rom M(X) to Co (X) *. 

Proof. We have already shown that every I E  C0 (X ) *  is of the form Ip, . On the 
other hand, if fL E M(X) ,by Proposition 3 . 1 3c we have 

j f dJL < j I l l d iJL I < 1 1 / l l u i i JL I I , 

so Ip, E Co (X) * and l l lp, l l  < I I J.L I I . Moreover, if h = dJ.L/dlfL I , then l h l = 1 by 
Proposition 3 . 1 3b, so by Lusin 's theorem, for any E > 0 there exists f E Cc (X) such 
that l l f l l u = 1 and f = h except on a set E with I J.L I (E) < t:/2. Then 

I I JL I I  = j l h l 2d iJL I  = j h dJL < j ! dJL + ju - h) dJ.L 

< J f dJL + 2 IJL I (E) < J f dJL + E < I I IJl l l + E. 

It follows that I I J.L I I  < I l ip, I I , so the proof is complete . I 

7.18 Corollary. If X is a compact Hausdorff space, then C(X) * is isometrically 
isomorphic to M(X). 

Let fL be a fixed positive Radon measure on X. If f E L1 (J.L ) , the complex measure 
dvf == f dJ-L is easily seen to be Radon (Exercise 8), and l l vt l l = J 1 ! 1 dJ.L = l l ! lh ·  
Thus f � VJ is an isometric embedding of L1 (J.L) into M(X) whose range consists 
precisely of those v E M (X) such that v << fL· (The last statement follows from 
the Radon-Nikodym theorem, which applies even if fL is not a-finite; see §7 .5 . ) The 
most important example of this situation is fL = m = Lebesgue measure on IRn , and 
we shall identify L1 (m) with a subspace of M(IRn ) .  

The weak* topology on M(X) = Co (X) * , in which fLo: � fL iff J f dJ.La � 
J f dJ.L for all f E C0 (X) , is of considerable importance in applications ; we shall call 
it the vague topology on M (X) .  (The term "vague" is common in probability theory 
and has the advantage of forming an adverb more graceful ly than "weak* .") The 
vague topology is sometimes called the weak topology, but this terminology conflicts 
with ours, since C0 (X) is rarely reflexive (see Exercise 20) . Weak convergence 
arguments for LP (J.L) generally fail for p = 1 because L 1 (J.L) is not the dual of 
L 00 (J.L) , but good substitute results can often be obtained by regarding L 1 (J.L) as a 
subspace of M(X) as in the preceding paragraph and using the vague topology there . 

We conclude by presenting a useful criterion for vague convergence in M(IR) . 
7.19 Proposition. Suppose fL, fL1 , fL2 , . . .  E M(IR), and let Fn (x) = J.Ln ( (-oo, x]) 
and F ( x) = fL ( (-oo, x] ) . 

a. lfsupn I I J.Ln l l  < oo and Fn (x ) � F (x )for every x at which F is continuous. 
then J-Ln � fL vaguely. 
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b. If fLn � fL vaguely, then supn I IJ.Ln I I  < oo. If, in addition, the fLn 's are positive, 
then Fn (x) --t F(x) at every x at which F is continuous. 

Proof. (a) Since F is continuous except at countably many points (Theorems 3 .27 
and 3 .29) , Fn � F a.e. with respect to Lebesgue measure. Also, I I Fn l l u < I I J.Ln I I , so 
the F n 's are uniformly bounded. If f is continuously differentiable and has compact 
support, then, integration by parts (Theorem 3 .36) and the dominated convergence 
theorem yield 

J f dJLn = J f' (x)Fn (x) dx � J f' (x)F(x) dx = J f dJL. 

But by Theorem 4.52, the set of all such f's is dense in Co(IR) , so J fn dJ.L � J f dJ-L 
for all f E Co (IR) by Proposition 5. 17 .  Thus fLn � fL vaguely. 

(b) If fLn � fL vaguely, then supn I I J.Ln l l < oo by the uniform boundedness 
principle. Suppose that fLn > 0, and hence fL > 0, and that F is continuous at x == a. 
If f E Cc (IR) i s the function that is 1 on [-N, a] , 0 on (-oo, -N - E] and [a+ E ,  oo ) , 
and linear in between, we have 

Fn (a) - Fn ( -N) == J.Ln ( ( -N, a] ) < J f dJLn � J f djL 

< F(a + E) - F(-N - E) . 
As N � oo, Fn (-N) and F(-N - E) tend to zero, so 

lim sup Fn (a) < F( a +  E) . n-+oo 

Similarly, by considering the function that is 1 on [-N + E ,  a - E] , 0 on ( -oo, N] 
and [a , oo ) , and linear in between, we see that 

lim inf Fn (a) > F(a - E) . n-+oo 

Since E is arbitrary and F i s continuous at a, we have Fn (a) � F( a) as desired. 1 

Exercises 

16. Suppose that I E C0 (X, JR.) * and J+ , I- are the functionals constructed in the 
proof of Lemma 7 . 1 5 .  If fL is the signed Radon measure associated to I, then the 
positive and negative variations of fL are the Radon measures associated to J+ and 
I- . 
17. If fL is a positive Radon measure on X with J.L(X) == oo, there exists f E C0 (X) 
such that J f dJ.L == oo. Consequently, every positive linear functional on Co (X) i s 
bounded. 

18. If fL is a a-finite Radon measure on X and v E M(X) , let v == v1 + v2 be the 
Lebesgue decomposition of v with respect to fL· Then v1 and v2 are Radon . (Use 
Exercise 8.) 
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19. Let X be a completely regular space and A a completely regular subalgebra of 
BC(X ) (see Exercise 73 in §4.8) . Find a description of A* as a space of measures. 

20. Some examples of nonreftexivity of Co (X) : 
a. If J1 E M (X) ,  let <I> (J-L) == LxEX J-L( { x} ) . This sum is well defined, and 
<I> E M(X) * .  If there exists a nonzero J1 E M(X) such that J-L( { x} ) == 0 for all 
x E X, then <I> is not in the image of C0 (X) in M (X ) *  r-...� C0 (X) ** . 
b. At the other extreme, let X == N with the discrete topology ; then C0 (X) * r-...1 l 1  
and ( l 1 ) * r-...� zoo . (Note: C0 (N) is usually denoted by c0 .) 

21 . Let {fa }aEA be a subset of Co (X ) and { ca }aEA a family of complex numbers . 
If for each finite set B C A there exists J-lB E M(X) such that I I J-LB I I  < 1 and 
J fa dJ-LB == Ca for a E B, then there exists J1 E M(X) such that I I J-L I I < 1 and 
J fa dJ-L == Ca for al l a E A. 
22. A sequence {fn } in Co (X ) converges weakly to f E Co (X) iff sup l l fn l l u  < oo 
and f n � f pointwise. 

23. The hypothesis of positivity in Proposition 7 . 19b is necessary. (Take J-ln to be 
the difference of the point masses at n - 1 and -n - 1 . ) 
24. Find examples of sequences {J-Ln } in M (IR) such that 

a. J-ln � 0 vaguely, but I I J-Ln I I  -F 0. 
b. J-ln � 0 vaguely, but J f dJ-Ln -F J f dJ-L for some bounded measurable f 
with compact support. 
c. J-ln > 0 and J-ln � 0 vaguely, but there exists x E IR such that Fn (x) -F F(x) 
(notation as in Proposition 7 . 1 9) .  

25. Let J1 be a Radon measure on X such that every nonempty open set has positive 
measure (e .g . ,  Lebesgue measure) . For each x E X  there is a net {fa } in L1 (J-L) that 
converges vaguely in M(X) to the point mass at x. If X is first countable, the net 
can be taken to be a sequence. (Consider functions of the form J-L(U) - 1xu .) 
26. If {J-Ln } C M(X) , J-ln � J1 vaguely, and I I J-Ln l l  � I I J-L I I , then J f dJ-Ln � J f dJ-L 
for every f E BC(X) . (If J1 == 0 the result is trivial .  Otherwise, there exists 
g E Cc (X) with l l g l l u  < 1 such that J g dJ-L > I I J-L I I  - E, and J gf dJ-Ln � J gf dJ-L 
for f E BC(X ) .) Moreover, the hypothesis I I J-Ln I I � I I J-L I I  cannot be omitted. 

27. Let Ck ( [O , 1] ) be as in Exercise 9 in §5 . 1 . If I E Ck ( [O ,  1] ) * ,  there exist 
J1 E M( [O ,  1 ] ) and constants c0 , . . .  , ck_ 1 , all unique, such that 

k- 1 
I (!) = J f (k) dfl + I >jtcj ) (O) . 

0 

(The functionals f � j(J) (0) could be replaced by any set of k functionals that 
separate points in the space of polynomials of degree < k.) 
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7.4 PRODUCTS OF RADON MEASU RES 

In thi s section we study Radon measures on product spaces. X and Y will denote 
LCH spaces, and wx and 1ry will denote the projections of X x Y onto X and Y, 
respectively. 

7.20 Theorem. 

a. 'Bx 0 'By C 'BxxY· 
b. If X and Y are second countable, then 'B x 0 'By == 'B x x y . 
c. If X and Y are second countable and fL and v are Radon measures on X and 

Y, then fL x v is a Radon measure on X x Y. 

Prouf. Parts (a) and (b) are direct generalizations of Proposition 1 .5 ,  and the 
proof is essentially the same. The main tool is Proposition 1 .4. It implies, first, that 
'Bx 0 'By is generated by the sets U x V where U is open in X and V is open 
in Y. Since these sets are open in X x Y, we have 'B x 0 'By c 'B x x y .  If the 
topologies on X and Y have countable bases £ and 1', then every open set in X, 
Y, or X x Y is a countable union of sets in £, 1', or {U x V : U E £ ,  V E 9="} . 
It follows that 'B x ,  'By ,  and 'B x x y are generated by these families and hence that 
'Bx 0 'By == 'Bx xY · As for (c) , fL x v is a Borel measure by (b) , so by Theorem 
7 .8 we need only show that (J.L x v) (K) is finite for every compact K c X x Y. 
But this is easy: wx (K) and wy (K) are compact, and K c w1 (K) x w2 (K) , so 
(J.L x v) (K) == J.L(wx (K) )v (7ry (K) ) < oo. 1 

When X or Y is not second countable it can happen that 'B x 0 'By f. 'B x x y ;  see 
Exercises 28 and 29 . In this case the product of Radon measures is certainly not a 
Radon measure . However, there is a natural way of manufacturing a Radon measure 
from it. To see this, we need a couple of facts about continuous functions .  If g and 
h are functions on X and Y, we define g 0 h on X x Y by 

g 0 h(x , y) == g(x)h (y) . 

7.21 Proposition. Let P be the vector space spanned by the functions g 0 h with 
g E Cc (X), h E Cc (Y) . Then P is dense in Cc (X 0 Y ) in the uniform norm. More 
precisely, given f E Cc (X x Y ) , E > 0, and precompact open sets U C X and 
V C Y containing wx (supp (f) ) and wy (supp(f) ), there exists F E P such that 
I I F - f l l u  < E and supp(F) C U x V. 

Proof. U x V is a compact Hausdorff space. It follows easily from the Stone
Weierstrass theorem that the linear span of {g 0 h : g E C ( U) , h E C ( V) } is 
dense in C(U x V) . In particular, there is an element G of this linear span such that 
supu x v IG - ! I < E .  Also, by Urysohn 's lemma there exist ¢ E Cc (U, [0 , 1] ) and 
'l/J E Cc (V, [0 , 1 ] ) such that ¢ == 1 on wx (supp (f) ) and 'ljJ == 1 on 7ry (supp (f) ) .  
Thus if we define F == ( ¢  0 'ljJ)G on U x V and F == 0 elsewhere, we have F E  P, 
supp (F) C U X V, and I I F - f l l u  < E. 1 



PRODUCTS OF RADON MEASURES 227 

7.22 Proposition. Every f E Cc (X x Y) is 'B x ® 'By -measurable. Moreover, if fL 
and v are Radon measures on X and Y, then Cc (X x Y) C L1 (JL x v), and 

(f E Cc (X x Y) ) . 

Proof. If g E Cc (X) and h E Cc (Y) , we have g ® h = (g o wx ) (h o 7ry ) . 
Since wx and 1ry are measurable from 'B x ® 'By to 'B x and 'By (by definition of 
'B x ® 'By) and g and h are continuous , go wx and h o 1ry are 'B x ® 'By-measurable. 
Since products , sums, and pointwise limits of measurable functions are measurable, 
the first assertion follows from Proposition 7 .2 1 .  Also, every f E Cc (X x Y) is 
bounded and supported in a set of finite (JL x v) -measure, hence is in L1 (JL x v) . 
Fubini 's theorem holds for such f even if fL and v are not a-finite because one can 
replace fL and v by the finite measures J.L iwx (supp (f) ) and v lwy (supp(f) ) .  1 

It is now clear how to obtain a Radon measure on X x Y from Radon measures fL 
and v on X and Y. Namely, by Proposition 7 .22 the formula I(!) = J f d(JL x v) 
defines a positive linear functional on Cc (X x Y) , so it determines a Radon measure 
on X x Y by the Riesz representation theorem. We call this measure the Radon 

......... ......... 
product of fL and v and denote it by fL x v. The obvious question is :  Does fL x v agree 
with fL x v on 'B x ® 'By? In general, the answer is no. Indeed, a counterexample 
may be obtained by taking X = IR, Y = IRd (IR with the discrete topology) , fL = 

Lebesgue measure, and v == counting measure. It is not hard to see that in this case 
......... 

'B x x y = 'B x ® 'By ,  but Exercises 1 2  and 14 show that fL x v is not semi finite and 
......... 

that fL x v is the semifinite part of fL x v. However, some results are still available, 
and in the a-finite case everything works out beautifully. In what fol lows, we employ 
the notation of x-sections and y-sections introduced in §2.5 . 

7.23 Lemma. 

a. If E E 'Bx xy, then Ex E 'By for all x E X  and EY E 'Bx for all y E Y. 
b. If f : X x Y � C is 'Bx x y -measurable, then fx is 'By -measurable for all 

x E X and fY is 'B x -measurable for all y E Y. 

Proof. The collection of all E C X x Y such that Ex E 'By and EY E 'B x for 
all x ,  y is easily seen to be a a-algebra. It contains all open sets - if E is open, 
so are Ex and EY , being inverse images of E under the maps y' � (x,  y' ) and 
x' � (x' , y) - and hence it contains 'Bx xY · This proves (a) , and (b) follows since 
(fx ) - 1 (A) = (f- 1 (A) )x and (JY ) - 1 (A) = (f- 1 (A) ) Y .  1 

7.24 Lemma. If f E Cc (X x Y) and fL and v are Radon measures on X and Y, 
then the functions x � J fx dv and y � J fY dfL are continuous. 

Proof. We write out the proof only for fx · It suffices to show that for any xo E X 
and E > 0 there is a neighborhood U of xo such that l l fx - fxo l l u  < E for x E U, 
since then jux - fxo ) dv < Ev (wy (supp(f) ) ) . 
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However, for each y E wy (supp (f) ) there exist neighborhoods Uy , Vy of xo and y 
such that if (x , z ) E Uy x Vy , then ! f(xo , y ) - f(x, z ) ! < � E. We may choose a 
finite subcover Vyl '  . . .  ' VYn of 7ry (supp(f) ) and then take u = n;_n Uyj ; details are 
left to the reader. 1 

7.25 Proposition. Let fL and v be Radon measures on X and Y. If U is open in 
X x Y, then the functions x t-t v(Ux) and y t-t J.L(UY )  are Borel measurable on X 
and Y, and 

f1 X v(U) = J v(Ux) dJl(x) = J Jl(UY ) dv(y) .  

Proof. Let 9=" = {! E Cc (X x Y) : 0 < f < xu } .  By Proposition 7 . 1 1  we have 
xu = sup{f : f E 9="} and hence XUx == sup{fx : f E 9="} and XUY = sup{fY : 
f E 9="} . Thus by Proposition 7 . 1 2, 

fl X v(U) = sup {/ f d(fl X v) : f E �} , 

v(Ux ) = sup {/ fx dv : f E �} , Jl(UY ) = sup {/ JY dfl : f E �} . 

From Lemma 7.24 and Proposition 7 . 1 1  it follows that x t-t v(Ux ) and y � J.L(UY ) 
are LSC and hence Borel measurable. Another application of Proposition 7 . 1 2 ,  
together with Proposition 7 .22, yields 

f1 X v(U) = sup {!! fx dv dJl(x) : f E �} 
= J [sup {/ fx dv : f E �}] dfl(x) = J v(Ux ) dfl(x) , 

and likewise fL x v(U) = J J.L(UY )  dv(y) .  I 

7.26 Theorem. Suppose that fL and v are a-finite Radon measures on X and Y. If 
E E 'Bx x Y, then the functions x t-t v(Ex) and y t-t J.L(EY ) (which make sense by 
Lemma 7.23) are Borel measurable on X and Y, and 

fl X v(E) = J v(Ex) dJl(x) = J Jl(EY ) dv(y) . 
......... 

Moreover, the restriction of fL x v to 'B x ® 'By is fL x v. 
Proof. For the moment, let us fix open sets U c X and V c Y with J.L(U) and 

v(V) finite, and let W = U x V. Let M be the collection of all sets E E 'B x x y 
such that E n W satisfies the conclusions of the theorem. We then have 

i .  M contains all open sets, by Proposition 7 .25 . 
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ii . If E, F E Jv( and F C E, then E \ F E M; in particular, if F E M, then 
Fe = X \ F E M. Indeed, we have 

J1 x v(E n W) = J1 x v(F n W) + J1 x v( (E \ F) n W) , 

and likewise for v( (En W)x ) and J-L( (En W )Y ) . Since the conclusions are true 
for E n W and F n W and all the sets involved have finite measure (this is why 
we introduced W), we can subtract to obtain the conclusions for (E \ F) n W. 

1 1 1 .  Jv( is closed under finite disjoint unions. (This is simply the additivity of the 
measures.) 

iv. M is closed under countable increasing unions, and hence (by (ii)) under count
able decreasing intersections . (This follows from the monotone convergence 
theorem.) 

Now, let £ = {A \ B : A, B open in X x Y} , and let A be the collection of finite 
disjoint unions of sets in £ .  Since 

(A1 \ B1 ) n (A2 \ B2 ) = (A1 n A2 ) \ (B1 u B2 ) ,  
(A \ B)c = [ (X x Y) \ A] u [ (A n B) \ 0] , 

£ is an elementary family, so by Proposition 1 .7 ,  A is an algebra. By Lemma 2.35, 
the monotone class generated by A coincides with the a-algebra generated by A, 
which is clearly 'B x x Y . But by (i)-(iv) (since A \  B == A \  (A n B)) , Jv( contains 
this monotone class, so M == 'B x x y .  

Next, since J1 and v are a-finite and outer regular, we have X = U� Un and 
Y == U� Vn where Un and Vn are open and have finite measure, and we may assume 
that the sequences {Un } and {Vn } are increasing. If E E 'B x x Y , the preceding 
argument shows that En  ( U n x Vn) satisfies the conclusions of the theorem for all n, 
and the monotone convergence theorem then implies that E satifies the conclusions 
too. 

Finally, if E E 'Bx x 'By, by Tonelli 's theorem we have 

JL x v(E) = J v(Ex) dJL(x) = JL X v(E) , 

and the proof is complete . I 

7.27 The Fubini-Tonelli Theorem for Radon Products. Let J1 and v be a-finite 
Radon measures on X and Y, and let f be a Borel measurable function on X x Y. 
Then f x and fY are Borel measurable for every x and y. Iff > 0, then x t--t J f x dv 
and y t--t J fY dJ-L are Borel measurable on X and Y. If f E L1 (J-L x v), then 
fx E L1 (v) for a. e. x, fY E L1 (J-L) for a. e. y, and x t--t J fx dv and y t--t J fY dJ-L 
are in L1 (J-L) and L1 (v) . In both cases, we have 
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Proof. The measurability of fx and fY was established in Lemma 7 .23 .  The rest 
of the proof is identical to the proof of the ordinary Fubini-Tonelli theorem, except 
that Theorem 7 .26 is used in place of Theorem 2.36 . 1 

The extension of the notion of Radon products to any finite number of factors is 
straightforward. More interestingly, the theory can be extended to infinitely many 
factors provided that the spaces in question are compact and the measures on them 
are normalized to have total mass 1 .  

To be precise, suppose that {Xa }aEA is a family of compact Hausdorff spaces 
and, for each a, fLa is a Radon measure on Xa such that J.La (Xa ) = 1 .  Let 
X == IlaEA Xa , a compact Hausdorff space by Tychonoff's theorem. We would 
like to define a Radon measure fL on X such that if Ea is a Borel set in X a for each 
a and Ea = Xa for all but finitely many a, then J.L(IlaEA Ea ) = IlaEA J.La (Ea) .  
(The product on the right is well defined since all but finitely many factors are equal 
to 1 .) A bit of notation will be helpful : Given a 1 , . . .  , an E A, let 1r(a1 , . . .  ,an ) be the 
natural projection from X onto Il� Xai ,  

1r(a 1 , . . .  ,an ) (x) = (xal ' · · · ' Xan ) . 
Thus 7r(a� , . . .  ,an ) (Ea1 X • · · X Ean ) = IlaEA Ea where Ea = Xa for a -f= 
a l , . . .  , an . 

7.28 Theorem. Suppose that, for each a E A, fLa is a Radon measure on the 
compact Hausdorff space Xa such that J.La (Xa ) = 1 .  Then there is a unique Radon 
measure fL on X == IlaEA X a such that for any a 1 , . . . , an E A and any Borel set 
E in TI� Xai ' 

J.L (7r(a11 ,  . . .  ,nn ) (E) ) = (J.La1 X · · ·  X fLan ) (E) . 
Proof. Let Cp (X) be the set of all f E C(X) that depend on only finitely many 

coordinates , that is, all f of the form f = g o  1r(a1 , .  . .  ,an ) for some a 1 , . . .  , an E A 
and g E C (Il� X ai ) . If f is such a function, we define 

I (f) = I g d(JLa1 X · · · X JLaJ · 
Adding on some extra coordinates to the set a 1 , . . .  , an has no effect on this formula 
since J.La (Xa ) = 1 for all a .  Thus I( f) is a well-defined positive linear functional 
on Cp (X) , and I I (f ) l < l l f l l u  with equality when f is constant. 

Now, C F (X) is clearly an algebra that separates points, contains constant func
tions, and is closed under complex conjugation , so by the Stone-Weierstrass theorem 
it is dense in C (X) . Hence the functional I extends uniquely to a positive linear 
functional of norm 1 on C (X) , and the Riesz representation theorem therefore yields 
a unique Radon measure fL on X such that I(f) = J f dJ.L for all f E Cp (X) . 

Given a 1 , . . .  , an E A, let fL(a1 , . . .  ,an ) = fL o 1r(a11 ,  . . . ,an ) " Then fL(a1 ,  . . . ,an ) i s a 
Borel measure on TI� Xa.i that satisfies 

I g dJL(a, , . . . ,an ) = I g 0 1f(a1 , . . .  ,an ) djL 
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when g is the characteristic function of a Borel set, and hence (by the usual linearity 
and approximation arguments) when g is any bounded Borel function . In particular, 
from the definition of fL, for all g E C(IJ� XaJ ) we have 

If we can show that fL(a1 , . . .  ,an )  is Radon, the uniqueness of the Riesz representation ......... ......... 
will imply that fL( a1 , . . .  ,an ) = J.La1 X · · · X fLan , which will complete the proof. 

Let E be a Borel set in TI� Xai ,  and write 1r = 1r(a 1 , . . .  ,an ) for short. Since 
fL is regular, for any E > 0 there is a compact K c w- 1 (E) such that J.L( K) > 
J.L(w- 1 (E) ) - E. Then K' = w(K) is a compact subset of E, and fL(a1 , . . .  ,an ) (K' ) == 
J.L(7r- 1 (K' ) )  > J.L(K) since K C 1r- 1 (K' ) ,  so fL(a1 , . . .  , an ) (K' ) > J.L(7r- 1 (E) ) - E = 
fL(a1 , . . .  ,an )  (E) - E. Thus fL(a1 , . . .  ,an ) is inner regular, and the same argument applied 
to Ec shows that it is outer regular. Thus fL(a1 , . . .  ,an )  is Radon, and we are done. 1 

Exercises 

28. If X is the set of ordinals less than or equal to the first uncountable ordinal w1 , 
with the order topology, then 'B x x x i= 'B x 0 'B x . In fact, { ( x , y) : x < y < w1 } is 
open but not in 'B x 0 'B x . (Reexamine Exercise 47 in §2.5 in the light of Exercise 
15 in §7 .2.) 

29. If X is a set of cardinality > c with the discrete topology, then 'B x x x i= 
'B x 0 'B x . In fact, D == { ( x , y) : x = y} is closed but not in 'B x 0 'B x . (Use 
Exercise 5 in § 1 .2 and Proposition 1 .23 . If D E 'B x 0 'B x ,  then D E Jv( where 
M is a sub-a-algebra of 'B x ® 'B x generated by a countable family of rectangles, 
hence 'D E N 0 N where N is a countably generated sub-a-algebra of 'B x . Then 
{ x} = Dx E N for all x, but card(N) < c .)  The same reasoning applies if X is 
replaced by its one-point compactification. 

30. Let fL and v be Radon measures on X and Y, not necessarily a-finite. If f is a 
nonnegative LSC function on X x Y, then x � J fx dv and y � J fY dJ.L are Borel 
measurable and J f d(J.L x v) = JJ f dJ.L dv = JJ f dv dJ.L. 
31. Some results concerning Baire sets on product spaces : 

a. 'B � x y C 'B � 0 'B� . (Hint: Proposition 7 .22 remains true if 'B is replaced 
by 'Bo .) 
b. If X and Y are either compact or second countable, then 'B� x Y = 'B� 0 'B�. 
c. If X is an uncountable set with the discrete topology, then 'B� x x i= 'B� 0 'B� . 

7.5 NOTES AND REFE RENCES 

§7 . I :  The Riesz representation theorem is actually the work of many hands . F. Riesz 
[ 1 1 6] first proved it for the case X = [a , b] C IR; he formulated the result in terms of 
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Riemann-Stieltjes integrals and used no measure theory. It was extended to compact 
subsets of !Rn by Radon [ 1 1 1 ] ,  to compact metric spaces by Banach (see Saks [ 1 28] ), 
and to compact Hausdorff spaces by Kakutani [80] . For the non compact case, the 
first general results were obtained by Markov [98] , who characterized positive linear 
functionals on BC (X) for a normal space X in terms of certain finitely additive set 
functions .  A theorem essentially equivalent to Theorem 7 .2 was apparently known 
to Bourbaki about 1940 (see Weil [ 158, §6]) ,  but his treatment of integration was 
not published until 1 952, by which time several others had obtained similar results . 
For more detai led references, see Dunford and Schwartz [35, § IV. 1 6] and Hewitt and 
Ross [75, § 1 1 ] .  See also Konig [86] for a generalization of the Riesz representation 
theorem to spaces that are not locally compact. 

Our use of the term "Radon measure," which derives from Radon 's seminal paper 
[ 1 1 1 ] ,  is common but not entirely standard. Some authors refer to such measures as 
"regular Borel measures"; others use the term "Radon measure" to mean a positive 
l inear functional on Cc (X) , and still others define Radon measures to be inner regular 
rather than outer regular on all Borel sets . It should also be noted that some older 
texts define the Borel a-algebra to be the a-algebra generated by the compact sets, 
which is in general smaller than our 'B x . 

If fL is a Radon measure, let fL denote the complete, saturated extension of fL 
discussed at the end of §7 . 1 .  It is a significant fact that fL is always decomposable 
in the sense of Exercise 15  in §3 .2; see Hewitt and Stromberg [76, Theorem 19.30] . 
Consequently, the extension of the Radon-Nikodym theorem in that exercise and the 
fact that £1 (J.L) "' � 00 (J.L) (Exercise 25 in §6.2) are available. In this connection one 
should note that LP (J.L) is essentially identical to LP (J.L) for p < oo, by Propositions 
2. 12  and 2.20 .  

§7 .2 See Cohn [27 , Proposition 7 .2.3] for a proof of Theorem 7 .8 that does not 
use the Riesz representation theorem. 

Propositions 7 . 12  and 7 . 14 suggest an alternative way of constructing the Radon 
measure fL associated to a positive linear functional I on Cc (X) in the spirit of the 
Daniell integral (see §2 .8) .  Namely, one first extends I to nonnegative LSC functions 
g by setting 

I(g) = sup { I(!) :  f E Cc (X) , 0 < f < g} 
and then extends I to arbitrary nonnegative functions h by setting 

I (h) = inf { I (g) : g LSC, g > h} . 
It is then not difficult to verify that if E C X, I (XE ) = fL * (E) where fL * is the outer 
measure in the proof of Theorem 7 .2. For details, see Hewitt and Ross [75] or Hewitt 
and Stromberg [76] . 

Kupka and Prikry [88] contains a readable discussion of some of the more advanced 
topics in the theory of measures on LCH spaces . 

§7 . 3 :  Theorem 7 . 17 is frequently stated only for the case where X is compact ; 
however, the more general formulation follows easily from the compact case by 
considering the one-point compactification of X. An interesting proof of the Baire 
measure vers ion of this result, quite different from ours, can be found in Hartig [ 67] .  
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§7 .4: The Fubini-Tonelli theorem for Radon products, as presented here, is 
essentially due to deLeeuw [3 1 ] ;  see also Cohn [27 , §7 .6] . Another variant of this 
theorem, which includes some further results for the non-a-finite case, can be found 
in Hewitt and Ross [75, § 1 3] .  

Theorem 7 .28 i s  essentially due to Nelson [ 103] . There is also a purely measure
theoretic version of this result : If { (X a ,  Ma , ,Ua ) }  aE A is a family of measure 
spaces with J-La (Xa ) == 1 for al l a, one can define a product measure Ila ,Ua on 
(Ila X a , ®a Ma ) . See Saeki [ 1 27] , Halmos [62, §38] ,  or Hewitt and Stromberg 
[76, §22] . The hypotheses of Theorem 7 .28 are more restrictive, but the conclusion 
is stronger; in particular, the domain of the measure ,u in Theorem 7 .28 is the Borel 
a-algebra on Ila Xa, which is much larger than ®a 'Bxa when the index set A is 
uncountable . 





Elements of Fourier 
Analysis 

It is easy to say that Fourier analysis, or harmonic analysis, originated in the work 
of Euler, Fourier, and others on trigonometric series; i t  is much harder to describe 
succinctly what the subject comprises today, for it is a meeting ground for ideas from 
many parts of analysis and has applications in such diverse areas as partial differential 
equations and algebraic number theory. Two of the central ingredients of harmonic 
analysis, however, are convolution operators and the Fourier transform, which we 
study in this chapter. 

8.1 PRELIMI NARI ES 

We begin by making some notational conventions .  Throughout this chapter we 
shall be working on 1Rn , and n will always refer to the dimension . In any measure
theoretic considerations we always have Lebesgue measure in mind unless we specify 
otherwise. Thus, if E is a measurable set in JRn , we shall denote LP ( E, m ) by LP (E) . 
If U is open in JRn and k E N, we denote by Ck (U) the space of all functions on 
U whose partial derivatives of order < k all exist and are continuous , and we set 
C(X)(U) = n� Ck (U) . Furthermore, for any E c 1Rn we denote by C� (E) the 
space of all C(X) functions on 1Rn whose support is compact and contained in E. 
If E = ]Rn or U = 1Rn , we shall usually omit it in naming function spaces : thus, 
LP = LP (JRn ) ,  ck = Ck (JRn ), c� = C� (1Rn ) .  If x , y E JRn , we set 

l x l = vfX-X. 
235 



236 ELEMENTS OF FOURIER ANALYSIS 

It will be convenient to have a compact notation for partial derivatives .  We shall 
write 

a aj == -a , x · J 

and for higher-order derivatives we use multi -index notation . A multi-index is an 
ordered n-tuple of nonnegative integers . If a == ( a1 , . . . , an ) is a multi -index, we 
set 

n 
"" ' == IT "" . ' \...(. . \...(. J • ' 

1 
and if x == (x1 , . . . , Xn ) E lRn , 

(The notation I a I == L a1 is inconsistent with the notation l x l == (L x] ) 1 12 , but the 
meaning will always be clear from the context.) Thus, for example, Taylor's formula 
for functions f E Ck reads 

f(x) = L (8° f) (xo ) (x - �o )a + Rk (x) , a .  la l < k 
and the product rule for derivatives becomes 

(Exercise 1 ) .  

lim IRk (x) l == 0 
x�xo l x - xo l k ' 

We shall often avail ourselves of the sloppy but handy device of using the same 
notation for a function and its value at a point. Thus, "xa" may be used to denote the 
function whose value at any point x is xa . 

Two spaces of C(X) functions on 1Rn will be of particular importance for us . The 
first is the space C� of C(X) functions with compact support. The existence of 
nonzero functions in C� is not quite obvious; the standard construction is based on 
the fact that the function 77(t) == e- 1/tX(o ,(X)) (t) is C(X) even at the origin (Exercise 
3) .  If we set 

(8. 1 )  if l x l < 1,  
if l x l > 1 , 

it follows that 'ljJ E C(X), and supp( 'ljJ) is the closed unit ball . In the next section we 
shall use this single function to manufacture elements of C� in great profusion ; see 
Propositions 8 . 17  and 8. 18 . 

The other space of C(X) functions we shall need is the Schwartz space 3 consisting 
of those c(X) functions which, together with all their derivatives, vanish at infinity 
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faster than any power of l x l . More precisely, for any nonnegative integer N and any 
multi -index a we define 

then 
3 = { f E C(X) : l l f i i (N,a ) < oo for al l N, a} . 

Examples of functions in S are easy to find: for instance, fa ( x) = xa e - I x 1 2  where 
a is any multi- index. Also, clearly C� c S .  

It is an important observation that if f E 3 ,  then aa f E LP for all a and all 
p E [ 1 , oo] . Indeed, 1 8a f (x ) l < CN ( 1 + l x i ) -N for all N, and ( 1  + l x i ) -N E LP 
for N > njp by Corollary 2.52. 

8.2 Proposition. 3 is a Frechet space with the topology defined by the norms 
II · I I  (N,a) · 

Proof. The only nontrivial point is completeness .  If {fk } is a Cauchy sequence in 
S, then I I  fj -fk I I  (N,a) ---t 0 for all N, a. In particular, for each a the sequence { aa fk } 
converges uniformly to a function 9a · Denoting by e1 the vector (0,  . . .  , 1 ,  . . .  , 0 ) 
with the 1 in the jth position , we have 

fk (x + tej ) - fk (x) = 1
t 
8i fk (x + sei ) ds . 

Letting k ---t oo, we obtain 

go (x + tei ) - 9o (x) = 1
t 
9ei (x + sei ) ds . 

The fundamental theorem of calculus implies that 9ej = 81g0 , and an induction on 
l a l then yields 9a = aago for all a. It is then easy to check that l l fk - go i i (N,a) ---t 0 
for all a. 1 

Another useful characterization of S is the following. 

8.3 Proposition. Iff E C(X), then f E 3 ijfxf3aa f is bounded for all multi-indices 
a ,  {3 iff aa (xf3 f) is bounded for all multi-indices a, {3. 

Proof. Obviously l xf3 1 < ( 1  + l x i )N for 1 !3 1  < N. On the other hand, I:� lx1 IN 
is strictly positive on the unit sphere l x l = 1 ,  so it has a positive minimum 8 there. It 
follows that I:� lx1 IN > 8 lx i N for all x since both sides are homogeneous of degree 
N, and hence 

n 

( 1  + l x i )N < 2N ( 1  + l x i N ) < 2N [ 1 + 8- 1 L lx.f l ] < 2N 8- 1 L l xf3 1 . 
1 l f3 1 <N 

This establishes the first equivalence. The second one follows from the fact that each 
aa ( xf3 f) is a linear combination of terms of the form x' 88 f and vice versa, by the 
product rule (Exercise 1 ) .  1 
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We next investigate the continuity of translations on various function spaces . The 
following notation for translations will be used throughout this chapter and the next 
one: If f is a function on 1Rn and y E JRn, 

ry f (x) = f(x - y) . 
We observe that l l ry f i i P = l l f i i P for 1 < p < oo and that l l ry f l l u  = l l f l l u · A 

function f is called uniformly continuous if l l ry f - f l l u  ---t 0 as y ---t 0.  (The 
reader should pause to check that this is equivalent to the usual E-8 definition of 
un iform continuity. ) 

8.4 Lemma. Iff E Cc (lRn ), then f is uniformly continuous. 

Proof. Given E > 0, for each x E supp(f) there exists 8x > 0 such that 
l f (x -y) - f (x) I < � E if I Y I  < 8x . Since supp(f) is compact, there exist x1 , . . . , XN 

such that the balls of radius �8xi about x1 cover supp( f ) .  If 8 = � min{ 8xi }, then, 
one easi ly sees that l l ry f - f l l u  < E whenever I Y I  < 8. 1 

8.5 Proposition. /f 1 < p < oo, translation is continuous in the LP norm; that is, if 
f E LP and z E lRn, then limy�o l l ry+z f - Tzf l l p = 0. 

Proof. Since Ty+z = TyTz , by replacing f by Tz f it suffices to assume that z = 0.  
First, if  g E Cc, for I Y I  < 1 the functions Tyg are all supported in a common compact 
set K, so by Lemma 8.4, 

Now suppose f E LP . If E > 0, by Proposition 7 .9 there exists g E Cc with 
l l g - f l i P < E/3, SO 

I I Tyf - f l i P < I I Ty (f - g) l i p + l l ryg - 9 l l p + l l g - f l i P < � E + l l ryg - 9 l l p , 
and l l ryg - g i i P < E/3 if y is sufficiently small . I 

Proposition 8.5 is false for p = oo, as one should expect since the L 00 norm is 
closely related to the uniform norm; see Exercise 4. 

Some of our results will concern multiply periodic functions in JRn, and for 
simplicity we shall take the fundamental period in each variable to be 1 .  That is, we 
define a function f on 1Rn to be periodic if f (x + k) = f(x) for all x E JRn and 
k E zn . Every periodic function is thus completely determined by its values on the 
unit cube 

Q =  [- � , ! ) n . 
Periodic functions may be regarded as functions on the space ]Rn ;zn r-v (1R/Z)n of 
cosets of zn , which we call the n-dimensional torus and denote by 1'n . (When 
n = 1 we write 1' rather than 1'1 .) 1ln is a compact Hausdorff space; it may be 
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identified with the set of all z = ( Z1 ' . . .  ' Zn ) E en such that I Zj I = 1 for all j'  via 
the map 

( ) ( 2nix l 2nixn ) x1 , . . . , xn � e , . . .  , e . 
On the other hand, for measure-theoretic purposes we identify 1'n with the unit cube 
Q, and when we speak of Lebesgue measure on 1'n we mean the measure induced on 
1'n by Lebesgue measure on Q. In particular, m(1'n ) = 1 .  Functions on 1'n may be 
considered as periodic functions on 1Rn or as functions on Q; the point of view will 
be clear from the context when it matters. 

Exercises 

1. Prove the product rule for partial derivatives as stated in the text. Deduce that 

for some constants c1 8 and c�8 with c1 8 = c�8 = 0 unless I I' I < I a I and 1 8 1 < l/3 1 . 
2. Observe that the binomial theorem can be written as follows :  

( ) k """"" k! 
a X1 + X2 = L-t -, X a .  l a l=k 

Prove the following generalizations :  
a.  The multinomial theorem: If x E JRn, 

(x1 + · · · + Xn) k = L 
k; xa . a. l a l =k 

b. The n-dimensional binomial theorem: If X'  y E 1R n' 
( )a _ 

""""" a! {3 1 X + y - L-t j3f f X y . 
f3+1=a ·!' · 

3. Let TJ(t) = e- 1 /t for t > 0, TJ(t) = 0 for t < 0. 
a. For k E N  and t > 0, TJ(k) (t) = Pk (1/t) e- 1 1t where Pk is a polynomial of 
degree 2k. 
b. TJ(k) (0) exists and equals zero for all k E N. 

4. If f E L(X) and l l ryf - ! I I (X) ---t 0 as y ---t 0, then f agrees a.e. with a uniformly 
continuous function. (Let Arf be as in Theorem 3 . 1 8 . Then Arf is uniformly 
continuous for r > 0 and uniformly Cauchy as r ---t 0.) 

8.2 CONVO LUTIONS 

Let f and g be measurable functions on 1Rn . The convolution of f and g is the 
function f * g defined by 

f * g(x) = J f(x - y)g (y) dy 
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for al l x such that the integral exists. Various conditions can be imposed on f and 
g to guarantee that f * g is defined at least almost everywhere . For example, if f is 
bounded and compactly supported, g can be any locally integrable function ; see also 
Propositions 8 .7-8 .9 below. 

In what follows, we shall need the fact that if f is a measurable function on 1Rn, 
then the function K(x, y) = f (x - y) is measurable on 1Rn x 1Rn. We have K = f o s 

where s ( x, y) = x - y; since s is continuous, K is Borel measurable if f is Borel 
measurable. This can always be assumed without affecting the definition of f * g, by 
Proposition 2. 12. However, the Lebesgue measurability of K also follows from the 
Lebesgue measurability of f ; see Exercise 5 .  

The elementary properties of convolutions are summarized in the following propo
sition . 

8.6 Proposition. Assuming that all integrals in question exist, we have 
a. f * g = g * f, 
b. (! * g) *  h = f * (g * h). 
c. For z E lRn, Tz (f * g) =  (rzf) * g = f * (rzg). 
d. If A is the closure of { x + y : x E supp(f) , y E supp(g) }, then supp(f * g) C 

A. 
Proof. (a) is proved by the substi tution z = x - y: 

f * g(x) = J f(x - y)g (y) dy = J f(z)g (x - z) dz = g * f(x) . 

(b) follows from (a) and Fubini 's theorem: 

Ju * g) * h(x) = JJ f(y)g (x - z - y)h (z) dy dz 

= J J f(y)g(x - y - z)h(z) dz dy = f * (g * h) (x) . 

As for (c), 

Tz (f * g) (x) = J f(x - z - y)g (y) dy = J Tzf(x - y)g (y) dy = (rzf) * g(x) , 

and by (a), 
Tz (J * g) = Tz (g * f) == (rzg) * f = f * (rzg) .  

For (d), we observe that if x tj. A, then for any y E supp(g) we have x- y tJ. supp(f) ; 
hence f(x - y)g(y) = 0 for all y, so f * g (x) = 0.  1 

The following two propositions contain the basic facts about convolutions of LP 
functions. 

8.7 Young's Inequality. If f E £1 and g E LP ( 1  < p < oo), then f * g(x) exists 
for almost every x, f * g E LP, and I I  f * g l l p < I I  J lh l l g l l p · 
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Proof. This is a special case of Theorem 6. 1 8 , with K(x, y) == f(x - y) .  
Alternatively, one can use Minkowski 's inequality for integrals : 

l l f * g l l v = J f(y)g ( · - y) dy 
P 

< j l f (y) l l l ryg l lv dy = l l f l l l l l g l l v · 

I 

8.8 Proposition. If p and q are conjugate exponents, f E LP, and g E Lq, then 
f * g (x) exists for every x, f * g is bounded and uniformly continuous, and I I ! * g l l u  < 
1 1 / l l p l l g l l q · /f 1 < p < oo (so that 1 < q < oo also), then f * g E Co (IRn ) . 

Proof. The existence of f * g and the estimate for I I  f * g I I  u follow immediately 
from Holder' s  inequality. In view of Propositions 8.5 and 8.6, so does the uniform 
continuity of f * g : If 1 < p < oo, 

I I T y ( f * g) - f * g I I  u == I I  ( T y f - f) * g I I oo < I I T y f - f I I  p I I g I I  q ---t 0 as Y ---+ 0 · 
(If p == oo, interchange the roles of f and g.) Finally, if 1 < p, q < oo, choose 
sequences {f n } and {gn} of functions with compact support such that I I  f n - f l i P ---+ 0 
and l l gn - g l l q ---t 0. By Proposition 8.6d and what we have just proved, fn * 9n E Cc. 
But 

l l fn * gn - f * 9 l l u  < l l fn - J l l p l l gn l l q + l l f l l p l l gn - g l l q ---t 0 ,  

so f * g E Co by Proposition 4 .35 .  I 
The preceding results are all we shall use, but for the sake of completeness we 

state also the following generalization . 

8.9 Proposition. Suppose 1 < p, q , r < oo and p- 1 + q- 1 == r- 1 + 1 .  

a. (Young's Inequality, General Form) Iff E LP and g E Lq, then f * g E Lr 
and l l f * g l l r < 1 1 / l l p l l g l l q · 

b. Suppose also that p > 1, q > 1, and r < oo. Iff E LP and g E weak Lq, then 
f * g E Lr and I I ! * g l l r < Cpq l l / l l p [g] q where Cpq is independent off and g. 

c. Suppose that p == 1 and r == q > 1 .  If f E L1 and g E weak Lq, then 
f * g E weak Lq and [f * g] q < Cq l l f l l 1 , where Cq is independent off and g. 

Proof. To prove (a), let q be fixed. The special cases p == 1,  r == q and 
p == qj ( q - 1 ) , r == oo are Propositions 8.7 and 8 .8 .  The general case then fol lows 
from the Riesz-Thorin interpolation theorem. (See also Exercise 6 for a direct proof. ) 
(b) and (c) are special cases of Theorem 6.36. 1 

One of the most important properties of convolution is that, roughly speaking, 
f * g is at least as smooth as either f or g, because formally we have 

an (! * g) (x) = aa J f(x - y)g (y) dy = J aa f(x - y)g (y) dy = (8Q f) * g (x) ,  
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and similarly aa (f * g) = f * ( aa g) .  To make this precise, one needs only to impose 
conditions on f and g so that differentiation under the integral sign is legitimate . One 
such result is the following; see also Exercises 7 and 8. 

8.10 Proposition. If f E L1, g E Ck, and aag is bounded for ja l < k, then 
f * g E Ck and ao: (f * g) =  f * (8o:g) for ln l < k. 

Proof. This is clear from Theorem 2.27 .  

8.1 1  Proposition. Iff, g E S, then f * g E S. 

Proof. First, f * g E C(X) by Proposition 8 . 1 0 . Since 

(8 . 12) 1 + l x l < 1 + l x - Y l  + I Y I  < ( 1  + l x - Y l ) ( 1  + l y l ) ,  
we have 

( 1  + l x i )N I O<> (J * g) (x) l < j(l + l x - y i )N iaa f(x - Y) l ( 1 + I Y I )N ig (y) l  dy 

< l l f l l cN,a) l l g l l cN+n+l ,a) J(l + I Y I ) -n- l dy , 

which is finite by Corollary 2.52. 

I 

I 
Convolutions of functions on the torus 1'n are defined just as for functions on 1Rn . 

(If one regards functions on 1'n as periodic functions on 1Rn, of course, the integration 
is to be extended over the unit cube rather than 1Rn .) All of the preceding results 
remain valid, with the same proofs. 

The following theorem underlies many of the important applications of convolu
tions on 1Rn . We introduce a bit of notation that will be used frequently hereafter: If 
¢ is any function on 1Rn and t > 0, we set 

(8. 13) 

We observe that if ¢ E L1 , then J c/Jt is independent of t, by Theorem 2.44 : 

Moreover, the "mass" of ¢t becomes concentrated at the origin as t ---r 0. (Draw a 
picture i f  this  isn ' t clear. ) 

8.14 Theorem. Suppose ¢ E £1 and J ¢(x) dx = a. 
a. Iff E LP ( 1 < p < oo), then f * ¢t ---+ af in the LP norm as t ---+ 0. 
b. If f is bounded and uniformly continuous, then f * ¢t ---+ af uniformly as 

t ---r 0. 
c. If f E L(X) and f is continuous on an open set U, then f * ¢t ---+ af uniformly 

on compact subsets of U as t ---r 0. 
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Proof. Setting y == tz, we have 

f * c/Jt (x) - af (x) = j [f (x - y) - f(x)] ¢t (Y) dy 

= j [f (x - tz ) - f(x)] ¢(z) dz 

= J [ Ttz f (X) - f (X) ] c/J ( Z ) dz . 

Apply Minkowski 's inequality for integrals : 

I I ! * <Pt - af l l v < J l l rtz f - f l l p l </>(z ) l dz . 

Now, l l rtz f - f l i P is bounded by 2 I I ! I I P and tends to 0 as t ---+ 0 for each z, by 
Proposition 8 .5 .  Assertion (a) therefore follows from the dominated convergence 
theorem. 

The proof of (b) is exactly the same, with l l · l l p replaced by l l · l l u · The estimate for 
I I  f * cPt - af l l u  i s obvious, and l l rtz f - f l l u  ---+ 0 as t ---+ 0 by the uniform continuity 
of f .  

As for (c), given E > 0 let us choose a compact E C 1Rn such that fEe 1 ¢ 1 < E .  
Also, let K be a compact subset of U.  If t is sufficiently small, then , we will have 
x - tz E U for all x E K and z E E, so from the compactness of K it follows as in 
Lemma 8.4 that 

sup l f(x - tz) - f(x) l < E 
xEK, z EE 

for small t . But then 

sup I f *  ¢t (x) - af (x) l < sup [ f + f ] l f (x - tz) - J (x) l l ¢(z) l dz 
xEK xEK jE }Ec 

< E J j ¢ j + 2 l l f l l ooE ,  

from which (c) follows. I 
If we impose slightly stronger conditions on ¢, we can also show that f * <Pt ---+ af 

almost everywhere for f E LP . The device in the following proof of breaking up an 
integral into pieces corresponding to the dyadic intervals [2k , 2k+ l ] and estimating 
each piece separately is a standard trick of the trade in Fourier analysi s. 

8.15 Theorem. Suppose l ¢(x) l < C(l + lx l ) -n-Efor some C, E > O (which implies 
that ¢  E L1 by Corollary 2. 52), and J ¢(x) dx == a. If f E LP ( 1  < p < oo), then 
f * c/Jt (x) ---+ af(x) as t ---+ 0 for every x in the Lebesgue set off - in particula r: 
for almost every x, and for every x at which f is continuous. 

Proof. If x is in the Lebesgue set of f, for any 8 > 0 there exists TJ > 0 such that 

(8. 16) r l f (x - y) - f (x) l dy < 8rn for r < TJ · }I Y I <r 
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Let us set 

It = f i f (x - y) - f(x) l l ¢t (Y) I dy , 
}IY I  <11 

!2 = f i f(x - y) - f(x) l l ¢t (Y) I dy . 
}l y i >TJ 

We claim that 11 is bounded by A8 where A is independent of t, whereas 12 ---+ 0 as 
t ---+ 0. Since 

we will have 
lim sup I f *  cPt (x) - af (x) l < A8, t�o 

and since 8 is arbitrary, this wil l complete the proof. 
To estimate 11 , let K be the integer such that 2K < TJit < 2K+ 1 if TJit > 1 , 

and K == 0 i f  TJ It < 1 .  We view the ball I y I < TJ as the union of the annuli 
2-kTJ < I Y I  < 2 1-kTJ ( 1 < k < K) and the bal l l y l < 2-K TJ . On the kth annulus we 
use the estimate 

l ct>t (Y) I < ccn � -n-< < ccn [ 2�k17 ] -
n-e , 

and on the ball ly l < 2-KTJ we use the estimate I <Pt (Y) I < Ct-n . Thus 

It < tern [ 2-kTJ ] -
n-£ r i f(x - y) - f(x) l dy 

1 t 12- kry< ly l <21 - k17 

+Ccn { l f (x - y) - f(x) l dy . 
}I Y I <2-Kry 

Therefore, by (8. 1 6) and the fact that 2K < TJ It < 2K + 1 , 

it < C8 � ( 21 -krytrn [ 2-
t
k
1] r

n
-< + C8cn (2-Kry)n 

= 2nC8 [ � ] -< � 2ke + C8 [ 2-;1]] n 
[TJ ] -E  2(K+1 )€ - 2€ [ 2-KTJ ] 

n 
== 2nC8 - 2 1 + C8 t € - t 
< 2nC [2€ (2E - 1 ) - 1 + 1] 8. 

As for 12 , if p' is the conjugate exponent to p and x is the characteristic function of 
{y : I Y I  > TJ } ,  by Holder' s inequal ity we have 

h < f ( i f (x - y) l + l f (x) l ) l ¢t (Y) I dy 
}IY I >11 < l l ! l l p i i X¢t l l p' + l f (x) l l l x¢t l l 1 , 
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so it suffices to show that for 1 < q < oo, and in particular for q == 1 and q == p' , 
I I X<Pt l l q --t 0 as t --t 0. If q == oo, this is obvious : 

If q < oo, by Corollary 2.5 1 we have 

In either case, I I X¢t l l q i s dominated by tE , so we are done. I 
In most of the applications of the preceding two theorems one has a == 1 ,  although 

the case a == 0 is also useful . If a == 1 ,  { ¢t } t>O is called an approximate identity, as 
it furnishes an approximation to the identity operator on LP by convolution operators . 
This construction is useful for approximating LP functions by functions having 
specified regularity properties. For example, we have the following two important 
results: 

8.17 Proposition. c� (and hence also s) is dense in LP (1 < p < 00) and in Ca. 

Proof. Given f E LP and E > 0, there exists g E Cc with I I ! - g i i P < E/2, by 
Proposition 7 .9. Let ¢ be a function in C� such that J ¢ == 1 - for example ,  take 
¢ == (f 'ljJ) - l 'ljJ where 'ljJ is as in (8. 1 ) .  Then g * ¢t E C� by Propositions 8 .6d and 
8. 1 0, and l l g * ¢t - g i i P < E/2 for sufficiently small t by Theorem 8. 14. The same 
argument applies if LP is replaced by Co , I I  · l i P by I I · l l u , and Proposition 7 .9 by 
Proposition 4 .35 .  1 

8.18 The C00 Urysohn Lemma. If K c 1Rn is compact and U is an open set 
containing K, there exists f E C� such that 0 < f < 1, f == 1 on K, and 
supp (f) C U. 

Proof. Let 8 == p(K, uc ) (the distance from K to uc, which is positive since 
K is compact), and let V == { x : p( x , K) < 8/3} .  Choose a nonnegative ¢ E C� 
such that J ¢ == 1 and ¢(x) == 0 for l x l > 8/3 (for example, (J 'ljJ) - 1'l/JtJ;3 with 'ljJ 
as in (8 . 1 )), and set f == xv * ¢. Then f E C� by Propositions 8 .6d and 8. 1 0, and 
it is easily checked that 0 < f < 1 ,  f == 1 on K, and supp(f) C { x : p(x , K) < 
28/3} C U. I 

Exercises 

5. If s : ]Rn x ]Rn --t ]Rn is defined by s(x , y) == x - y, then s- 1 (E) is Lebesgue 
measurable whenever E is Lebesgue measurable . (For n == 1 ,  draw a picture of 
s- 1 (E) c JR2 . It should be clear that after rotation through an angle 1r /4, s- 1 (E) 
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becomes F x IR where F == { x : }2 x E E}, and Theorem 2 .44 can be applied. The 
same idea works in higher dimensions.) 

6. Prove Theorem 8.9a by using Exercise 3 1  in §6.3 to show that 

I f * g(xW < 1 1 ! 1 1 �-p l l g l l �-q j l f (y) IP i g (x - Y) l q dy . 

7. If f is locally integrable on 1Rn and g E Ck has compact support, then f * g E Ck . 

8. Suppose that f E LP(JR) . If there exists h E LP (JR) such that 

we call h the (strong) LP derivative of f. If f E LP (JRn ) ,  LP partial derivatives of f 
are defined simil arly. Suppose that p and q are conjugate exponents, f E LP, g E Lq , 
and the LP derivative aj f exists . Then aj (! * g) exists (in the ordinary sense) and 
equals ( aj f) * g. 

9. If f E LP (JR) ,  the LP derivative of f (call it h; see Exercise 8) exists iff f is 
absolutely continuous on every bounded interval (perhaps after modification on a null 
set) and its pointwise derivative f' is in LP, in which case h == f' a.e . (For "only if," 
use Exercise 8 :  If g E Cc with J g == 1 ,  then f * 9t ---t f and (f * gt ) '  ---t h as t  ---+ 0 .  
For "if," write 

f(x + y) - f (x) 
- !' (x) = � r [J' (x + t) - f' (x) ] dt Y Y Jo 

and use Minkowski 's inequality for integrals .) 

10. Let ¢ sati sfy the hypotheses of Theorem 8. 15 .  If f E LP (1 < p < oo ) ,  define 
the ¢-maximal function of f to be M<Pf(x) == supt>O If * cPt (x) l .  (Observe that 
the Hardy-Littlewood maximal function H f is M¢ 1 ! 1 where ¢ is the characteristic 
function of the unit ball divided by the volume of the ball .) Show that there is 
a constant C, independent of f, such that M<Pf < C · H f. (Break up the integral 
J f(x-y)¢t (y) dy as the sum of the integrals over l y l  < t and over 2k t < I Y I  < 2k+ l t 
(k == 0,  1 ,  2 ,  . . .  ) , and estimate cPt on each region.) It follows from Theorem 3 . 1 7  that 
M¢ is weak type ( 1 , 1 ) , and the proof of Theorem 3 . 1 8  can then be adapted to give an 
alternate demonstration that f * cPt ---+ (J ¢) f a.e. 

11 .  Young's inequal ity shows that L1 is a Banach algebra, the product being convo
lution. 

a. If J is an ideal in the algebra L1 , so is its closure in L1 . 
b. If f E L1 , the smallest closed ideal in L1 containing f is the smal lest closed 
subspace of L1 containing all translates of f. (If g E Cc, f * g(x) can be 
approximated by sums L f (x - YJ )g (yj )�YJ · On the other hand, if { ¢t } is an 
approximate identity, f * ry (¢t ) ---t Tyj as t ---t 0.) 
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8.3 TH E FOU RIER TRANSFORM 

One of the fundamental principles of harmonic analysis is the exploitation of sym
metry. To be more specific, if one is doing analysis on a space on which a group acts, 
it is a good idea to study functions (or other analytic objects) that transform in simple 
ways under the group action, and then try to decompose arbitrary functions as sums 
or integrals of these basic functions. 

The spaces we are studying are 1Rn and 1'n, which are Abelian groups under addi
tion and act on themselves by translation . The bui lding blocks of harmonic analysis 
on these spaces are the functions that transform under translation by multiplication 
by a factor of absolute value one, that is, functions f such that for each x there is  a 
number ¢(x) with l ¢ (x) l == 1 such that f(y + x) == ¢(x)f(y) . If f and ¢ have this 
property, then f(x) == ¢(x)f(O) , so f is completely determined by ¢ once f(O) is 
gtven; moreover, 

¢(x)¢(y)f(O) == ¢(x)f (y) == f(x + y) == ¢(x + y)f (O) , 
so that (unless f == 0) ¢(x + y) == ¢ (x)¢ (y) . In short, to find all f's that transform 
as described above, it suffices to find al l ¢'s of absolute value one that satisfy the 
functional equation ¢( x + y) == ¢( x) ¢(y) .  Upon imposing the natural requirement 
that ¢ should be measurable, we have a complete solution to this problem. 

8.19 Theorem. If¢ is a measurable function on 1Rn ( resp. 1'n) such that ¢( x + y) == 
¢(x) ¢(y) and 1 ¢ 1 == 1, there exists e E !Rn (resp. e E 1'n) such that ¢(x) == e2ni� ·x . 

Proof. We first prove this assertion on JR. Let a E 1R be such that faa ¢( t) dt i= 0; 
such an a surely exists, for otherwise the Lebesgue differentiation theorem would 
imply that ¢ == 0 a.e. Setting A == (faa ¢( t) dt) - 1 , then, we have 

¢(x) = A  1a 
¢(x)¢(t) dt = A  1a 

¢(x + t) dt = A  1x+a 
¢(t) dt . 

Thus ¢, being the indefinite integral of a locally integrable function, is continuous; 
and then, being the integral of a continuous function, it is C1 . Moreover, 

¢' (x) == A[¢(x + a) - ¢(x)] == B¢(x) , where B == A[¢( a) - 1 ] . 
It follows that ( d/ dx) ( e-Bx ¢( x) ) == 0, so that e-Bx ¢( x) is constant. Since ¢(0) == 
1 ,  we have ¢(x) == eBx , and since 1 ¢ 1 == 1 ,  B i s purely imaginary, so B == 2wie 
for some e E JR. This completes the proof for JR; as for 1', the ¢ we have been 
considering will be periodic (with period 1) iff e21ri� == 1 iff �  E Z. 

The n-dimensional case follows easily, for if e1 , . . .  , en is the standard basis for 
JRn , the functions 'l/;j (t) == ¢(tej ) satisfy 'l/;j (t + s) == 'l/;j (t)'l/;j (s) on JR, so that 
'lj; j ( t) == e21ri�1 t ,  and hence 

n n 
¢(x) = ¢ (I >j ej ) = IT '1/;j (xj ) = e21ri� ·x . 

1 1 
I 
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The idea now is to decompose more or less arbitrary functions on 1'n or 1Rn in 
terms of the exponentials e21ri� · x . In the case of 1'n this works out very simply for 
£2 functions : 

8.20 Theorem. Let EK (X ) = e21riK·X . Then { EK : "" E zn } is an orthonormal basis 
of £2 (1'n ) .  

Proof. Verification of orthonormal ity is an easy exercise in calculus; by Fubini 's 
theorem it boils down to the fact that J01 e21rikt dt equals 1 if k = 0 and equals 0 
otherwise . Next, since EKE>.. = EK+>.. , the set of finite linear combinations of the 
EK 's is an algebra. It clearly separates points on 1'n ; also, Eo = 1 and EK = E-K · 
Since 1'n is compact, the Stone-Weierstrass theorem implies that this algebra is dense 
in C (1'n ) in the uniform norm and hence in the L2 norm, and C (1'n ) is itself dense 
in L2 (1'n) by Proposition 7 .9. It follows that { EK} is a basis .  1 

......... 
To restate thi s result :  If f E L2 (1'n ) ,  we define its Fourier transform f, a 

function on zn ' by 

and we call the series 

the Fourier series of f. The term "Fourier transform" is also used to mean the map 
f � f Theorem 8 .20 then says that the Fourier transform maps £2 (1'n ) onto l2 (zn ) ,  ......... 
that l l ! l l 2 = l l f l l 2 (Parseval 's identity) , and that the Fourier series of f converges to 
f in the £2 norm. We shall consider the question of pointwise convergence in the 
next two sections. ......... ......... 

Actual ly, the definition of f(�i) makes sense iff is merely in L1 (1'n ) ,  and l f (�i) l < 
I I  f I h , so the Fourier transform ex tends to a norm-decreasing map from L 1 (1'n ) to 
zoo (zn ) .  (The Fourier series of an L1 function may be quite badly behaved, but there 
are still methods for recovering f from 1 when f E L 1 , as we shall see in the next 
section.) Interpolating between £1 and L2 , we have the following result. 

8.21 The Hausdorff-Young Inequality. Suppose that 1 < p < 2 and q is the ......... ......... conjugate exponent to p. Iff E £P(1'n ), then f E lq (zn ) and l l f l l q < l l f l l p· 

Proof. Since l l fl l oo < l l f l l 1 and l l fl l 2 = l l f l l 2 for f E L1 or f E L2 , the 
assertion fol lows from the Riesz-Thorin interpolation theorem. 1 

The situation on ]Rn is more del icate. The formal analogue of Theorem 8 .20 
should be 

f(x) = r i(t:Je21ri/; ·x d� , where f(�) = r f(x) e-21ri/; ·x dx. 
}�n }�n 
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These relations tum out to be val id when suitably interpreted, but some care is needed. 
In the first place, the integral defining f( �) is l ikely to diverge if f E L2 . However, it 
certai nly converges if f E L1 • We therefore begin by defining the Fourier transform 
of f E L 1 (1Rn )  by 

'.Jf(�) = no = r j(x)e-21ri� ·X dX. }�n 

(We use the notation 9=" for the Fourier transform only in certain situations where it 
is needed for clarity.) Clearly l l fl l u  < l l f lh ,  and 1 is continuous by Theorem 2.27 ;  
thus 

We summarize the elementary properties of 9=" in a theorem. 

8.22 Theorem. Suppose f, g E L1 (1Rn ) .  

a. (ryf )--(e) == e-21ri� ·y 1(e) and r11 (1) = h where h(x) == e21riry · x f (x). 
b. 1fT is an invertible linear transformation of�n and S = (T* ) - 1 is its inverse 

-- --transpose, then (f  o T) == I det T l - 1 f o S. In particular, if T is a rotation, 
then (f o T)--== 1 o T; and ifTx == t- 1x (t > 0), then (f o T)--(�) == tn 1(t�), 
so that (!t )--(e) == 1(te) in the notation of(8. 13). 

-- -..,...... 
c. (f * g) == fg. 
d. /fxa f E L1 for l n l < k, then 1 E Ck and aa 1 == [ ( -27rix)a f]-: 
e. If f E Ck, aa f E L1 for l n l < k, and aa f E Co for l n l < k - 1, then 

-- --( aa f) (e) == (27rie)Q ! (e) . 
f (The Riemann-Lebesgue Lemma) 9="(L1 (�n ) )  c C0 (1Rn ) .  

Proof. a. We have 

and similarly for the other formula. 
b. By Theorem 2.44, 

(! o Tf(�) = J j(Tx)e-21ri� -x dx = I det TI - l J f(x) e-21ri� -T- 1 x dx 

= I det TI - l J j(x) e-21riS� - x dx = I det TI - l i(S�) . 



250 ELEMENTS OF FOURIER ANALYSIS 

c .  By Fubini 's theorem, 

(! * gf(�) = J J f(x - y)g (y) e-2ni� ·x dy dx 

= J J J(x - y)e-2ni� · (x-y) g (y)e-2ni� ·y dx dy 

= f(o j g (y)e-21ri/;-y dy 
......... == f(�)g(�) .  

d. By Theorem 2.27 and induction on I a I , 

e. First assume n == Ia I == 1 .  Since f E Co , we can integrate by parts : 

J f' (x)e-21ri� ·x dx = f (x)e-21ri� · x loo 
oo - J f(x) ( -27fi�) e-27ri� ·x dx 

......... == 2wi�J(e) . 
......... 

The argument for n > 1 ,  I a I == 1 is the same - to compute (8jf) , integrate by parts 
in  the jth variable - and the general case follows by induction on I a l . 

f. By (e), if f E C1 n Cc, then l e l 1(�) is bounded and hence 1 E C0 . But the set 
of all such f 's is dense in £1 by Proposition 8 . 1 7 , and 1n ---t 1 uniformly whenever 
fn ---t f in £1 . Since Co is closed in the uniform norm, the result follows .  1 

Parts (d) and (e) of Theorem 8.22 point to a fundamental property of the Fourier ......... 
transform: Smoothness properties of f are reflected in the rate of decay of f at 
infinity, and vice versa. Parts (a), (c), (e), and (f) of this theorem are valid also on 
1rn, as is (b) provided that T leaves the lattice zn invariant (Exercise 1 2) . 

8.23 Corollary. 9=" maps the Schwartz class 3 continuously into itself. 
Proof If f E 3, then xaaf3 f E £1 n Co for all a, {3, so by Theorem 8 .22d,e, 1 

is CCX) and 
(xaaf3 f)-== ( - 1 ) 1 a l ( 2wi ) lf3 1 - l a l aa (�f31) . 

Thus aa (�f3f) is bounded for all a, {3, whence 1 E 3 by Proposition 8 .3 .  Moreover, 
since J( 1  + l x l ) -n- 1 dx < oo, 

It then follows that 1 1 11 1 cN,f3) < CN,f3 E 1, 1 < lf3 l l l f l l cN+n+1 ,,) by the proof of Propo
s i tion 8 .3 ,  so the Fourier transform is continuous on 3. 1 
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At this point we need to compute an important specific Fourier transform. 

Proof. First consider the case n == 1 .  S ince the derivative of e-nax2 is 
2 -2wae-nax , by Theorem 8.22d,e we have 

It follows that ( d/ de) ( e n�2 I a 1( e) ) == 0, so that e n�2 I a 1( �) is constant. To evaluate 
the constant, set � == 0 and use Proposition 2.53 :  

The n-dimensional case follows by Fubini 's theorem, since l x l 2 == I:� x] : 

n 
J(�) = IT J exp( -1faxJ - 21fi�jxj )  dxj 

1 n 
= IT [a- 1/2 exp(-1fe/a)J = a-n/2 exp(-1f l � l 2 /a) . 

1 

We are now ready to invert the Fourier transform. If f E L 1 , we define 

I 

and we claim that if f E L1 and 1 E L1 then (1)v == f . A simple appeal to Fubini 's 
theorem fails because the integrand in 

is not in L1 (1Rn x JRn) .  The trick is to introduce a convergence factor and then pass 
to the limit, using Fubini 's theorem via the following lemma: 

8.25 Lemma. Iff, g E L1 then J 1g == J fg. 

Proof Both integrals are equal to JJ j(x)g (�) e-21ri� ·x dx d�. 

......... 
I 

8.26 The Fourier Inversion Theorem. Iff E L1 and f E L1, then f agrees almost ......... ......... 
everywhere with a continuous function fo, and (f) v == (fv ) == fo . 
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Proof. Given t > 0 and x E JRn , set 

By Theorem 8.22a and Proposition 8 .24, 

where g(x) == e-n l x 1 2  and the subscript t has the meaning in (8 . 1 3 ) .  By Lemma 
8 .25 ,  then, 

Since J e-n l x l 2  dx == 1 ,  by Theorem 8 . 14 we have f * 9t � f in the L1 norm as 
t � 0. On the other hand, since f E L1 the dominated convergence theorem yields 

It follows that f == (f) v a.e. , and similarly (fv f' == f a.e. Since (f) v and (fv f' are 
continual:�, being Fourier transforms of L1 functions, the proof is complete. 1 

8.27 Corollary. Iff E L1 and f == 0, then f == 0 a. e. 

8.28 Corollary. 9=" is an isomorphism of 3 onto itself. 

Proof. By Corollary 8 .23 , 9=" maps 3 continuously into itself, and hence so does ......... 
f � fv , since fv ( x) == f( -x ) . By the Fourier inversion theorem, these maps are 
inverse to each other. 1 

At last we are in a position to derive the analogue of Theorem 8 .20 on JRn . 

8.29 The Plancherel Theorem. If f  E L1 n L2, then 1 E L2; and 9="1 (L 1 n L2 ) 
extends uniquely to a unitary isomorphism on L2• 

Proof Let X == {f  E L1 : f E L1 } .  Since 1 E L1 implies f E L(X), we have 
X c L2 by Proposition 6. 1 0, and X is dense in L2 because 3 c X and 3 is dense in 
L2 by Proposition 8 . 1 7 .  Given j, g E X, let h == g. By the inversion theorem, 

Hence, by Lemma 8 .25, 

J fg = J lh = J ih = jg, 
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Thus 9="IX preserves the £2 inner product; in particular, by taking g == f, we obtain ......... 
l l f l l 2 == 1 1 ! 1 1 2 · Since 9="(X) == X  by the inversion theorem, 9="IX extends by continuity 
to a unitary isomorphism on £2 . 

It remains only to show that this extension agrees with 9=" on all of £1 n £2 . But 
if f E £1 n £2 and g(x) == e-n lx l 2  as i n  the proof of the inversion theorem, we ......... ......... 
have f * 9t E L1 by Young's inequality and (! * 9t ) E £1 because (! * 9t ) (e) == 
e-rrt2 1 E I 2 1(e) and 1 is bounded. Hence f * 9t E X; moreover, by Theorem 8. 14, ......... ......... f * 9t ---t f in  both the £1 and £2 norms. Therefore (! * 9t ) ---t f both uniformly 
and i n  the £2 norm, and we are done. 1 

We have thus extended the domain of the Fourier transform from £1 to £1 + 
£2 . Just as on 1'n , the Riesz-Thorin theorem yields the following result for the 
intermediate LP spaces : 

8.30 The Hausdorff-Young Inequality. Suppose that 1 < p < 2 and q is the 
conjugate exponent to p. Iff E LP (JRn ), then 1 E Lq (1Rn ) and 1 1 11 1 q < l l f l l p · 

If f E £1 and f E £1 , the inversion formula 

exhibits f as a superposition of the basic functions e2ni� · x ; it is often called the 
Fourier integral representation of f. This formula remains valid in spirit for all ......... 
f E £2 , although the integral (as well as the integral defining f) may not converge 
pointwise. The interpretation of the inversion formula will be studied further in the 
next section . 

We conclude this section with a beautiful theorem that involves an interplay of 
Fourier series and Fourier integrals. To motivate it, consider the following problem: 
Given a function f E £1 (JRn ) , how can one manufacture a periodic function (that is, 
a function on 1'n) from it? Two possible answers suggest themselves. One way is to 
"average" f over all periods, producing the series I:kEZn f(x - k) . This series, if it 
converges, will surely define a periodic function .  The other way is to restrict f to the ......... 
lattice zn and use it to form a Fourier series EKEZn !( "")e21riK·X . The content of the 
following theorem is that these methods both work and both give the same answer. 

8.31 Theorem. Iff E £1 (JRn ), the series EkEZn Tkf converges pointwise a. e. and 
in L1 (1'n ) to a function PJ such that I I PJ ih < 1 1 ! 1 1 1 · Moreover, for "" E zn, -- ......... ( P f)  ( "") (Fourier transform on 1'n) equals f ( "") (Fourier transform on 1Rn ). 

Proof. Let Q == [- � , � )n . Then ]Rn is the disjoint union of the cubes Q + k == 
{x + k : x E Q}, k E zn, so 

r L IJ(x - k) l dx = L 1 i f (x) i dx = 1 1 J (x) l dx. jQ kEZn kEZn Q+k JRn 



254 ELEMENTS OF FOURIER ANALYSIS 

Now apply Theorem 2.25 . First, it shows that the series E Tkf converges a.e. and 
in  L1 (1rn ) to a function Pf E L 1 (1rn ) such that I I Pf lh  < l l f l h , since 'Jfn is 
measure-theoretically identical to Q. Second, it yields 

(P jf("') = 1 L f(x - k)e-21riK ·x dx = L 1 f(x)e-21ri�< · (x+k) dx 
Q kEZn kEZn Q+k = L r f(x) e-21riK·X dx = r f(x)e-21riK·X dx = f(/'1,) . 

k EZN J Q+k }Rn 

I 
If we impose conditions on f to guarantee that the series in question converge 

absolutely, we obtain a more refined result. 

8.32 The Poisson Summation Formula. Suppose f E C(JRn ) satisfies l f (x) l  < ......... C( 1 + l x l ) -n-E and l f (�) l < C( 1 + 1 � 1 ) -n-E for some C, E > 0. Then 

where both series converge absolutely and uniformly on 'Jfn. In particular, taking 
X == 0, 

L J(k) == L 1(�) . k EZn KE'l.n 

Proof. The absolute and uniform convergence of the series follows from the fact 
that LkEZn ( 1 + l k l ) -n-E < oo, which can be seen by comparing the latter series to 
the convergent integral J ( 1 + l x l ) -n- E dx. Thus the function Pf == Ek Tk f is in 
cern ) and hence in L2 ('fn ) ,  so Theorem 8.35 implies that the series E f(�)e21riK ·X 
converges in L2 ('Jfn ) to P f. Since it also converges uniformly, its sum equals P f 
pointwise. (The replacement of k by - k in the formula for P f is immaterial since 
the sum is over all k E zn . )  1 

Exercises 

12. Work out the analogue of Theorem 8.22 for the Fourier transform on 'Jfn . 
13. Let f(x) == � - x on the interval [0 , 1 ) , and extend f to be periodic on JR. 

a. f(o) == 0, and f( �) == (2ni�) - l if � =1 0. 
b. E� k-2 = n2 /6. (Use the Parseval identity.) 

14. (Wirtinger's Inequality) If f E C1 ( [a, b] ) and f(a) = f(b) = 0, then 

1b 
l f (x) l 2 dx < C � a) 2 1b 

l f' (x) l 2 dx. 
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(By a change of variable it suffices to assume a = 0, b = ! . Extend f to [- ! ,  ! ] by 
setting f( -x) = -f(x) , and then extend f to be periodic on JR. Check that f, thus 
extended, is in C1 (1') and apply the Parseval identity.) 

15. Let sine x = (sin wx) jwx (sine 0 = 1) .  
a. If a > 0, X[ -a , a] (x) = X�,a] (x) = 2a sine 2ax. 
b. Let 9-Ca = {! E £2 : 1(�) = 0 ( a.e.) for 1 e 1 > a} . Then 9-C is a Hilbert 
space and { ffa sine (2ax - k) : k E Z} is an orthonormal basis for 9-C. 
c. (The Sampling Theorem) If f E 9-Ca, then f E Co (after modification on a 
null set), and f(x) = Eoo 00 f(k/2a) sine(2ax - k) , where the series converges 
both uniformly and in £2 • (In the terminology of signal analysis, a signal of 
bandwidth 2a is completely determined by sampling its values at a sequence of 
points { k/2a} whose spacing is the reciprocal of the bandwidth.) 

16. Let fk == X[ - 1 , 1 ] * X[ -k , k] · 
a. Compute fk (x) explicitly and show that l l f l l u  = 2 . 
b. f� (x) = (wx) -2 sin 2wkx sin 27rx, and l l f� lh ---+ oo as k ---+ oo. (Use 
Exercise 1 5a, and substitute y = 2w kx in the integral defining I I  f� I l l · ) 
c. �(£1 ) is a proper subset of C0 . (Consider gk = f� and use the open mapping 
theorem.) 

17. Given a >  0, let f(x) = e-2nxxa- l for x > 0 and f(x) = 0 for x < 0. 
a. f E £1 , and f E £2 if a > ! · 
b. 1(e) = r(a) [ (2w) ( 1  + i�) ] -a . (Here we are using the branch of za in the 
right half plane that is positive when z is positive. Cauchy 's theorem may be 
used to justify the complex substitution y == ( 1  + ie )x in the integral defining ......... 
f.) 
c. If a, b > ! then 

1oo . 
-a . 

-b 22-a-bwf (a + b - 1 ) -c x Y - zx) ( 1  + zx) dx = r(a)r (b) . 

18. Suppose f E £2 (JR) . 
a. The £2 derivative f' (in the sense of Exercises 8 and 9) exists iff � 1 E £2 , in 
which case 1' (�) = 2wi�1(e) . 
b. If the £2 derivative f' exists, then 

[! i f (x) i 2 dx] < 4 J i xf(x) i 2 dx J i f' (x) i 2 dx. 

(If the integrals on the right are finite, one can integrate by parts to obtain 
J l f l 2 = -2 Re f xff' .) 
c. (Heisenberg's Inequality) For any b, {3 E JR, 
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(The inequality is trivial if either integral on the right is infinite ;  if not, reduce to 
the case b == {3 == 0 by considering g(x) == e-21ri{3x f(x + b) . ) This inequality, ......... 
a form of the quantum uncertainty principle, says that f and f cannot both be 
sharply localized about single points b and {3. 

19. (A variation on the theme of Exercise 1 8) If f E £2 (JRn ) and the set S == 

{x : f (x) =/= 0} has finite measure, then for any measurable E C 1Rn, JE lfl 2 < 
l l f l l �m(S)m(E) . 
20. If f E L1 (JRn+m) ,  define PJ (x) == J f(x, y) dy . (Here x E JRn and y E lRm .) 
Then Pf E L1 (1Rn ) ,  I IP! Ih < l l f lh , and (Pf)-(e) == J(� , 0) . 
21 . State and prove a result that encompasses both Theorem 8 .3 1 and Exercise 20, 
in the setting of Fourier transforms on closed subgroups and quotient groups of 1Rn . 
22. S ince 9=" commutes with rotations, the Fourier transform of a radial function is 
radial ; that is, if F E L1 (1Rn ) and F(x) == f( l x l ) , then F(e) == g( le l ) , where f and 
g are related as follows. 

a. Let J ( �) == J s eix� dO" ( x) where O" is surface measure on the unit sphere 
S in 1Rn (Theorem 2.49) . Then J is radial - say, J(e) == j ( l � l ) - and 
g(p) == fo00 j (2wrp)f(r)rn-1 dr. 
b. J satisfies I:� a� J + J = 0. 
c. j satisfies pj" (p) + ( n - 1 )j ' (p) + pj (p) == 0. (This equation is a variant 
of Bessel 's equation. The function j is completely determined by the fact that it 
is a solution of this equation, is smooth at p == 0, and satisfies j ( 0) == O"( S) == 
2wn/2 /f( n/2) . In fact, j (p) == (2w )n/2 pC2-n)/2 J(n-2)/2 (p) where I a is the 
Bessel function of the first kind of order a.) 
d. If n == 3, j (p) == 4wp- 1 sin p. (Set f(p) == pj (p) and use (c) to show that 
f" + f == 0. Alternatively, use spherical coordinates to compute the integral 
defining J(O, 0 , p) directly.) 

23. In this exercise we develop the theory of Hermite functions. 
a. Define operators T, T* on S (JR) by T f(x) = 2- 112 [xf(x) - f' (x)] and 
T* f(x) == 2-1 12 [xf(x) + f' (x)] . Then f(Tf)g == J f(T*g) and T*Tk 
TkT* == kTk- 1 . 
b. Let ho (x) == w- 114e-x2 /2 , and for k > 1 let hk == (k ! ) - 1 12Tkh0 . (hk is 
the kth normalized Hermite function.)  We have Thk == y'k + 1 hk+ 1 and 
T*hk == /k hk- 1 , and hence TT*hk == khk . 
c. Let S == 2TT* + I. Then S f(x) == x2 f(x) - f" (x) and Shk == (2k + 1 )hk . 
(S is called the Hermite operator.) 
d. {hk }o is an orthonormal set in L2 (1R) . (Check directly that l l ho l l 2 == 1 , then 
observe that for k > 0, J hkhm == k-1 J(TT*hk )hm and use (a) and (b) .) 
e. We have 
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(use induction on k ), and in particular, 

f. Let H k ( x) == ex2 12 hk ( x) . Then H k is a polynomial of degree k, called the 
kth normalized Hermite polynomial. The linear span of H0 , . . .  , Hm is the 
set of all polynomials of degree < m. (The kth Hermite polynomial as usually 
defined is [w1122k k ! ] 1 /2 Hk .) 
g. { hk }o is an orthonormal basis for L2 (1R) . (Suppose f _L hk for all k, and let 
g(x) == f(x) e-x2 12 • Show that g == 0 by expanding e-2ni� · x in its Maclaurin 
series and using (f).) 
h. Define A : £2 ---t £2 by Af(x) == (2w) 114 f(xV'ii) ,  and define J == 
A- 19=" Af for f E £2 . Then A is unitary and J(�) == (2w) - 112 J f(x) e-i�x dx. 
Moreover, Tj == -iT(J) for f E 3, and ho == ho ; hence hk == ( -i) k hk . 
Therefore, if ¢k == Ahk , { ¢k }0 is an orthonormal basis for L2 consisting of 
eigenfunctions for 9="; namely, ¢k == ( -i )k ¢k . 

8.4 SUM MATION OF FOU RIER INTEG RALS AND SERIES 

The Fourier inversion theorem shows how to express a function f on ]Rn in terms 
of 1 provided that f and 1 are in £1 . The same result holds for periodic functions. 
Namely, if f E L1 ern ) and 1 E l 1 (Zn ) , then the Fourier series �/'\, 1(1); ) e21riK·X 
converges absolutely and uniformly to a function g. S ince l 1 c l2 , i t follows from 
Theorem 8.20 that f E £2 and that the series converges to f in the £2 norm. Hence 
f == g a.e . ,  and f == g everywhere if f is assumed continuous at the outset. ......... 

Two questions therefore arise. What conditions on f will guarantee that f i s  ......... ......... 
integrable? And how can f be recovered from f if f is not integrable? 

As for the first question, since 1 is bounded for f E £1 , the issue is the decay ......... 
of f at infinity, and this is related to the smoothness properties of f. For example, 
by Theorem 8 .22e, if f E cn+1 (1Rn ) and 8° f E £1 n Co for l n l < n + 1 , then 
1 1(�) 1 < C(1 + l � l ) -n- 1  and hence 1 E L1 (1Rn ) by Corollary 2.52. The same 
result holds for periodic functions, for the same reason : If f E cn+ 1  (1'n ) , then 
l f(K:) I < C(l + l /); 1 ) -n- 1  and hence 1 E l 1 (Zn ) .  

To obtain sharper results when n > 1 requires a generalized notion of partial 
derivatives, so we shal l postpone this task until §9. 3 .  (See Theorem 9. 1 7 .) However, 
for n == 1 we can easily obtain a better theorem that covers the useful case of functions 
that are continuous and piecewise C1 . We state it for periodic functions and leave 
the nonperiodic case to the reader (Exercise 24 ) .  

8.33 Theorem. Suppose that f is periodic and absolutely continuous on JR, and that 
f' E £P (1l) for some p > 1 . Then 1 E l 1 (Z) . 
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Proof. Since p > 1 ,  we have CP == L:� 1);-p < oo; and since £P (1l) c L2 (1l) 
for p > 2, we may assume that p < 2. Integration by parts (Theorem 3 .36) shows that ......... ......... (f' ) (/);) == 2wi/);f(/i;) .  Hence, by the inequalities of Holder and Hausdorff-Young, if 
q is the conjugate exponent to p, 

Adding lf(O) I to both sides, we see that I I Jlh < oo. I ......... 
We now tum to the problem of recovering f from f under minimal hypotheses 

on f, and we consider first the case of IRn . The proof of the Fourier inversion 
theorem contains the essential idea: Replace the divergent integral J f( e) e27ri� ·X de 
by J J(e)iP (te)e2ni� ·x de where iP is a continuous function that vanishes rapidly 
enough at infinity to make the integral converge. If we choose <;P to satisfy <P(O) == 1 ,  
then iP( te) ---t 1 as t ---t 0, and with any luck the corresponding integral will converge 
to f in some sense . One iP that works is the function iP( e) == e-n l � l 2  used in  the proof 
of the inversion theorem, but we shall see below that there are others of independent 
interest. We therefore formulate a fairly general theorem, for which we need the 
following lemma that complements Theorem 8.22c. 

� 
8.34 Lemma. Iff, g E £2 (IRn ), then (f g) v == f * g. 

� � 
Proof. fg E £1 by Plancherel 's theorem and Holder's inequality, so (fg)v 

makes sense. Given x E IRn, let h(y) == g(x - y) .  It is easily verified that h(e) == 
9(e) e-2ni� · x , so since 9=" is unitary on £2 , 

I 

8.35 Theorem. Suppose that iP E £1 n Co, iP (O) == 1 , and ¢ == cpv E £1 . Given 
f E £1 + L2, for t  > 0 set 

a. Iff  E £P ( 1  < p < oo), then ft E £P and l i ft 
- f l iP ---t 0 as t ---t 0. 

b. Iff is bounded and uniformly continuous, then so is ft , and ft ---t f uniformly 
as t ---t 0. 

c. Suppose also that l ¢(x) l < C( 1 + l x l ) -n-E for some C, E > 0. Then ft (x) ---t 
f ( x) for every x in the Lebesgue set of f. 
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Proof. We have f = f1 + f2 where f1 E £1 and f2 E £2 . Since h E L(X), 
]; E £2 , and <I> E (£1 n C0 ) c (£ 1 n £2 ) ,  the integral defining ft converges 
absolutely for every x. Moreover, if <Pt (x) = t-n¢(t- 1x) , we have <I>(t�) = ( <Ptf'(�) 
by the inversion theorem and Theorem 8.22b, and J ¢(x) dx = <I>(O) = 1 .  S ince 
¢, <I> E £1 we have f1 * ¢ E £1 and h <I> E £1 , so by Theorem 8.22c and the inversion 
formula, J h (O<I>( t�)e21ri� ·x di, = h * cPt (x ) .  

Also, ¢ E £2 by the Plancherel theorem, so by Lemma 8 .34, 

In short, ft = f * ¢t , so the assertions follow from Theorems 8 . 14 and 8 . 1 5 .  1 
By combining this theorem with the Poisson summation formula, we obtain a 

corresponding result for periodic functions. 

8.36 Theorem. Suppose that <I> E C(JRn) satisfies I <I> (�) I < C( 1 + 1 � 1 ) -n- E, 
I <I>v (x) l < C( l + l x l ) -n-E, and <I>(O) = 1. Given f E L1 ('fn ), for t > 0 set 

ft (X) = L j(!); )<I> ( t/i; ) e2niK ·x 
KEZn 

(which converges absolutely since I: K I <I> ( t/i;) I < oo ). 
a. Iff E £P(1ln ) ( 1  < p < oo), then l i ft - f l i P � 0 as t � 0, and iff E C(1ln ), 

then ft � f uniformly as t � 0. 
b. ft ( x) � f( x ) for every x in the Lebesgue set of f. 

Proof. Let ¢ = <I>v and <Pt (x) = t-n¢(t- 1 x) . Then (¢t )--(�) = <I>(t�) , and <Pt 
satisfies the hypotheses of the Poisson summation formula, so 

Let us denote the common value of these sums by 'l/Jt ( x) . Then 

so ft = f * 'l/Jt · Hence, by Young's inequality and Theorem 8 .3 1 we have 

so the operators f t-t ft are uniformly bounded on LP, 1 < p < oo. 
Now, since <I> is continuous and <I>(O) = 1 ,  we clearly have ft � f uniformly 

--(and hence in £P (1ln ) )  if f is a trigonometric polynomial - that is, if f(/i;) = 0 for 
all but finitely many /);. But the trigonometric polynomials are dense in C(1ln) in the 
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uniform norm by the Stone-Weierstrass theorem, and hence also dense in £P (Tn ) in 
the £P norm for p < oo. Assertion (a) therefore follows from Proposition 5 . 1 7 .  

To prove (b), suppose that x is in the Lebesgue set of f ; by translating f we may 
assume that x == 0, which simplifies the notation . With Q == [- � ,  � ) n , we have 

Since 

t(O) = f * '1/Jt (O) = k f(x)'¢t ( -x) dx 

= 1 f(x)¢t ( -x) dx + "'£ 1 f(x)¢t ( -x + k) dx . 
Q k#O Q 

l¢t (x) l < ct-n ( 1 + t- 1 lx l ) -n-E < CtE i x l -n-c , 
for x E Q and k i= 0 we have l¢t ( -x + k) l < C2n+ctE i k l -n-E , and hence 

"'£1 if(x)¢t (-x + k) l dx < [c2n+< I I J I I 1 "'£ I k l -n-<] t< ,  
k#O Q k#O 

which vanishes as t � 0. On the other hand, if we define g == fXQ E £1 (1Rn ) , then 
0 is in the Lebesgue set of g (because 0 is in the interior of Q, and the condition that 0 
be in the Lebesgue set of g depends only on the behavior of g near 0), so by Theorem 
8. 1 5 , 

lim { f(x)¢t ( -x) dx = lim g * cPt (O) = g(O) = f(O) . t�o }Q t�o 
I 

Let us examine some specific examples of functions <I> that can be used in Theorems 
8 .35 and 8 .36. The first is the one already used in the proof of the inversion theorem, 

This ¢ is called the Gauss kernel or Weierstrass kernel. It is important for a number 
of reasons, including its connection with the heat equation that we shall explain in 
§8 .7 . When n == 1 , its periodized version 

'1/Jt (X) = ! "'£ e-7r l x-k l 2  /t2 = "'£ e-7rt2 ��:2 e27ri��: ·x ' kEZ KEZ 
in terms of which the ft in Theorem 8 .36 is given by ft == f * '1/Jt , is essentially one 
of the Jacobi theta functions, which are connected with elliptic functions and have 
applications in number theory. 

The second example is <P( �) == e-2n l � l , whose inverse Fourier transform ¢ is 
called the Poisson kernel on 1Rn . When n == 1, we have 

(8 .37) 
¢(x) == Jo 

e27r ( l+ix)€ d� + r= e21l"(- l+ix)€ d� 
-oo lo 
1 [ 1 1 ] 1 == 2w 1 + ix + 1 - ix == w( 1 + x2) · 
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The formula for ¢ in higher dimensions is worked out in Exercise 26 ; it turns out 
that ¢( x) is a constant multiple of ( 1 + I x 1 2 ) - C n+ 1 ) 12 . Like the Gauss kernel, the 
Poisson kernel has an interpretation in terms of partial differential equations that we 
shall explain in § 8 .7 . 

If we take n = 1 and <I>(�) = e-2n l� l in Theorem 8 . 36, make the substitution 
r == e-2nt , and write Ar f in place of ft , we obtain 

(8 .38) 00 
= j(O) + L rk [J(k)e2nikx + J( -k) e-2nikx] . 

k== 1 
This formula is a special case of one of the classical methods for summing a (possibly) 
divergent series . Namely, if I:� ak is a series of complex numbers, for 0 < r < 1 its 
rth Abel mean is the series I:� rk ak . If the latter series converges for r < 1 to the 
sum S(r)  and the limit S = limr /1 S(r) exists, the series I:� ak is said to be Abel 
summable to S .  If I:� ak converges to the sum S, then it is also Abel summable to 
S (Exercise 27), but the Abel sum may exist even when the series diverges . 

In (8 .38), Ar f( x) is the rth Abel mean of the Fourier series of f, in which the kth 
and ( -k) th terms are grouped together to make a series indexed by the nonnegative 
integers . It has the following complex-variable interpretation : If we set z = re2nix , 
then 

00 00 Arf(x) = L J(k)zk + L J( -k) zk . 
0 1 

The two series on the right define, respectively, a holomorphic and an antiholomorphic 
function on the unit disc l z l < 1 .  In particular, Arf(x) is a harmonic function on the 
unit disc, and the fact that Ar f � f as r ---t 1 means that f is the boundary value of 
this function on the unit circle. See also Exercise 28 . 

Our final example is the function <I>(�) = max( 1 - 1 e 1 , 0) with n = 1 .  Its inverse 
Fourier transform is 

¢(x) = jo ( 1  + �)e27ri� ·x d� + { 1 
( 1 - �)e27ri� ·x d1, 

-1 lo 
= 

e2nix + e-2nix - 2 
= 
( sin 7rX) 2 . (2wix )2 wx 

If we use this <I> in Theorem 8 .36, take t = (m + 1 ) - 1 (m = 0, 1 ,  2 , . . .  ) , and write 
O"mf(x) for j 1/ (m+ 1 ) (x) ,  we obtain 

(8 .39) 

= J(o) + � m + 1 - k [f{k)ehikx + J( -k)e-21l"ikx ] . � m + 1 k== 1 
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Thi s  i s  an instance of another classical method for summing divergent series . Namely, 
if I:� ak is a series of complex numbers, its mth Cesaro mean is the average of its 
first m + 1 partial sums, (m + 1 ) - 1 2:::::� Sn , where Sn = 2:::::� ak . If the sequence 
of Cesaro means converges as m � oo to a limit S, the series is said to be Cesaro 
summable to S. It is easily verified that if I:� ak converges to S, then it is Cesaro 
summable to S (but perhaps not conversely), and that (Jmf(x) is the mth Cesaro 
mean of the Fourier series of f with the kth and ( -k ) th terms grouped together. See 
Exercise 29, and also Exercise 33 in the next section . 

Exercises 

24. State and prove an analogue of Theorem 8.33 for functions on JR. (In addition 
to the hypotheses that f be locally absolutely continuous and that f' E LP for some 
p > 1 ,  you will need some further conditions f and/or f' at infinity to make the 
argument work. Make them as mild as possible.) 

25. For 0 < a < 1, let Aa ('f) be the space of Holder continuous functions on 1l of 
exponent a as in Exercise 1 1  in §5 . 1 .  Suppose 1 < p < oo and p- 1 + q- 1 = 1 .  

a. If f satisfies the hypotheses of Theorem 8 .33 ,  then f E A1;q (1l) , but f need 
not lie in Aa ('f) for any a > 1/q. (Hint: f(b) - f(a) = J: f' (t) dt . ) 
b. If a < 1 ,  Aa ('f) contains functions that are not of bounded variation and 
hence are not absolutely continuous. (But cf. Exercise 37 in §3 .5 .) 

26. The aim of this exercise is to show that the inverse Fourier transform of e-2n l � l  
on 1Rn is 

</J(x) = r��:�;!) ) ( 1 + l x l 2 ) - (n+ l )/2 . 

a. If {3 > 0, e-f3 = n- 1 f00
00

( 1  + t2 ) - 1 e-if3t dt .  (Use (8 .37) .) 

b. If {3 > 0, e-f3 = J000 (ns) - 112 e-s e-f32 /4s ds . (Use (a), Proposition 8 .24, and 

the formula ( 1  + t2 ) - 1 = J000 e- ( 1+t2 ) s ds.) 
c. Let {3 = 2n l� l where � E JRn ; then the formula in (b) expresses e-2n l � l  as a 
superposition of dilated Gauss kernels . Use Proposition 8 .24 again to derive the 
asserted formula for ¢. 

27. Suppose that the numerical series I:� ak is convergent. 
a. Let S� = 2:::::� ak . Then 2:::::� rkak = 2:::::�- 1 S?n (ri - ri+ 1 ) + S�rn for 
0 < r < 1 ("summation by parts") . n k . 
b. I I:m r ak l < supj>m I S?n l · 
c. The series I:� rkak is uniformly convergent for 0 < r < 1 ,  and hence its 
sum S(r) is continuous there . In particular, I:� ak = limr /'1 S(r) . 

28. Suppose that f E £1 ('f) ,  and let Ar f be given by (8.38) . 
a. Arf = f * Pr where Pr (x) = 2:::::00 

00 r
1K i e2ni Kx is the Poisson kernel for 'f. 

b. Pr (x) = ( 1 - r2 ) / ( 1 + r2 - 2r cos 2nx) . 
29. Given {ak }o C C,  let Sn = I:� ak and (J"m == (m + 1 ) - 1 I:� Sn . 
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a. (Jm = (m + 1 ) - 1 L� (m + 1 - k) ak . 
b. If limn-4oo Sn = L� ak exists , then so does limm-4oo (Jm, and the two 
limits are equal. 
c. The series L�(- 1 )k diverges but is Abel and Cesaro summable to � · 

30. If f E £1 (1Rn ) ,  f is continuous at 0, and 1 > 0, then 1 E £1 . (Use Theorem 
8 .35c and Fatou 's lemma.) 

31. Suppose a > 0. Use (8 .37) to show that 

Then subtract a-2 from both sides and let a �  0 to show that L� k-2 = 1r2 /6. 
32. A coo function f on 1R is real-analytic if for every x E JR, f is the sum of its 
Taylor series based at x in some neighborhood of x. If f is periodic and we regard f 
as a function on S = {z E CC :  l z l = 1} ,  this condition is equivalent to the condition 
that f be the restriction to S of a holomorphic function on some neighborhood of 
S. Show that f E C00(1r) is real-analytic iff li(�<i:) l < ce-E I K I for some c, E > 0. 
(See the discussion of the Abel means Arf in the text, and note that z = z- 1 when 
l z l = 1 . ) 

8.5 POINTWISE CONVERG ENCE OF FOURIER SERI ES 

The techniques and results of the previous two sections, involving such things as 
LP norms and summability methods , are relatively modem; they were preceded 
historically by the study of pointwise convergence of one-dimensional Fourier series . 
Although the latter is one of the oldest parts of Fourier analysis, i t is also one of 
the most difficult - unfortunately for the mathematicians who developed it, but 
fortunately for us who are the beneficiaries of the ideas and techniques they invented 
in doing so. A thorough study of this issue is beyond the scope of this book, but we 
would be remiss not to present a few of the classic results . 

To set the stage, suppose f E £1 (1r) . We denote by Smf the mth symmetric 
partial sum of the Fourier series of f: 

m 
Smf(x) = L f(k)e2nikx . 

-m 
......... 

From the definition of f(k) , we have 

m 1 

Smf(x) = L 1 j(y)e21rik (x-y) dy = f * Dm(x) , 
-m 0 
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where Dm is the mth Dirichlet kernel : 

m 
Dm (x) = L e2nikx . 

-m 
The terms in this sum form a geometric progression, so 

2m 2n(2m+ 1 )x _ 1 D (x) == e-2nimx "'""""" e2nikx = e-2nimx e . . m � e2nzx - 1 0 

Multiplying top and bottom by e-nix yields the standard closed formula for Dm :  

(8 .40) 
eC2m+1 )nix _ e- (2m+1 )nix sin(2m + 1 )1rx Dm(x) = . . == . entx - e-ntx sin 1rx 

The difficulty with the partial sums Smf, as opposed to (for example) the Abel or 
Cesaro means, can be summed up in a nutshell as follows. Smf can be regarded as a 
special case of the construction in Theorem 8.36; in fact, with the notation used there, 
Smf == f11m if we take <I> =  X[- 1 , 1 ] . But X[- 1 , 1 ] does not satisfy the hypotheses of 
Theorem 8. 36, because its inverse Fourier transform (1rx) - 1 sin 21rx (Exercise 1 5a) 
is not in £1 (JR) . On the level of periodic functions, this is reflected in the fact that 
although Dm E L1 (1l) for all m, I I Dm l l 1 ---+ oo as m ---+ oo (Exercise 34) . 

Among the consequences of this is that the Fourier series of a continuous function 
f need not converge pointwise, much less uniformly, to f; see Exercise 35 .  (This 
does not contradict the fact that trigonometric polynomials are dense in C (1l) ! It 
just means that if one wants to approximate a function f E C (1l) uniformly by 
trigonometric polynomials , one should not count on the partial sums Smf to do the 
job; the Cesaro means defined by (8.39) work much better in general . ) To obtain 
positive results for pointwise convergence, one must look in other directions .  

The first really general theorem about pointwise convergence of Fourier series 
was obtained in 1 829 by Dirichlet, who showed that Sm f ( x) ---+ � [f ( x+) + f ( x-) ]  
for every x provided that f i s  piecewise continuous and piecewise monotone. Later 
refinements of the argument showed that what is really needed is for f to be of 
bounded variation. We now prove this theorem, for which we need two lemmas . The 
first one is a slight generalization of one of the more arcane theorems of elementary 
calculus, the "second mean value theorem for integrals ." 

8.41 Lemma. Let ¢ and 'ljJ be real-valued functions on [a , b] . Suppose that ¢ is 
monotone and right continuous on [a , b] and 'ljJ is continuous on [a , b] . Then there 
exists TJ E [a , b] such that 

1b ¢(x)'lj;(x) dx = ¢(a) 111 'lj;(x) dx + ¢(b) 1b 'lj;(x) dx . 

Proof Adding a constant c to ¢ changes both sides of the equation by the 
amount c J: 'l/J(x) dx, so we may assume that ¢(a) = 0. We may also assume that ¢ 
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is increasing; otherwise replace ¢ by -¢. Let w (X) == I: 'l/;( t) dt (so that w' == -'lj;) 
and apply Theorem 3 .36 :  

l
b 
¢(x)'!f;(x) dx = -¢(x)W (x) j � + 1 w(x) d¢(x) . a (a , b] 

The endpoint evaluations vanish since ¢(a) == w (b) == 0. Since ¢ is increasing and 
fca ,b] d¢ == ¢(b) - ¢(a) == ¢(b) ,  if m and M are the minimum and maximum values 
of W on [a , b] we have m¢(b) < fca ,b] W d¢ < M¢(b) . By the intermediate value 
theorem, then, there exists TJ E [a , b] such that fc a ,b] w d¢ == w ( TJ) ¢(b) ,  which is the 
desired result. 1 

8.42 Lemma. There is a constant C < oo such that for every m > 0 and every 
[a, b] C [- � ,  � ] , 

b 1 Dm (x) dx < C. 

Jo ( r 1 /2 ( 1 Moreover, _ 112 Dm x) dx == J o Dm x) dx == 2 for all m. 

Proof. By (8 .40), 

l
b lb sin(2m + 1 )7rx 

l
b . [ 1 1 

J Dm (x) dx == dx + s1n(2m + 1 )1rx . - - dx. a a 1rX a Sln 7rX 1rX 
Since (sin 1rx) - 1 - (1rx) - 1 is bounded on [- � , � ] and I sin (2m + 1 )1rx l < 1 ,  the 
second integral on the right is bounded in absolute value by a constant. With the 
substi tution y == (2m + 1 )1rx, the first one becomes 

1(2m+1)nb sin y Si [ (2m + l )1rb] - Si ( (2m + 1 )7ra] -- dy == __;. __________ _ 

(2m+1 )na 1ry 1r 

where Si(x) == fox y- 1 sin y dy. But Si(x) is continuous and approaches the finite 
limits ± � 1r as x � ±oo (see Exercise 59b in §2 .6) , so Si( x) is bounded. This proves 
the first assertion . As for the second one, 

!1/2 m !1/2 
Dm(x) dx == L e2nikx dx = 1 

-1 /2 -m - 1/2 
(only the term with k == 0 is nonzero), so since Dm is even, 

0 1 J Dm (x) dx = { 2 Dm (x) dx = � ·  
- 1/2 Jo 

I 
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8.43 Theorem. If f  E BV(T) - that is, if f  is periodic on lR and of bounded 
variation on [- � ,  � ]  - then lim Smf(x) = � [f(x+) + f(x- )] for every x . m----+oo 

In particular, limm----+oo Sm f ( x) == f ( x) at every x at which f is continuous. 
Proof. We begin by making some reductions . In examining the convergence of 

Smf(x) , we may assume that x = 0 (by replacing f with the translated function 
T -xf), that f is real-valued (by considering the real and imaginary parts separately), 
and that f is right continuous (since replacing f(t) by f(t+) affects neither Smf 
nor � [f (O+ ) + f(O- ) ] ) .  In this case, by Theorem 3 .27b, on the interval [- � ,  �) we 
can write f as the difference of two right continuous increasing functions g and h. If 
these functions are extended to lR by periodicity, they are again of bounded variation, 
and it is enough to show that Smg(O) ---+ � [g (O+ ) + g(O- ) ]  and likewise for h. 

In short, it suffices to consider the case where x == 0 and f is increasing and 
right continuous on [- � , � ) . Since Dm is even, we have Smf(O) = f * Dm(O) = 

J�(�2 f(x)Dm (x) dx, so by Lemma 8 .42, 

Smf(O) - � [J(O+) + f(O- )] 1 1 /2 !0 == [f(x) - f(O+)] Dm (x) dx + [f (x) - f(O- )] Dm (x) dx . 
0 -1 /2 

We shall show that the first integral on the right tends to zero as m ---+ oo; a similar 
argument shows that the second integral also tends to zero, thereby completing the 
proof. 

Given E > 0, choose 8 > 0 small enough so that f ( 8) - f ( 0+) < E j C where C 
is as in Lemma 8 .42. Then by Lemma 8 .4 1 ,  for some TJ E [0 , 8] , 

{ b 8 

Jo [f (x) - f(O+)] Dm (x) dx = [f(8) - /(0+)] 1 Dm(x) dx , 

which is less than E .  On the other hand, by (8 .40) , 

{ 1 /2 
Jo [f(x) - f(O+) ] Dm (x) dx = '§+ (-m) - g_ (m) , 

where 9± is the periodic function given on the interval [- � ,  � )  by 

[f(x) - f(O+)] e±nix 
9± (x) == 2 .  . X [8, 1 /2) (x) . 

Z Slll 7rX 
But 9± E £1 (1l) , so g± ( =r=m) ---+ 0 as m ---+ oo by the Riemann-Lebesgue lemma 
(the periodic analogue of Theorem 8.22f). Therefore, 

{ 1 /2 l�_:;:;p Jo [f(x) - f(O+) ] Dm (x) dx < E 

for every E > 0, and we are done . I 
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One of the less attractive features of Fourier series is that bad behavior of a function 
at one point affects the behavior of its Fourier series at al l points . For example, if 
f has even one jump discontinuity, then f cannot be in l 1 (Z) and so the series 
I: f(k) e2nikx cannot converge absolutely at any point . However, to a limited extent 
the convergence of the series at a point x depends only on the behavior of f near x, 
as explained in the fol lowing localization theorem. 

8.44 Theorem. If f  and g are in L1 (1l) and f = g on an open interval I, then 
Smf - Smg ---+ 0 uniformly on compact subsets of I. 

Proof It is enough to assume that g = 0 (consider f - g), and by translating f 
we may assume that I is centered at 0, say I =  ( -c, c) where c < � · Fix 8 < c; we 
shall show that if f = 0 on I then Smf ---+ 0 uniformly on [ -8, 8] . 

The first step is to show that Smf ---+ 0 pointwise on [ -8, 8] , and the argument is 
simi lar to the preceding proof. Namely, by (8 .40) we have 

where 

/ 1/ 2 
Smf(x) = f(x - y)Dm (Y) dy = gx ,+ ( -m) - gx , - (m) , 

- 1/2 

f(x - y) e±niy 
9x ,± (Y) = 2 . . · z Sln 1rY 

Since f(x - y) = 0 on a neighborhood of the zeros of sin 1ry, the functions 9x ,± are 
in L1 (1l) ,  so gx ,± (=t=m) ---r 0 by the Riemann-Lebesgue lemma. 

The next step is to show that if x1 , x2 E [-8, 8] , then Smf(x1 ) - Smf(x2 ) 
vanishes as x1 - x2 ---+ 0, uniformly in m. By (8 .40) again, / 1/2 sin (2m + 1 )7ry Smf(xl ) - Smf(x2 ) = . [f(x1 - y) - f(x2 - Y) ] dy . 

- 1 /2 Sin 7rY 
But j (x1 - y) - j(x2 - y) == 0 for I Y I  < c - 8 ,  and for c - 8 < I Y I  < � we have 

sin(2m + 1 )7ry < 
1 = A  sin 1ry - sin 1r(c - 8) ' 

where A is independent of m. Hence 

I Smf(x1 ) - Smf(x2 ) 1 < A j 112 l f (xl - Y) - f(x2 - Y) l dy = A l l rxJ - Tx2 f l l 1 ,  
- 1/2 

which vanishes as x1 - x2 ---r 0 by (the periodic analogue of) Proposition 8 .5 .  
Now, given E > 0,  we can choose TJ small enough so that if x1 , x2 E [ -8, 8] and 

! x 1 - x2 l < 1], then I Smf(x1 ) - Smf(x2 ) 1 < E/2. Choose x1 , . . . , Xk E [-8, 8] so 
that the intervals l x - Xj I < TJ cover [ -8, 8] . Since Smf(xi ) ---+ 0 for each j, we can 
choose M large enough so that I Smf(xi ) l < E/2 for m > M and 1 < j < k. If 
l x l < 8, then, we have l x - Xj I < TJ for some j, so 

I Smf(x) l < I Smf(x) - Smf(xj ) l + I Smf(xj ) l < E 
for m > M, and we are done. I 
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8.45 Corollary. Suppose that f E £1 (1l) and I is an open interval of length < 1 .  

a. If f agrees on I with a function g such that g E l 1 (Z), then Smf ---+ f 
uniformly on compact subsets of I. 

b. If f is absolutely continuous on I and f' E LP (I) for some p > 1, then 
Smf --+ f uniformly on compact subsets of I. 

Proof. If f == g on I, then Smf - f == Smf - g == (Smf - Smg) + (Smg - g) 
on I, and if g E l 1 (Z) , then Smg ---+ g uniformly on JR; (a) follows. As for (b), given 
[ao , b0 ] c I, pick a < a0 and b > bo so that [a , b] c I, and let g be the continuous 
periodic function that equals f on [a, b] and is linear on [b, a + 1] (which is unique 
since g(b) == f(b) and g( a +  1 )  == g( a) == f( a)) .  Under the hypotheses of (b), g is 
absolutely continuous on 1R and g' E £P (1l) , so g E l 1  (Z) by Theorem 8 .33 .  Thus 
Smf ---+ f uniformly on [ao , bo ] by (a) .  1 

Final ly, we discuss the behavior of Smf near a jump discontinuity of f. Let us 
first consider a simple example: Let 

(8 .46) ¢(x) == � - x - [x] ( [x] == greatest integer < x) . 

Then ¢ is periodic and is C(X) except for jump discontinuities at the integers, where 
¢(j+) - ¢(j-) == 1 .  It is easy to check that ¢'(0) == 0 and ¢'(k) == (2wik) - 1  for 
k i= 0 (Exercise 1 3a) , so that 

� e2nikx 
== 

� sin 2wkx 
� 2wik �1 wk · 

O< l k l <m 
From Corol lary 8 .45 it follows that Sm¢ ---+ ¢ uniformly on any compact set not 
containing an integer, and it is obvious that Sm¢ (x) == 0 when x is an integer. But 
near the integers a peculiar thing happens : Sm ¢ contains a sequence of spikes that 
overshoot and undershoot ¢, as shown in Figure 8 . 1 ,  and as m ---+ oo the spikes tend 
to zero in width but not in height. In fact, when m is large the value of Sm¢ at its 
first maximum to the right of 0 is about 0 .5895, about 1 8% greater than ¢(0+) == � .  
This is known as the Gibbs phenomenon; the precise statement and proof are given 
in Exercise 37 .  

Now suppose that f is any periodic function on 1R having a jump discontinuity at 
x == a (that is , f( a+) and f( a-) exist and are unequal) .  Then the function 

g(x) == f(x) - [f(a+) - f(a-) ] ¢(x - a) 

is continuous at every point where f is ,  and also at x == a provided that we (re )define 
g( a) to be � [f (a+ ) + f (a- )] , as the jumps in f and ¢ cancel out. If g satisfies one 
of the hypotheses of Corollary 8 .45 on an interval I containing a, the Fourier series 
of g will converge uniformly near a, and hence the Fourier series of f will exhibit 
the same Gibbs phenomenon as that of ¢. 

Finally, suppose that f is periodic and continuous except at finitely many points 
a1 , . . . , ak E 1l, where f has jump discontinuities . We can then subtract off all the 
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Fig. B. 1 The Gibbs phenomenon: the graph y = 2:�0 ( 7f k) - l  sin 27f kx, - � < x < � .  

jumps to form a continuous function g :  

If f satisfies some mild smoothness conditions - for example, if f i s absolutely 
continuous on any interval not containing any aj and f' E LP for some p > 1 - then 
g will be in l1 (Z) .  Conclusion : Smf ---+ f uniformly on any interval not containing 
any a1 , Sm (aj ) ---+ � [f(aj+ )  + f(aj - ) ] ,  and Smf exhibits the Gibbs phenomenon 
near every aj .  

Exercises 

33. Let a mf be the Cesaro means of the Fourier series of f given by (8.39) . 
a. amf = f * Fm where Fm = (m + 1 ) - 1 L� Dk and Dk is the kth Dirichlet 
kernel. (See Exercise 29a.) Fm is called the mth Fejer kernel. 
b. Fm (x) = sin2 (m + 1 )wxj (m + 1 )  sin2 wx . (Use (8 .40) and the fact that 
sin (2k + 1 )wx = Im eC2k+ l )nix .) 

34. If Dm is the mth Dirichlet kernel, I I Dm l 1 1 ---+ oo as m ---+ oo. (Make the 
substitution y = (2m + 1 )wx and use Exercise 59a in §2.6.) 

35. The purpose of this exercise is to show that the Fourier series of "most" contin
uous functions on 1' do not converge pointwise. 

a. Define ¢m (f) = Smf(O) . Then ¢ E C(1') * and 1 1 ¢ 1 1  == I I Dm l l l · 
b. The set of all f E C(1') such that the sequence { Smf(O) } converges i s  
meager in C(1') . (Use Exercise 34 and the uniform boundedness principle . )  
c .  There exi st f E C (1r) ( in fact, a residual set of such f's) such that { Smf ( x ) } 
diverges for every x in a dense subset of 1'. (The result of (b) holds if the point  
0 is replaced by any other point in 1r. Apply Exercise 40 in §5 .3 . )  
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36. The Fourier transform is not surjective from L1 (1r) to C0 (Z) . (Use Exerci se 34, 
and cf. Exerci se 16c.) 

37. Let ¢ be given by (8 .46) and let �m == Sm¢ - ¢. 
a. (djdx)�m (x) == Dm (x) for x � Z. 
b. The first maximum of �m to the right of 0 occurs at x == (2m + 1 )  - 1 , and 

lim �m ( 1 ) == � {1f sin t dt - � rv 0 .0895 . m�oo 2m + 1 7r } 0 t 2 
(Use (8 .40) and the fact that �m (x) == fox ��(t) dt - � .) 
c. More generally, the jth critical point of �m to the right of 0 occurs at 
x == j / (2m + 1 )  (j == 1 ,  . . .  , 2m), and 

lffi Ll - - t - -l . A ( j ) 1 1J7r sin t d 1 
m---7oo m 2m + 1 - 7r 0 t 2 · 

These numbers are positive for j odd and negative for j even. (See Exercise 59b 
in §2.6 .) 

8.6 FOU RIER ANALYSIS OF MEASURES 

We recall that M(1Rn) is the space of complex Borel measures on ]Rn (which are 
automatical ly Radon measures by Theorem 7 .8), and we embed £1 (JRn ) into M(JRn ) 
by identifying f E £1 with the measure dJ.L == f dm. We shall need to define products 
of complex measures on Cartesian product spaces, which can easily be done in terms 
of products of positive measures by using Radon-Nikodym derivatives. Namely, if 
J.L, V E M(1Rn ) ,  we define J.L X v E M(1Rn X 1Rn ) by 

dJ.L dv d(Jl x v) (x ,  y) = dlfl l  (x) d l v l (y) d ( l fl l x I v i )  (x , y) .  

If fL,  v E M(JRn ) , we define their convolution fL * v E M(1Rn ) by fL * v(E) == 
J-L x v(a- 1 (E) ) where a : JRn x 1Rn ---t ]Rn is addition, a(x , y) == x + y. In other 
words, 

(8 .47) fl x v(E) = J J XE (x + y) dfl(x) dv(y) .  

8.48 Proposition. 

a. Convolution of measures is commutative and associative. 
b. For any bounded Borel measurable function h, 

J h d(Jl * v) = JJ h(x + y) dfl(x) dv(y) .  
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c. I I  11 * v I I  < I I  11 1 l l l  v I I ·  
d. lfdJ-L = f dm and dv = g dm, then d(J-L * v) = (! * g) dm; that is, on L1 the 

new and old definitions of convolution coincide. 
Proof. Commutativity is obvious from Fubini 's theorem, as is associativity, for 

A * J-L * v is unambiguously defined by the formula 

A * JL * v(E) = J J J XE (x + y + z) dA (x) dJL(Y) dv(z) . 

Assertion (b) follows from (8.4 7) by the usual linearity and approximation arguments . 
In particular, taking h = d iJ-L * v l fd(J-L * v) , since I h i = 1 we obtain 

which proves (c) .  Finally, if dJ-L = f dm and dv = g dm, for any bounded measurable 
h we have 

J h d(J H V) = JJ h(x + y)f(x)g(y) dx dy 

= JJ h (x)f(x - y)g(y) dx dy = J h(x) (f * g) (x) dx , 

whence d(J-L * v) = (! * g) dm. I 
We can also define convolutions of measures with functions in £P (JRn , m ) , which 

we implicitly assume to be Borel measurable . (By Proposition 2. 12, this is no 
restriction.) 

8.49 Proposition. Iff  E £P (1Rn ) (1 < p < oo) and J1 E M (1Rn ), then the integral 
f * J-L(x) = J f(x - y) dJ-L(Y) exists for a. e. x, f * J1 E LP, and I I ! * J-L I I P < I I J I I P I I J-L I I · 
(Here "LP " and "a. e. " refer to Lebesgue measure. ) 

Proof. If f and J1 are nonnegative, then f * J-L( x) exists (possibly being equal to 
oo) for every x, and by Minkowski 's inequality for integrals, 

In particular, f * J-L ( x) < oo for a.e. x. In the general case this argument applies to 
1 ! 1 and I J-L I , and the result follows easily. 1 

In the case p = 1 ,  the definition of f * J1 in Proposition 8 .49 coincides with the 
definition given earlier in which f is identified with f dm, for 

fe f * JL(x) dx = JJ XE (x) f(x - y) dJL(Y) dx = JJ XE(x + y)f(x) dx dJL(Y) 
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for any Borel set E. Thus £1 (JRn ) is not merely a subalgebra of M (1Rn ) with respect 
to convolution but an ideal . 

We extend the Fourier transform from £1 (JRn ) to M (1Rn ) in the obvious way : If 
fL E M (1Rn ) , ji is the function defined by 

/1( �) = J e -27ri� ·X df.l( X ) . 

(The Fourier transform on measures is sometimes called the Fourier-Stieltjes trans
form.) Since e-2ni� · x is uniformly continuous in x, it is clear that ji is a bounded 
continuous function and that l l fi l l u < I I J.L I I · Moreover, by taking h(x) == e-2ni� · x in ......... 
Proposition 8 .48b, one sees immediately that (J.L * v) == jiv. 

We conclude by giving a useful criterion for vague convergence of measures in 
terms of Fourier transforms .  

8.50 Proposition. Suppose that fL1 , fL2 , . . .  , and fL are in M(1Rn ) .  IJ I IJ.Lk I I  < C < oo 
for all k and Jik ---t ji pointwise, then fLk ---t fL vaguely. 

Proof. If f E 3,then fv E 3 (Corollary 8 .23), so by the Fourier inversion 
theorem, 

Since fv E £1 and l l fik l l u < C, the dominated convergence theorem implies that 
J f dJ.Lk ---t J f dJ.L. But 3 is dense in C0 (1Rn ) (Proposition 8 . 17), so by Proposition 
5 . 1 7 , J f dJ.Lk ---t J f dJ.L for all f E Co (lRn ) ,  that is, fLk ---t J.L Vaguely. 1 

This result has a partial converse : If J.Lk ---t fL vaguely and I I J.Lk I I  ---t I I J.L I I , then 
Jik ---4 fi pointwi se . Thi s follows from Exercise 26 in §7 .3 .  

Exercises 

38. Work out the analogues of the results in this section for measures on the torus 
Tn . 
39. If fL is a positive Borel measure on 1r with J.L('f) == 1 ,  then Iii( k) I < 1 for all 
k i= 0 unless fL is a linear combination, with positive coefficients, of the point masses 
at 0, 1� , • • •  , m�1 for some m E N, in which case ji(jm) == 1 for all j E Z. 

40. L1 (1Rn ) is vaguely dense in M(1Rn ) .  (If fL E M(JRn ) , consider cPt * fL where 
{ cPt } t>O is an approximate identity.) 

41.  Let � be the set of finite linear combinations of the point masses 8x , x E JRn . 
Then � is vaguely dense in M(1Rn ) .  (If f is in the dense subset Cc (1Rn ) of L1 (1Rn ) 
and g E C0 (1Rn ), approximate J fg by Riemann sums. Then use Exercise 40. )  

42. A function ¢ on 1Rn that satisfies L:.?,k=1 Zj Zkc/J(xj -xk ) > 0 for all z1 , . . .  , Zm E 
CC and all x 1 , . . . , Xm E JRn , for any m E N, is called positive definite. If fL E M (1Rn ) 
is positive, then ji is positive definite. 
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8.7 APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS 

In this section we present a few of the many applications of Fourier analysi s to the 
theory of partial differential equations ;  others will be found in Chapter 9. We shall 
use the term differential operator to mean a linear partial differential operator with 
smooth coefficients, that is, an operator L of the form 

Lf(x) = L aa (x )Ba f(x) , 
l a l <m 

If the a a 's are constants , we call L a constant-coefficient operator. In this case, 
if for all sufficiently well-behaved functions f (for example, f E S) we have 

(Ljf(t,) = L a0 (2nit,)<> f(t,) . 
l a l <m 

It is therefore convenient to write L in a slightly different form: We set ba 
(2wi ) I a I aa and introduce the operators 

Da = (2wi ) - l a l aa , 

so that 
(LJf = L bat,<> j 

l a l <m 
Thus, if P is any polynomial in n complex variables, say P(�) = L:la l <m ba�a , 
we can form the constant-coefficient operator P(D) = L:la l <m baDa , and we then 

......... ......... 
have [P(D)f] = P f. The polynomial P is called the symbol of the operator P(D) . 

Clearly, one potential application of the Fourier transform is in finding solutions of 
the differential equation P (D )u = f. Indeed, application of the Fourier transform to ......... ......... 
both sides yields u == p- 1 f, whence u = (P-1  f) v .  Moreover, if p-1 is the Fourier 
transform of a function ¢, we can express u directly in terms of f as u = f * ¢. For 
these calculations to make sense, however, the functions f and p-1j (or p-1 )  must 
be ones to which the Fourier transform can be appl ied, which is a serious limitation 
within the theory we have developed so far. The full power of this method becomes 
available only when the the domain of the Fourier transform is substantially extended. 
We shall do this in §9 .2; for the time being, we invite the reader to work out a fairly 
simple example in Exercise 43 . (It must also be pointed out that even when this 
method works, u = (P-1j)v is far from being the only solution of P (D )u = f; 
there are others that grow too fast at infinity to be within the scope even of the 
extended Fourier transform.) 

Let us tum to some more concrete problems. The most important of all partial 
differential operators is the Laplacian 
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The reason for this is that � is essentially the only (scalar) differential operator 
that is invariant under translations and rotations . (If one considers operators on 
vector-valued functions, there are others, such as the familiar grad, curl , and div of 
3-dimensional vector analysis . )  More precisely, we have : 

8.51 Theorem. A differential operator L satisfies L(f o T) = (Lf) o T for all 
translations and rotations T iff there is a polynomial P in one variable such that 
L = P(�) . 

Proof. Clearly L is translation-invariant iff L has constant coefficients , in which ......... ......... 
case L = Q(D) for some polynomial Q in n variables. Moreover, since (Lf) = Qf 
and the Fourier transform commutes with rotations, L commutes with rotations iff Q 
is rotation-invariant. Let Q = L� Qj where Qj is homogeneous of degree j; then 
it is easy to see that Q is rotation-invariant iff each Qj is rotation-invariant. (Use 
induction on j and the fact that Qj (� ) = limr�o r-j L7 Qi (r�) .) But this means 
that Qj (�) depends only on 1� 1 , so Qj (�) = cj l � l j by homogeneity. Moreover, l � l j is a 
polynomial precisely when j i s even, so Cj = 0 for j odd. Setting bk = ( -4w2 ) -k c2k , 
then, we have Q (�) = L bk (-4w2 l e l 2 ) k , that is, L = L bk�k . 1 

One of the basic boundary value problems for the Laplacian is the Dirichlet 
problem: Given an open set n c 1Rn and a function f on its boundary an, find 
a function u on n such that �u = 0 on n and u jan = f. (This statement of the 
problem is deliberately a bit imprecise .) We shall solve the Dirichlet problem when 
n is a half-space. 

For this purpose it will be convenient to replace n by n + 1 and to denote the 
coordinates on JRn+ 1 by x 1 , . . .  , Xn , t. We continue to use the symbol � to denote 
the Laplacian on 1Rn , and we set 

a at = at , 

so the Laplacian on JRn+ 1 is � + a; . We take the half-space n to be ]Rn X (0 ,  00 ) . 
Thus, given a function f on 1Rn , satisfying conditions to be made more preci se 
below, we wish to find a function u on 1Rn x [0 , oo ) such that (� + a'f )u = 0 and 
u (x ,  0) = f (x ) .  

The idea i s  to apply the Fourier transform on 1Rn , thus converting the partial 
differential equation ( � + a; )u = 0 into the simple ordinary differential equation 
(-4w2 1 � 1 2 + B'f )u = 0. The general solution of this equation is 

(8.52) 
......... 

and we require that u(� , 0) = !(�) .  We therefore obtain a solution to our problem ......... 
by taking c1 (�) = !(�) ,  c2 (�) = 0 (more about the reasons for this choice below) ; 
this gives u(� , t) = j(�)e-21rt l� l , or u (x , t) = (f * Pt ) (x) where Pt = (e-21rt l � l ) v 
is the Poisson kernel introduced in §8 .4. As we calculated in Exercise 26, 

P. r( � (n + 1 ) )  t t (x) = nCn+ l ) /2 (t2 + l x l 2 ) - (n+l ) /2 . 
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So far this is all formal , since we have not specified conditions on f to ensure that 
these manipulations are justified. We now give a precise result. 

8.53 Theorem. Suppose f E £P(JRn ) (1 < p < oo). Then the function u(x , t) = 
(f * Pt ) (x) satisfies (� + a; )u = 0 on 1Rn x (0 , oo ) , and limt�o u(x , t) = f(x) for 
a. e. x andfor every x at which f is continuous. Moreover, limt�o l l u ( · , t) - f l i P = 0 
provided p < oo. 

Proof. Pt and all of its derivatives are in Lq (1Rn ) for 1 < q < oo, since a rough 
calculation shows that 1 a� Pt (x) l < Ca lx l -n- 1 - l a l and l af Pt (x) l < Cj l x l -n- 1 for 
large x. Also, (� + a; )Pt (x) = 0, as can be verified by direct calculation or (more 
easily) by taking the Fourier transform. Hence f * Pt is well defined and 

(� + a'f ) (f * Pt ) = f * (� + a'f )Pt = 0 .  
-

Since Pt (x) = t-n P1 (t- 1 x) and J P1 (x) dx = P1 (0) = 1 ,  the remaining assertions 
follow from Theorems 8. 14 and 8 . 1 5 .  1 

The function u(x ,  t) = (f * Pt ) (x) is not the only one satisfying the conclusions 
of Theorem 8.53 ;  for example, v (x ,  t) = u(x , t) + ct also works, for any c E <C. For 
f E £1 , we could also obtain a large family of solutions by taking c2 in (8.52) to be an -
arbitrary function in C� and c1 = f - c2 . (But there is no nice convolution formula 
for the resulting function u, because e21rt l� l is not the Fourier transform of a function 
or even a distribution .) The solution u( x ,  t) = (f * Pt ) ( x) is distinguished, however, 
by its regularity at infinity; for example, it can be shown that if f E BC (1Rn ) , then u 
i s the unique solution in BC (JRn x [0 , oo) ) . 

The same idea can be used to solve the heat equation 

(at - �)u = 0 
on ]Rn x ( 0 ,  oo) subject to the initial condition u ( x ,  0) = f ( x ) .  (Physical inter
pretation : u( x ,  t) represents the temperature at position x and time t in a homo
geneous isotropic medium, given that the temperature at time 0 is f(x) . ) Indeed, 
Fourier transformation leads to the ordinary differential equation (at +4w2 1� 1 2 )u = 0 -
with initial condition u(� ,  0) = f(�) . The unique solution of the latter problem is 
u(� , t) = i(�)e-41r2 t l � l 2 •  In view of Proposition 8 .24, this yields 

u(x ,  t) = f * Gt (x ) ,  
Here we have Gt (x) = t-ni2G1 (t- 112x) ,  so after the change of variable s = Vi, 
Theorems 8 . 14 and 8 . 15  apply again, and we obtain an exact analogue of Theorem 
8.53 for the initial value problem (at - �)u = 0, u(x ,  0) = f(x ) . Actually, in the 
present case the hypotheses on f can be relaxed considerably because Gt E S ;  see 
Exercise 44. 

Another fundamental equation of mathematical physics is the wave equation 

(a'f - �)u = 0 . 
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(Physical interpretation : u(x ,  t) is the amplitude at position x and time t of a wave 
traveling in a homogeneous isotropic medium, with units chosen so that the speed of 
propagation is 1 . ) Here it i s  appropriate to specify both u(x , 0) and 8tu(x , 0) : 

(8 .54) (a; - �)u == o , u(x , 0) == f(x) , at U (X ,  0) == g (X ) . 
After applying the Fourier transform, we obtain 

u(�, o) == [(�) , 
the solution to which is 

(8.55) 

Since 

"""( ( I I """( ) sin 2wt 1 � 1 -( u � ' t) = cos 2nt � )! � + 2n l� l g �) . 

a [ sin 2wt 1� 1 ] cos 2nt 1� 1 = at 2n l� l ' 
it follows that [sin 2wt 1� 1 ] v u(x , t) = f * 8tWt (x) + g * Wt (x) , where Wt = 2n l� l · 

But here there is a problem: (2w l� l ) - l sin 2wt l � l is the Fourier transform of a function 
only when n < 2 and the Fourier transform of a measure only when n < 3; for these 
cases the resulting solution of the wave equation is worked out in Exercises 45-4 7 .  
To carry out this analysis i n  higher dimensions requires the theory of distributions, 
which we shall examine in Chapter 9 .  (We shall not, however, derive the explicit 
formula for Wt , which becomes increasingly complicated as n increases .) 

Exercises 

43. Let ¢(x) == e- l x l /2 on JR. Use the Fourier transform to derive the solution 
u == f * ¢ of the differential equation u - u" == f, and then check directly that it 
works . What hypotheses are needed on f? 
44. Let Gt (x) == (4wt) -nl2e- lx l 2 /4t , and suppose that f E Lfoc (JRn ) satisfies 
l f (x) l < CEec l x l 2 for every E > 0. Then u(x , t) == f * Gt (x) is well defined for all 
X E JRn and t > 0; (at - �)u == 0 on JRn X (0 ,  00 ) ; and limt�o u(x ,  t) == j(x) for 
a.e. x and for every x at which f is continuous . (To show u( x , t) ---t f ( x) a.e. on a 
bounded open set V, write f == ¢! + ( 1 - ¢) ! where ¢ E Cc and ¢ == 1 on V, and 
show that [ ( 1  - ¢ )!] * Gt ---t 0 on V.) 

45. Let n == 1 .  Use (8.55) and Exercise 1 5a to derive d' Alembert's solution to the 
initial value problem (8 .54 ) : 

1 1 rx+t 
u(x ,  t) = 2 [f (x + t) + f(x - t)] + 2 lx-t g (s) ds . 
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Under what conditions on f and g does this formula actually give a solution? 

46. Let n = 3, and let at denote surface measure on the sphere l x l = t . Then 

sin 2wt l � l 
_ ( ) _ 1 ........ ( t ) 

2w l� l - 4wt at � . 

(See Exercise 22d.) What is the resulting solution of the initial value problem (8.54 ) , 
expressed in terms of convolutions? What conditions on f and g ensure its validity? 

47. Let n = 2. If � E JR2 , let [ = ( � ,  0) E JR3 . Rewrite the result of Exercise 46, 

.-..., 
sin 2wt 1� 1 

_ 

1 1 _2ni�x d ( ) --.......,- - -- e at x , 2w l� l 4wt l x l =t 

in terms of an integral over the disc Dt = {y : I Y I  < t} in JR2 by projecting the 
upper and lower hemispheres of the sphere l x l = t in JR3 onto the equatorial plane . 
Conclude that ( 2w l � l ) - 1 sin 2wt 1� 1 is the Fourier transform of 

and write out the resulting solution of the initial value problem (8.54 ) .  

48. Solve the following initial value problems in terms of Fourier series, where f, g, 
and u( · , t) are periodic functions on IR: 

a. (a; + a'; )u = 0, u(x , 0) == f(x ) . (Cf. the di scussion of Abel means in §8 .4 . ) 
b. (at - a; ) u == o, u ( x, o) == J ( x) . 
c. (a; - a� )u == 0, u (x ,  0) == f(x ) ,  atu(x ,  0) == g(x ) . 

49. In this exercise we discuss heat flow on an interval . 
a. Solve (at - a� )u == 0 on (a, b) x (0 ,  oo ) with boundary conditions u(x , 0) == 
f(x) for x E (a, b) , u ( a, t) == u(b , t) == 0 for t > 0, in terms of Fourier series . 
(This describes heat flow on (a , b) when the endpoints are held at a constant 
temperature. It suffices to assume a == 0, b == � ;  extend f to IR by requiring f to 
be odd and periodic, and use Exercise 48b.) 
b. Solve the same problem with the condition u( a, t) == u( b, t) == 0 replaced 
by axu(a, t) == axu (b, t) == 0 .  (This describes heat flow on (a, b) when the 
endpoints are insulated. This time, extend f to be even and periodic.) 

50. Solve (a; - a� )u = 0 on (a ,  b) X (0 , 00 ) with boundary conditions u(x, 0) == 
f(x) and atu(x , 0) == g(x) for x E (a, b) , u(a, t) == u(b , t) == 0 for t > 0, in terms 
of Fourier series by the method of Exercise 49a. (This problem describes the motion 
of a vibrating string that is fixed at the endpoints . It can also be solved by extending 
f to be odd and periodic and using Exercise 45 . That form of the solution tells you 
what you see when you look at a vibrating string; this one tells you what you hear 
when you listen to it .) 
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8.8 NOTES AN D REFERENCES 

The scope of Fourier analysis is much wider than we have been able to indicate in 
this chapter. Dym and McKean [36] gives a more comprehensive treatment with 
many interesting applications .  Also recommended are Komer's delightful book [87] , 
which discusses various aspects of classical Fourier analysis and their role in science , 
and the excellent collection of expository articles edited by Ash [7] , which gives a 
broader view of the mathematical ramifications of the subject. On the more advanced 
level, the reader should consult Zygmund [ 1 67] for the classical theory and Stein 
[ 1 40] , [ 14 1 ]  and Stein and Weiss [ 1 42] for some of the more recent developments . 

§8 . 1 : The formulas given in most calculus books for the remainder term Rk ( x) == 
f (x) - Pk (x) in Taylor's formula (where Pk is the Taylor polynomial of degree k) 
require f to possess derivatives of order k + 1 ,  but this is not really necessary. The 
version of Taylor's theorem stated in the text is derived in Folland [ 45] .  

§ 8 . 3 :  Trigonometric series and integrals have a very long history, but modem 
Fourier analysis only became possible after the invention of the Lebesgue integral . 
When that tool became available, the £2 theory was quickly established: the Riesz
Fischer theorem [44] , [ 1 14] for Fourier series (essentially Theorem 8.20) , and the 
Plancherel theorem [ 1 1  0] for Fourier integrals .  S ince then the subject has developed 
in many directions .  

There is no universal agreement on where to put the factors of 2w in the definition 
of the Fourier transform. Other common conventions are 

�1 !(�) = J e-i� ·x f(x) dx , 

whose inverse transforms are 

�1 has the disadvantage of not being unitary C l l9="1f l l 2 == (2w)n/2 l l f l l 2 ), whereas 
�2 is unitary but does not convert convolution into multiplication (9="2 (! * g) = 
(2w)nl2 (9="2f) (9="2g) ) . To make both £2 norms and convolutions come out right, 
one can either put the 2w's in the exponent, as we have done, or omit them from 
the exponent but replace Lebesgue measure dx by (2w) -n/2 dx in defining both the 
Fourier transform (as in 9="2) and convolutions .  

The Hausdorff-Young inequality l l fl l q < I I ! I I P (1 < p < 2, p- 1 + q- 1 = 1 )  
is sharp on 1'n, since equality holds when f is a constant function ; but on !Rn the 
optimal result, a deep theorem of Beckner [ 14] ,  is that l l fl l q < pni2Pq-n/2q l l f l l p · 

One of the fundamental qualitative features of the Fourier transform is the fact 
that, roughly speaking, a nonzero function and its Fourier transform cannot both be 
sharply localized, that is, they cannot both be negligibly small outside of small sets . 
Thi s  general principle has a number of different precise formulations, two of which 
are derived in Exercises 1 8  and 19; see Folland and S itaram [50] for a comprehensive 
discussion. 
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A nice complex-variable proof of the fact that the Fourier transform is injective 
on £1 can be found in Newman [ 1 06] . 

§ §8 .4-5 : The theory of convergence of one-dimensional Fourier series really 
began (as mentioned in the text) with Dirichlet's theorem in 1 829. The first construc
tion of a continuous function whose Fourier series does not converge pointwise was 
obtained by du Bois Reymond in 1 876, and the fact that the Fourier series of a con
tinuous function f is uniformly Cesaro summable to f was proved by Fejer in 1 904. 
In 1 926 Kolmogorov produced an f E £1 (1') such that { Smf(x) } diverges at every 
x; on the other hand, in 1 927 M. Riesz proved that for 1 < p < oo, I I  Sm f - f I I  P ---+ 0 
for every f E LP (1') . The culmination of this subject is the theorem of Carleson 
( 1966, for p = 2) and Hunt ( 1 967, for general p) that if f E LP (1') where p > 1 ,  
then Smf ---+ f almost everywhere . 

For more information , see Zygmund [ 1 67] , the articles by Zygmund and Hunt 
in Ash [7] , and Fefferman [42] . Also see Hewitt and Hewitt [74] for an interesting 
historical discussion of the Gibbs phenomenon . 

Convergence of Fourier series in n variables is an even trickier subject. In the first 
place, one must decide what one means by a partial sum of a series indexed by zn . 
It is a straightforward consequence of the Riesz and Carleson-Hunt theorems that if 
f E LP ('JI'n ) with p > 1 ,  the "cubical partial sums" 

S�f(x) = L f(�)e21ri�·x ( 1 1 � 1 1  = max( l � 1 1 , · · · , l �n l ) ) 
1 1 � 1 1 <m 

converge to f a. e . and (if p < oo) in the LP norm. On the other hand, C. Fefferman 
proved the rather shocking result that for the "spherical partial sums" 

Srf (x) = L f(�)e2tri�·x 
l � l <r 

the convergence limr�oo I I Srf - f l i P = 0 holds for all f E LP only when p = 2, 
if n > 1 .  Of course, one can consider modifications of the spherical partial sums in 
the hope of obtaining positive results ; the most intensively studied of these are the 
Bochner-Riesz means 

a� f(x) = L (1 - l r- 1 � 1 2 ) a f(�)e2tri� ·x 
l � l <r 

obtained by taking <I>(�) = [max( 1  - 1� 1 2 ) ,  O] a in Theorem 8.36. (When n = 1 ,  
a�+1 f is essentially equivalent to the Cesaro mean amf.) These <I>'s satisfy the 
hypotheses of Theorem 8.36 when a > � ( n - 1 ) ,  and some positive results are also 
known for smaller values of a. 

Davis and Chang [30] is a good source for all of this material ; see also Stein and 
Weiss [ 1 42] and Ash [7] .  

§8 .7 :  The solution of the initial value problem for the wave equation in arbitrary 
dimensions can be found in Folland [ 48] ; see also Folland [ 49] . Further applications 
of Fourier analysis to differential equations can be found in Folland [46] , [48] , Komer 
[87] , and Taylor [ 147] .  





Elements of Distribution 
Theory 

At least as far back as Heaviside in the 1 890s, engineers and physicists have found 
it convenient to consider mathematical objects which , roughly speaking, resemble 
functions but are more singular than functions. Despite their evident efficacy, such 
objects were at first received with disdain and perplexity by the pure mathematicians, 
and one of the most important conceptual advances in modem analysis is the devel
opment of methods for dealing with them in a rigorous and systematic way. The 
method that has proved to be most generally useful is Laurent Schwartz's theory of 
di stributions, based on the idea of linear functionals on test functions. For some 
purposes , however, it is preferable to use a theory more closely tied to £2 on which 
the power of Hilbert space methods and the Plancherel theorem can be brought to 
bear, namely, the (£2) Sobolev spaces. In this chapter we present the fundamentals 
of these theories and some of their applications. 

9.1 DISTRIBUTIONS 

In order to find a fruitful generalization of the notion of function on IR n, it is necessary 
to get away from the classical definition of function as a map that assigns to each 
point of !Rn a numerical value . We have already done this to some extent in the 
theory of LP spaces :  If f E LP, the pointwise values f(x) are of little significance 
for the behavior of f as an element of LP, as f can be modified on any set of measure 
zero without affecting the latter. What is more to the point is the family of integrals 
J f¢ as ¢ ranges over the dual space Lq . Indeed, we know that f is completely 
determined by its action as a linear functional on L q ; on the other hand, if we take 

281 



282 ELEMENTS OF DISTRIBUTION THEORY 

¢ == ¢r == m(Br ) - 1XBr where Br is the ball of radius r about x, by the Lebesgue 
differentiation theorem we can recover the pointwise value f ( x ) , for almost every 
x, as limr�o J f¢r · Thus , we lose nothing by thinking of f as a linear map from 
L q (IR n ) to CC rather than as a map from IR n to CC. 

Let us modify this idea by allowing f to be merely locally integrable on !Rn but 
requiring ¢ to lie in C� . Again the map ¢ � J f¢ is a well-defined linear functional 
on C�, and again the pointwise values of f can be recovered a. e .  from it, by an easy 
extension of Theorem 8 . 1 5 .  But there are many linear functionals on C� that are 
not of the form ¢ � J f¢, and these - subject to a mild continuity condition to be 
specified below - will be our "generalized functions." 

Recall that for E c IR n we have defined C� (E) to be the set of all C(X) functions 
whose support is compact and contained in E. If U c !Rn is open , C� (U) is the 
union of the spaces C� (K) as K ranges over all compact subsets of U. Each of the 
latter is a Frechet space with the topology defined by the norms 

(a E {0 ,  1 ,  2 , . . .  }n ) ,  
in which a sequence { ¢j } converges to ¢ iff aa ¢] ---+ aa ¢ uniformly for all a.  (The 
completeness of C� (K) is easily proved by the argument in Exercise 9 in §5 . 1 . )  
With this in mind, we make the following definitions, in which U is  an open subset 
of !Rn : 

i .  A sequence {¢j } in C� (U) converges in C� to ¢ if {¢j } c C� (K) for 
some compact set K c U and ¢j ---+ ¢ in the topology of C� (K) ,  that is ,  
ao:¢j ---+ ao:¢ uniformly for all a.  

ii . If X i s a locally convex topological vector space and T : C� (U) ---+ X is 
a linear map, T is continuous if T IC� (K) is continuous for each compact 
K c U, that is, if T¢j ---+ T¢ whenever ¢j ---+ ¢ in C� (K) and K c U is 
compact . 

111 .  A linear map T : C� (U) ---+ C� (U' )  is continuous if for each compact 
K c U there is a compact K' c U' such that T(C� (K)) c C� (K' ) ,  and T 
is continuous from C� (K) to C� (K' ) .  

iv. A distribution on U i s  a continuous linear functional on C� ( U) . The space 
of all distributions on U is denoted by 1)' (U) ,  and we set 1)' = 1)' (!Rn ) .  
We impose the weak* topology on 1J'  ( U) , that is , the topology of pointwise 
convergence on C� ( U) . 

Two remarks : First, the standard notation 1J' for the space of distributions comes 
from Schwartz 's notation 1J for C�, which is also quite common. Second, there is 
a locally convex topology on C� with respect to which sequential convergence in 
C� is given by (i) and continuity of linear maps T : C� ---+ X and T : C� ---+ C� 
is given by (ii) and (iii ) .  However, its definition is rather complicated and of little 
importance for the elementary theory of distributions, so we shall omit it. 

Here are some examples of di stributions; more will be presented below. 
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• Every f E Lfoc (U) - that is , every function f on U such that JK 1 ! 1 < oo for 
every compact K c U - defines a distribution on U, namely, the functional 
¢ ---+ J f ¢, and two functions define the same distribution precisely when they 
are equal a.e . 

• Every Radon measure fL on U defines a distribution by ¢ � J ¢ dJ.L . 

• If Xo E u and Q is a multi-index, the map ¢ � aa¢ (xo ) is a distribution 
that does not arise from a function ; it arises from a measure fL precisely when 
a == 0, in which case fL is the point mass at xo . 

Iff E Lfoc ( U) , we denote the distribution ¢ � J f ¢ also by f, thereby identifying 
Lfoc ( U) with a subspace of 1)' ( U) . In order to avoid notational confusion between 
f ( x) and f ( ¢) == J f ¢, we adopt a different notation for the pairing between C� ( U) 
and 1J' (U) . Namely, if F E 1J' (U) and ¢ E C� (U) , the value of F at ¢ will be 
denoted by (F, ¢) . Observe that the pairing ( · , · ) between 1J' (U) and C� (U ) is 
linear in each variable ; this conflicts with our earlier notation for inner products but 
will cause no serious confusion . If fL is a measure, we shall also identify fL with the 
distribution ¢ � J ¢ dJ.L 

Sometimes it is convenient to pretend that a distribution F is a function even 
when it really is not, and to write J F(x)¢(x) dx instead of (F, ¢) . This is the case 
especially when the explicit presence of the variable x is notationally helpful . 

At this point we set forth two pieces of notation that will be used consistent} y 
throughout this chapter. First, we shall use a tilde to denote the reflection of a 
function in the origin : ,....., 

¢(x) == ¢( -x) . 

Second, we denote the point mass at the origin, which plays a central role in distri
bution theory, by 8: 

(8, ¢) == ¢ (0 ) . 

As an illustration of the role of 8 and the notion of convergence in 1)', we record 
the following important corollary of Theorem 8 . 14 : 

9. 1 Proposition. Suppose that f E £1 (IRn ) and J f == a, and for t > 0 let ft ( x) = 
t-n f (t- 1 x ) . Then ft ---+ a8 in 1J' as t ---+ 0. 

Proof. If ¢ E C�, by Theorem 8 . 14 we have 

Ut , ¢) = J ft¢ = ft * ¢'(0) __... a¢'(0) = a¢ (0) = a(8, ¢) . 

I 
Although it does not make sense to say that two distributions F and G in 1)' ( U) 

agree at a single point, it does make sense to say that they agree on an open set 
V c U; namely, F == G on V iff (F, ¢) == (G, ¢) for all ¢ E C� (V) . (Clearly, if F 
and G are continuous functions, this condition is equivalent to the pointwise equality 
of F and G on V; if F and G are merely locally integrable, it means that F == G a. e . 
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on V.) Since a function in C�(V1 u V2 ) need not be supported in either V1 or V2 , it 
is not immediately obvious that if F = G on V1 and on V2 then F = G on V1 u V2 . 
However, it is true : 

9.2 Proposition. Let {Va } be a collection of open subsets ofU and let V = Ua Va . 
IfF, G E TI' (U) and F = G on each Va, then F = G on V. 

Proof. If ¢ E C� (V) ,  there exist a1 , . . .  am such that supp ¢ c U� Vaj .  Pick 
'l/;1 , . . .  , 'l/Jm E C� such that supp( 'l/Ji ) C Vai and I:� 'l/Ji = 1 on supp( ¢) . (That 
this can be done is the C(X) analogue of Proposition 4.41 , proved in the same way 
as that result by using the C(X) Urysohn lemma.) Then (F, ¢) = L:(F, 'lj;i¢) = 
l:(G, 'l/Ji ¢) = (G, ¢) . 1 

According to Proposition 9.2, if F E 1)' (U) , there is a maximal open subset of 
U on which F = 0, namely the union of all the open subsets on which F == 0 .  Its 
complement in U is called the support of F. 

There is a general procedure for extending various linear operations from functions 
to distributions. Suppose that U and V are open sets in !Rn , and T is a linear map 
from some subspace X of Lfoc (U) into Lfoc (V) . Suppose that there is another linear 
map T' : C�(V) ---+ C� (U) such that 

J (Tf )¢ = J f(T'¢) (f E X, ¢ E C� (V)) . 

Suppose also that T' is continuous in the sense defined above. Then T can be 
extended to a map from 1)' (U) to 1)' (V) , sti ll denoted by T, by 

(T F, ¢) == (F, T' ¢) (F E TI' (U) , ¢ E C� (V)) . 

The intervention of the continuous map T' guarantees that the original T, as well as 
its extension to distributions, is continuous with respect to the weak* topology on 
distributions :  If Fa ---+ F E 1)' (U) , then T Fa ---+ T F in 1)' (V) . 

Here are the most important instances of this procedure . In each of them, U is 
an open set in !Rn , and the continuity of T' is an easy exercise that we leave to the 
reader. 

i .  (Differentiation) Let Tf = aa J, defined on cla i (U) . If ¢ E C� (U) , inte
gration by parts gives J ( aa f )¢ = ( - 1 )  I a I J f ( aa¢) ; there are no boundary 
terms since ¢ has compact support. Hence T' == (- 1 ) 1 a i T IC� (U) , and we 
can define the derivative aa F E 1)' (U) of any F E 1)' (U) by 

Notice , in particular, that by this procedure we can define derivatives of arbitrary 
locally integrable functions even when they are not differentiable in the classical 
sense ; this is one of the main reasons for the power of distribution theory. We 
shall discuss this matter in more detail below. 
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ii . (Multiplication by Smooth Functions) Given 'ljJ E C(X) (U ) , define T f = '1/Jf. 
Then T' = T I C� (U ) , so we can define the product 'ljJF E 1J' (U) for F E 
1J' (U) by 

( 'ljJ F, ¢) = ( F, 'ljJ¢) . 

Moreover, if 'ljJ E C� (U ) , this formula makes sense for any ¢ E C�(IRn ) and 
defines 'ljJF as a distribution on !Rn . 

i i i .  (Translation) Given y E !Rn , let V = U + y = { x + y : x E U} and 
let T = Ty . (Recall that we have defined ryf(x) = f(x - y) . ) Since 
J f(x - y) ¢(x) dx = J f(x)¢(x + y) dx, we have T' = T-y iC� (U + y) .  
For F E 1J' (U) , then, we define the translated distribution ryF E 1)' (U + y) 
by 

For example, the point mass at y is ry8. 

iv. (Composition with Linear Maps) Given an invertible linear transformation S 
of !Rn ' let v == s- 1 (U) and let T f == f 0 S. Then T' ¢ == I det S l - 1 ¢ 0 s- 1 
by Theorem 2.44, so for F E  1J' (U) we define F o S E 1J' (S- 1 (U ) )  by 

(F o S, ¢) = l det S I - 1 (F, ¢ o S- 1 ) .  

In particular, for Sx == -x we have f 0 s = J, s- 1 = S, and I det S l  == 1 ,  so 
we define the reflection of a distribution in the origin by 

,....., ,....., 
( F, ¢) = ( F, ¢) . 

v. (Convolution, First Method) Given 'ljJ E C� , let 

V = {x : x - y E U for y E supp(�) } .  

(V is open but may be empty.) If f E Lfoc (U) ,  the integral 

f * 'lj;(x) = J f(x - y)'lj;(y) dy = J f(y)'lj;(x - y) dy = J f(rx;j;) 

is well defined for all x E V. The same definition works for F E 1J' ( U) : the 
convolution F * 'ljJ is the function defined on V by 

,....., ,....., 

,....., 
F * 'ljJ (X) == ( F, T X 'ljJ) . 

Since Tx'l/J ---r Txo 'ljJ in c� as X ---r Xo , F * 'ljJ is a continuous function (actually 
C(X), as we shall soon see) on V. As an example, for any 'ljJ E C� we have 

,....., ,....., 
8 * 'l/J(x) = (8, Tx'l/J) == Tx'l/J(O) = '1/J(x) , 

so 8 is the multiplicative identity for convolution. 
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vi . (Convolution, Second Method) Let '1/J, ;[;, and V be as in (v). If f E Lfoc (U) 
and ¢ E C� (V) , we have 

J (! * '1/;)¢ = J J f (y)'!f;(x - y) ¢(y) dy dx = J f( ¢ * ;f) .  

That is , if T f = f * 'ljJ, then T maps Lfoc (U) into Lfoc (V) and T' ¢ = ¢ * ;[;. 
For F E 1)' (U) ,  we can therefore define F * 'ljJ as a distribution on V by 

......., 
( F * 'ljJ ,  ¢) == ( F, ¢ * 'ljJ) . 

Again, we have 8 * 'ljJ = 'ljJ, for 

( {j * '1/J, ¢) = ( {j, ¢ * ¢) = ¢ * ¢ ( 0) = J ¢ (X ) '1/J (X ) dx = ( '1/J, ¢) . 

The definitions of convolution in (v) and (vi) are actually equivalent, as we shall 
now show. 

9.3 Proposition. Suppose that u is open in !Rn and 'ljJ E c�. Let v = {X : X - y E ......., 
U for y E supp( 'ljJ) }. For F E 1)' (U) and x E V let F * 'l/J(x) = (F, Tx'l/J) .  Then 

a. F * 'ljJ E coo (V) .  
b. aa (F * 'l/J) = (aa F) * 'ljJ = F * (8a'ljJ) . 
c. For any ¢ E C� (V), f(F * 7/J )¢ = (F, ¢ * ;f;) . 
Proof. Let e1 , . . .  , en be the standard basis for !Rn . If x E V, there exists t0 > 0 

such that x + tei E U for I t  I < to , and it is easily verified that 

It follows that aj ( F * 'ljJ) (X ) exists and equals F * aj 'ljJ (X) ' so by induction, F * 'ljJ E 

C00 (V) and aa (F * 7/J) = F * aa'ljJ. Moreover, since aa;j; = ( - l ) la l aa� and 
aaTx = Tx8a , We have 

Next, if ¢ E C� (V) , we have 

¢ * ;f(x) = J ¢(y)'!f; (y - x) dy = J ¢(y)ry;f(x) dy. 

The integrand here is continuous and supported in a compact subset of U, so 
the integral can be approximated by Riemann sums. That is, for each (large) 
m E N we can approximate supp( ¢) by a union of cubes of side length 2-m 
(and volume 2-nm) centered at points y"{t, . . . , Yk(

m
) E supp( ¢ ) ; then the corre-
---

sponding Riemann sums sm = 2-nm Ei ¢(yj)ryj'l/J  are supported in a common 
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compact subset of U and converge uniformly to ¢ * 'ljJ as m ---r oo. Likewise, 
,....., ,....., ,....., 

ao:sm == 2-nm Ej ¢ (Yj )Tyj 8Q'ljJ converges uniformly to ¢ *  ao:'ljJ == ao: (¢ * '1/J) ,  
,....., 

so sm ---r ¢ * 'ljJ in C�(U) . Hence, 

(F, ¢ * ;f) == lim (F, sm) == lim 2-nm '\:"' ¢ (yj ) (F, Tyr:t ;f) 
m�oo m�oo L...t J 

J 

= j cj;(y) (F, rJf) dy = j cj;(y)F  * 'lj;(y) dy. 

I 
Next we show that although distributions may be highly singular objects, they can 

all be approximated in the (weak*) topology of distributions by smooth functions, 
even by compactly supported ones. 

9.4 Lemma. Suppose that ¢ E c� ' 'ljJ E c� ' and J 'ljJ == 1, and let 'l/Jt (X) == 
t-n'l/J (t- 1x) .  

a. Given any neighborhood U of supp( ¢ ) ,  we have supp( ¢ * 'l/Jt ) C U for t 
sufficiently small. 

b. ¢ * 'l/Jt ---r ¢ in c� as t ---r 0. 

Proof. If supp( 'ljJ) C { x : l x l  < R} then supp( ¢ * 'l/Jt ) is contained in the set of 
points whose distance from supp ( ¢) is at most tR; this is included in a fixed compact 
set if t < 1 and is included in U if t is small . Moreover, aa ( ¢ * 'l/Jt ) == ( aa ¢) * 'l/Jt ---r 

aa ¢ uniformly as t ---r 0, by Theorem 8 . 14. The result follows . 1 

9.5 Proposition. For any open U C IRn, C�(U) is dense in 1J' (U) in the topology 
of1J' (U) .  

Proof. Suppose F E 1)' (U ) .  We shall first approximate F by distributions 
supported in compact subsets of U, then approximate the latter by functions in 
C� (U) . 

Let {Vj } be an increasing sequence of precompact open subsets of U whose union 
is U, as in Proposition 4.39. For each j, by the coo Urysohn lemma we can pick 
(1 E C� (U) such that (1 == 1 on V1 . Given ¢ E C�(U) ,  for j sufficiently large we 
have supp(¢) c Vj and hence (F, ¢) = (F, (1 ¢) == ((1F, ¢) . Therefore (1F ---+ F 
as j -+ oo. 

Now, as we noted in defining products of smooth functions and distributions, 
since supp( (1 )  is compact, (1 F can be regarded as a distribution on IRn . Let 'ljJ, 'l/Jt 
be as in Lemma 9.4, and ;J(x) == '1/J(-x) . Then J ;j == 1 also, so given ¢ E C�, 

,....., 

we have ¢ * 'l/Jt ---r ¢ in C� by Lemma 9.4 .  But then by �roposition 9 .3 ,  we 
have ( (j F) * 'l/Jt E coo and ( ( (j F) * 'l/Jt , ¢) == ( (j F, ¢ * 'l/Jt ) ---+ ( (j F, ¢) , so 
( (j F) * 'l/Jt ---r (1 F in 1)' . In short, every neighborhood of F in 1J' ( U) contains the 
coo functions ( (1 F) * 'l/Jt for j large and t small .  
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Finally, we observe that supp ( (j ) c Vk for some k .  If supp ( ¢) n V k = 0, then 
for sufficiently small t we have supp( ¢ * ;f;t ) n V k = 0 (Lemma 9.4 again) and hence 

( ((j F) * 'l/Jt , ¢) = (F, (j (¢ *;f;t ) ) = 0. In other words, supp( ((j F) * 'l/Jt ) c Vk c U, 
so we are done. 1 

We conclude this section with some further remarks and examples concerning 
differentiation of di stributions. To restate the basic facts : Every F E 'D' (U) possesses 
derivatives aa F E 1)' (U) of all orders; moreover, aa is a continuous linear map 
of 1)' ( U) into itself. Let us examine a couple of one-dimensional examples to see 
what sort of things arise by taking distribution derivatives of functions that are not 
classically differentiable .  

First, differentiating functions with jump discontinuities leads to "delta-functions," 
that is, distributions given by measures that are point masses .  The simplest example 
is the Heaviside step function H = X(o ,oo) , for which we have 

(H' , ¢) = - (H, ¢') = - 100 
¢' (x) dx = ¢(0) = (8, ¢) , 

so H' = 8. See Exercises 5 and 7 for generalizations. 
Second, distribution derivatives can be used to extract "finite parts" from divergent 

integrals .  For example, let f(x) = x- 1X(o ,oo) (x) . f is locally integrable on IR \ {0} 
and so defines a distribution there, but J f¢ diverges whenever ¢(0) # 0. Nonethe
less, there is a distribution on IR that agrees with f on IR \ { 0} , namely, the distribution 
derivative of the locally integrable function L(x) = (log x)x (o ,oo) (x) . One way of 
seeing what is going on here is to consider the functions L€ ( x) = (log x) X( f. , oo ) ( x) . 
By the dominated convergence theorem we have J L¢ = limc �o J LE¢ for any 
¢ E c�' that is, LE ---+ L in 1) ' ;  it follows that L� ---+ L' in 1J' . But 

(L� , ¢) = - (£€ , ¢') = - 100 
¢' (x) log x dx = 100 ¢(x) dx + ¢(E) log E .  

E E X 

As E ---+ 0, this last sum converges even though the two terms individually do not .  
Formally, passage to the limit gives (L' , ¢) = J f ¢ + (log 0)¢(0) ; that is ,  L' is 
obtained from f by subtracting an infinite multiple of 8. (This process is akin to the 
"renormalizations" used by physicists to remove the divergences from quantum field 
theory.) 

Another way to analyze this situation is to consider smooth approximations to L, 
such as £E (x) = L(x)'lj;(Ex) where 'lj; is a smooth function such that 'lj;(x) = 0 for 
x < 1 and 'l/;(x) = 1 for x > 2 . The reader is invited to sketch the graphs of £E and 
(£E ) ' ;  the latter will look like the graph of f together with a large negative spike near 
the origin, which turns into "-oo · 8" as E ---+ 0 . See also Exercises 10 and 12 .  

Finally, we remark that one of the bugbears of advanced calculus, that equality 
of mixed partials need not hold for functions whose derivatives are not continuous, 
disappears in the setting of distributions :  aiak = akai on C�; therefore aiak = 
8k8i on 1J' ! In the standard counterexample, f(x, y) = xy(x12 - y2 ) (x2 + y2 ) - 1 
(with f(O, 0) = 0) , 8x8yf and 8y8xf are locally integrable functions that agree 
everywhere except at the origin; hence they are identical as distributions .  
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1 .  Suppose that !1 , !2 , . . .  , and f are in Lfoc (U) . The conditions in (a) and (b) 
below imply that fn --t f in TI' (U) ,  but the condition in (c) does not. 

a. fn E LP (U) (1 < p < oo) and fn --t f in the LP norm or weakly in LP . 
b. For all n, l fn I < g for some g E Lfoc (U) ,  and fn --t f a.e . 
c. f n --t f pointwise . 

2. The product rule for derivatives is valid for products of smooth functions and 
distributions. 

3. On IR, if 'lj; E c(X) then 'lj;8(k) = E� (- 1 )i (�) 'lfJ(i ) (0)8(k -j) , where the super
scripts denote derivatives . 

4. Suppose that U and V are open in IRn and <I> : V --t U is a C(X) diffeomorphism. 
Explain how to define F o <I> E TI' (U) for any F E  TI' (V) .  

5. Suppose that f is continuously differentiable on IR except at x 1 , . . .  , Xm , where 
f has jump discontinuities, and that its pointwise derivative df / dx (defined except 
at the xi 's) is in Lfoc (IR) . Then the distribution derivative f' of f is given by 
f' == (df jdx) + l:�[f(xj+) - f(xj - ) ] rxi 8 . 
6. If f is absolutely continuous on compact subsets of an interval U C IR, the dis
tribution derivative f' E 1)' (U) coincides with the pointwise (a.e .-defined) derivative 
of f. 
7. Suppose f E Lfoc (IR) . Then the distribution derivative f' is a complex measure 
on IR iff f agrees a.e . with a function F E N BV, in which case (!' ,  ¢) == J ¢ dF. 

8. Suppose f E LP (IRn ) .  If the strong LP derivatives ai f exist in the sense of 
Exercise 8 in §8 .2, they coincide with the partial derivatives of f in the sense of 
distributions. 

9. A distribution F on IRn is called homogeneous of degree ,.\ if F o Sr = rA F for 
all r > 0, where Sr (x) = rx. 

a. 8 is homogeneous of degree -n. 
b. If F is homogeneous of degree A, then ao: F is homogeneous of degree A - I  Q I · 
c. The distribution (djdx) [X(o ,(X)) (x) log x] discussed in the text is not homo
geneous, although it agrees on IR \ { 0} with a function that is homogeneous of 
degree -1 . 

10. Let f be a continuous function on IRn \ {0} that is homogeneous of degree -n 
(i .e . ,  f(rx) == r-n f(x) ) and has mean zero on the unit sphere (i .e . ,  J f da == 0 
where a is surface measure on the sphere) . Then f is not locally integrable near the 
origin (unless f == 0), but the formula 

(PV(J) ,  ¢) == lim 1 f(x) ¢(x) dx E�O l x i > E 
(¢ E C�) 
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defines a distribution PV (f) - "PV" stands for "principal value" - that agrees 
with f on IRn \ {0} and is homogeneous of degree -n in the sense of Exercise 9. 
(Hint: For any a > 0, the indicated limit equals 

1 f(x) [¢(x) - ¢(0) ] dx + 1 f(x)¢ (x) dx , 
l x i <a l x i >a r 

and these integrals converge absolutely.) 

11 .  Let F be a distribution on IRn such that supp(F) == {0} .  
a .  There exist N E N, C > 0 such that for all ¢ E C� , 

I (F, ¢) 1 < C L sup l 8a¢(x) l . 
l a i <N l x l < l 

b. Fix 1/J E C� with 1/J(x) == 1 for l x l  < 1 and 1/J(x) == 0 for l x l > 2 .  If 
¢ E C� , let ¢k (x) == ¢(x) [1 - 1/J(kx) ] .  If aa¢(0) == 0 for l n l  < N, then 
aa¢k ---t aa¢ uniformly as k ---t oo for I n !  < N. (Hint: By Taylor's theorem, 
l 8a¢(x) l < Clx i N+l- l a l for l n l < N.) 
c .  If ¢ E C� and aa¢(0) == 0 for l n l < N, then (F, ¢) == 0. 
d. There exist constants Ca C l n l < N) such that F == L:la i <N ca8a8 . 

12. Suppose A > n; then the function x � I x 1 - .\ on IRn is not locally integrable 
near the origin . Here are some ways to make it into a distribution : 

a. If ¢ E c� ' let Pj be the Taylor polynomial of ¢ about X == 0 of degree k. 
Given k > A - n - 1 and a > 0, define 

(F; , ¢) == 1 [¢(x) - Pj (x) ] l x l -.\ dx + 1 ¢(x) lx l - .\ dx . 
l x i <a l x l >a 

Then F: is a distribution on IRn that agrees with l x l -.\ on IRn \ {0} . 
b. If A � Z and we take k to be the greatest integer < A - n, we can let a ---t oo 
in (a) to obtain another distribution F that agrees with l x l -.\ on IRn \ {0} :  

c. Let n == 1 and let k be the greatest integer < A. Let 

x _ { [ (k - A) · · ·  ( 1 - A) ] - 1 (sgn x) k lx l k-.\ if A > k, 
! ( ) - (- 1 ) k- 1 [ (k - 1) ! ] - 1 (sgn x) k log lx l if A ==  k. 

Then f E Lfoc (IR) , and the distribution derivative j(k) agrees with l x l - .\  on 
IR \ {0} . 
d. According to Exercise 1 1 , the difference between any two of the distributions 
constructed in (a)-(c) is a l inear combination of 8 and its derivatives. Which 
one? 
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13. If F E 1J' and 81 F = 0 for j = 1 ,  . . .  , n, then F is a constant function. 
(Consider f * 'l/Jt where 'l/Jt is an approximate identity in C�.) 

14. For n > 3, define F, pc E Lfoc (IRn) by 

jx j 2-n 
F(x) = 

wn (2 - n) ' 

where Wn = 21rn/2 /f ( n/2) is the volume of the unit sphere, and let � be the 
Laplacian .  

a.  �FE (x) = E-ng(E- 1x) where g (x) = nwn 1 ( 1 x l 2 + 1 ) - (n+2) /2 . 
b. J g = 1 .  (Use polar coordinates and set s = r2 / (r2 + 1 ) .) 
c. �F = 8. (FE ---t F in 1)' ; use Proposition 9. 1 .) 
d. If ¢ E C�, the function f = F * ¢ satisfies �� = ¢. 
e. The results of (c) and (d) hold also for n = 1 but can be proved more simply 
there . For n = 2, they hold provided F, FE are defined by F(x) = (27r) - 1 log l x l  
and pc = (47r) - 1 log ( lx l 2 + E2) .  

15. Define G on IRn X IR by G(x, t) = ( 47rt) -n/2e- l x l 2  14tX(O ,oo) (t) .  
a. (8t - �)G = 8, where � is the Laplacian on IRn . (Let QE (x, t) 
G(x, t)X(c ,oo) (t) ;  then QE ---t G in 1J'. Compute ( (8t - �)Gc , ¢) for ¢ E C�, 
recalling the discussion of the heat equation in §8 . 7 . ) 
b. If ¢ E C� (IRn x JR.) , the function f = G * ¢ satisfies (8t - �)! = ¢. 

9.2 COMPACTLY SU PPORTED, TEMPERED, AND PERIO DIC 

DISTRI B UTIONS 

If U is an open set in IRn , the space of all distributions on U whose support is a 
compact subset of U is denoted by £' (U) ;  as usual, we set £' = £ ' (IRn ) .  £' (U) turns 
out to be a dual space in its own right, as we shall now show. 

The space C00(U) of coo functions on U is a Frechet space with the coo topology 
- that is, the topology of uniform convergence of functions, together with al l their 
derivatives, on compact subsets of U. This topology can be defined by a countable 
family of seminorms as follows. Let {V m} 1 be an increasing sequence of pre compact 
open subsets of U whose uri ion is U, as in Proposition 4.39; then for each m E N 
and each multi-index a we have the seminorm 

(9.6) l l f l l [m ,a] = sup 1 8a f(x) l .  
xEVm 

Clearly aa fj ---t aa f uniformly on compact sets for all Q iff l l !j - ! I I  [m ,a] ---t 0 for 
all m, a ;  a different choice of sets V m would yield an equivalent family of seminorms . 

9.7 Proposition. C� (U) is dense in C00 (U) .  
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Proof. Let {Vm}1 be as in (9.6) . For each m, by the C(X) Urysohn lemma we can 
pick 'l/Jm E C�(U) with 'l/Jm == 1 on V m · If¢ E C(X) (U) , clearly I I ?/Jm¢-¢ 1 1  [mo ,a] == 
0 provided m > mo ; thus 7/Jm ¢ ---t ¢ in the C(X) topology. 1 

9.8 Theorem. £' (U) is the dual space of C(X) (U) . More precisely: IfF E £'  (U) , 
then F extends uniquely to a continuous linear functional on C(X) ( U); and if G is a 
continuous linear functional on c(X) (U), then GIG� (U) E £' (U) .  

Proof. If F E £' (U) , choose 'l/7 E C�(U) with 'l/7 == 1 on supp (F) ,  and define 
the linear functional G on C(X) (U) by (G, ¢) == (F, 7/J¢) . Since F is continuous 
on C� (supp(,P) ) ,  and the topology of the latter is defined by the norms ¢ � 

1 1 8a¢ 1 1 u , by Proposition 5 . 1 5 there exist N E N and C > 0 such that I (G, ¢) I < 
c I: I Q I < N I I  aa ( ,P¢) I I  u for ¢ E c(X) ( U) . By the product rule, if we choose m large 
enough so that supp ( ,P) C Vm, this implies that 

so that G is continuous on C(X) (U) . That G is the unique continuous extension of F 
follows from Proposition 9 . 7 .  

On the other hand, if G is a continuous linear functional on C(X) (U) , by Propo
sition 5 . 1 5  there exist C, m ,  N such that I (G, ¢) 1 < C L:Iai <N l l ¢ 1 1 [m ,a] for all ¢ E 

C(X) (U) . Since l l ¢ 1 1 [m,a] < 1 1 8a¢ 1 1 u , this implies that G is continuous on C� (K) for 
each compact K c U, so GIC� (U) E 1J' (U) . Moreover, if [supp(¢) ] n V m == 0, 
then (G, ¢) == 0; hence supp (G) c v m and GIC� (U) E c' (U) . I 

The operations of differentiation , multiplication by C(X) functions, translation , 
and composition by linear maps discussed in §9. 1 all preserve the class £ ' .  As for 
convolution , there is more to be said. 

First, if F E £' and ¢ E C� then F * ¢ E C�, as Proposition 8.6d remains 
valid in this setting. Second, if F E £' and ,P E C(X), F * ,P can be defined as a C(X) 
function or as a distribution just as before : 

,....., ,....., 
F * 'l/7 (X) == ( F, T X 1/J) ' ( F * 'l/7, ¢) == ( F, ¢ * 'l/7) ( ¢ E C�) 

(see Exercise 16) .  Finally, a further dualization allows us to define convolutions of 
arbitrary distributions with compactly supported distributions. To wit, if F E 1)' and 
G E £' ,  we can define F * G E TI' and G * F E 1)' as follows : 

,....., ,....., ( F * G, ¢) == ( F, G * ¢) , ( G * F, ¢) == ( G, F * ¢) 
,....., 

(¢ E C�) ,  
and likewise for F. The proof that F * G and G * F are indeed distributions (i .e . ,  that 
they are continuous on C�) and that F * G == G * F requires a closer examination of 
the continuity of the maps involved. We shall not pursue this matter here; however, 
see Exercises 20 and 2 1 .  

A notable omission from our l ist of operations that can be extended from functions 
to distributions is the Fourier transform �- The trouble is that � does not map C� 
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......... 
into itself; in fact, if ¢ E C�, then ¢ cannot vanish on any nonempty open set 

......... 
unless ¢ == 0. To see this , suppose ¢ == 0 on a neighborhood of �0 . Replacing ¢ 
by e-2ni�o · x¢, we may assume that �0 == 0. Since ¢ has compact support, we can 
expand e- 2ni� · x in its Maclaurin series and integrate term by term to obtain 

(see Exercise 2a in §8 . 1 ) .  But f(-2wix)a¢(x) dx == aa'¢(0) for all a by Theorem 
......... 

8.22d. These derivatives all vanish by assumption, so ¢ == 0 and hence ¢ == 0.  
However, we do have avai lable a slightly larger space of smooth functions that is 

mapped into itself by �' namely, the Schwartz class S. We recall that S is a Frechet 
space with the topology defined by the norms 

9.9 Proposition. Suppose 'ljJ E C� and 'lf;(O) == 1, and let 1/Jf_ (x) == 'l/;(Ex) . Then 
for any ¢ E 3, 7/J€ ¢ ---t ¢ in s as E ---+ 0. In particular, c� is dense in S. 

Proof Given N E N, for any rJ > 0 we can choose a compact set K such that 
( 1  + l x i )N I ¢(x) l < rJ for x � K. Since 7/J(Ex) ---t 1 uniformly for x E K as E ---t 0, 
it follows easily that 1 1 7/J€¢ - ¢ 1 1 (N,o) ---t 0 for every N. For the norms involving 
derivatives, we observe that by the product rule, 

where E€ is a sum of terms involving derivative of 7/J€ . Since 

we have I I  E€ I I  u < C E ---t 0 as E ---t 0. The preceding argument then shows that 
l l 'l/J€¢ - ¢ 1 1 (N,a ) ---+ 0. I 

A tempered distribution is a continuous linear functional on S .  The space of 
tempered distributions is denoted by S' ; it comes equipped with the weak* topology, 
that is, the topology of pointwise convergence on S .  If F E S' , then F IC� is 
clearly a distribution, since convergence in C� implies convergence in S, and Fl C� 
determines F uniquely by Proposition 9.9. Thus we may, and shall, identify S' with 
the set of distributions that extend continuously from C� to S .  We say that a locally 
integrable function is tempered if it is tempered as a distribution. 

The condition that a distribution be tempered means, roughly speaking, that it 
does not grow too fast at infinity. Here are a few examples : 

• Every compactly supported distribution is tempered. 

• If f E Lfoc(IRn ) and J( 1  + l x i )N i f(x) l dx < oo for some N, then f i s  
tempered, for I J f¢1 < Cl l¢ l l co ,N) · 
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• The function f (X) = eax on IR is tempered iff a is purely imaginary. Indeed, 
suppose a = b + ic with b, c real . If b = 0, then f is bounded and hence 
tempered by (ii) .  If b -=f 0, choose a function 'ljJ E C� such that f 'ljJ = 1, and 
let ¢1 (x) = e-ax'lf;(x - j ) .  It is easily verified that ¢1 ---t 0 in S as j ---t +oo 
(if b > 0) or j --t -oo (if b < 0) ,  but J f¢1 = J 'ljJ = 1 for all j .  

• On the other hand, the function f (X) = ex cos ex on IR is tempered, because it 
is the derivative of the bounded function sin ex . Indeed, if ¢ E S, integration 
by parts yields 

Intuitively, f(x) is not too large "on average" when x is large, because of its 
rapid oscil lations. 

We tum to the consideration of the basic l inear operations on tempered distri
butions .  The operations of differentiation, translation, and composition with linear 
transformations work just the same way for tempered distributions as for plain dis
tributions ;  these operations all map S and S' into themselves. The same is not true 
of multiplication by arbitrary smooth functions, however. The proper requirement 
on 'ljJ E C(X) in order for the map F ---t 'lj;F to preserve S and S' is that 'ljJ and all its 
derivatives should have at most polynomial growth at infinity: 

Such C(X) functions are cal led slowly increasing. For example, every polynomial 
is slowly increasing; so are the functions ( 1 + l x l 2 ) s (s E IR), which will play an 
important role in the next section . 

As for convolutions, for any F E S' and 'ljJ E S we can define the convolution 
,....., 

F * 'ljJ by F * 'lf;(x) = (F, Tx'l/J) , as before, and we have an analogue of Proposition 
9.3 :  

9.10 Proposition. If F E S' and 'ljJ E S, then F * 'ljJ is a slowly increasing C(X) 
function, and for any ¢ E S we have J(F * 'lj;)¢ = (F, ¢ * ;;{;) . 

Proof That F * 'ljJ E C(X) is established as in Proposition 9.3 . By Proposition 
5 . 1 5 , the continuity of F implies that there exist m, N, C such that 

I (F, ¢) 1 < C L l l ¢ 1 1 (m ,a) ( ¢ E S) , 
l a i <N 
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and hence by (8 . 12) ,  

I F * 'l/;(x) l < C L sup( l + I Y I )m laa�(x - y) l 
l a i <N y 

< C( l + l x l )m L sup( l + l x - Y l )m i Ba'lj;(x - Y) l 
l a i <N y 

< C( l + l x l )m L l l 'l/J I I (m,a) · 
l a i <N 

The same reasoning applies with 1/J replaced by Bf3?j;, so F * 1/J is slowly increasing. 
Next, by Proposition 9.3 we know that the equation J(F * 1/J)¢ == (F, ¢ * ;{;) holds 
when ¢, 'lj; E C�. By Proposition 9.9, if ¢, 1/J E S we can find sequences { ¢1 } and ,....., ,....., 
{ 'lj;1 } in C� that converge to ¢ and 'lj; in S .  Then ¢1 * 'lj;1 ---t ¢ * 1/J in S by (the proof ......., ......., 
of) Proposition 8 . 1 1 , so (F, ¢1 * 'l/;1 ) ---t (F, ¢ * 'l/;) . On the other hand, the preceding 
estimates show that IF * 'l/;j (x) l < C( l + l x l )m with C and m independent of j ,  
and likewise 1 ¢j (x) l < C( l + l x l ) -m-n- 1 , so J(F * 1/Jj )c/Jj ---t J(F * 'lj;)¢ by the 
dominated convergence theorem. 1 

Final ly, we come to the principal raison d'etre of tempered distributions, the 
Fourier transform. We recall (Corollary 8 .23) that the Fourier transform maps S 
continuously into itself, and that for f, g E £1 (in particular, for f, g E S) we have 

J [(y)g(y) dy = JJ f(x)g (y)e-2-rrix ·y dx dy = J f(x)9(x) dx. 

We can therefore extend the Fourier transform to a continuous linear map from 3' to 
itself by defining ......... ......... 

( F,  ¢) == ( F, ¢) (F E S' , ¢ E S) . 

This definition clearly agrees with the one in Chapter 8 when F E £1 + £2 . 
The basic properties of the Fourier transform in Theorem 8.22 continue to hold in 

this setting. To wit, 

aa F == [ (-27rix)Q F]-, (BQ Ff'== (27ri�)Q F, 
(J o T)- == l det T I - 1fo (T* ) - 1 (T E  GL(n, IR) ) , 

( F * 'lj; ) ......... == � F ( 'lj; E 3 ) . 
(The first four of these formulas involve products of slowly increasing C(X) functions ,  
specified by their values at a general point x or �' and tempered distributions.) The 
easy verifications of these facts are left to the reader (Exercise 17) .  

Moreover, we can define the inverse transform in the same way : 
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......... ......... 

The Fourier inversion theorem formula ¢ = ( ¢) v = ( ¢ v ) then extends to S' : 

......... ......... 
so that (F) v F, and likewise ( Fv ) = F. Thus the Fourier transform is an 
isomorphi sm on S' . ......... 

If F E £' , there is an alternative way to define F. Indeed, (F, ¢) makes sense for 
any ¢ E C(X), and if we take ¢( x) = e-21ri� ·x , we obtain a function of � that has a 
strong claim to be called F(�) .  In fact, the two definitions are equivalent : 

......... 
9.11 Prop_osition. If F E £', then F is a slowly increasing C(X) function, and it is 
given by F(�) = (F, E_� ) where E� (x) = e21Ti� ·x . 

Proof. Let g (�) = (F, E_e ) · Consideration of difference quotients of g, as in 
the proof of Proposition 9.3 , shows that g is a C(X) function with derivatives given 
by aag(�) = (F, Bf E_� ) = (-27ri) l a l (F, xa E_� ) .  Moreover, by Theorem 9.8 and 
Proposition 5 . 15 ,  there exist m, N, C such that 

I Bag (�) l < C L sup 1 Bf3 [xa E_� (x)J I < C' ( 1  + m) l a l ( 1  + I � I )N , 
l f3 1 <N lx l <m 

so g is slowly increasing. ......... 
It remains to show that g = F, and by Proposition 9.9 it suffices to show that 

f g¢ = (F, ¢) for ¢ E C�. In this case g¢ E C�, so f g¢ can be approximated 
by Riemann sums as in the proof of Proposition 9 .3 ,  say E g( ej )¢( ej ) D.�j .  The 
corresponding sums E ¢( �i ) e-21ri�i ·x D.�i and their derivatives in x converge uni-

-formly, for x in any compact set, to ¢( x) and its derivatives . Therefore, since F is a 
continuous functional on c(X)' 

I 
It is time for some examples . First and foremost, the Fourier transform of the 

point mass at 0 is the constant function 1 :  (8, E_� ) = E_� (O) = 1 .  More generally, 
for point masses at other points and their derivatives , we have 

(Bary8)-(�) = (- 1 ) 1 a i (8, T_y8aE_� ) = (- 1 ) 1 a l a� (e-27ri� · (x+y) ) l x=O 
= (21ri�) ae-21ri� ·y . 

In particular: 

9.12 Proposition. The Fourier transforms of the linear combinations of 8 and its 
derivatives are precisely the polynomials. 
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The Fourier inversion theorem then yields the formulas for the Fourier transforms 
of polynomials and imaginary exponentials :  

As an illustration of the heuristics associated to these results, consider the formula 

I e21rit; ·x d� = 8(x) . 

Although this is nonsensical as a pointwise equality, it is valid when viewed from the 
right angle. One the one hand, it expresses the fact that the Fourier transform of the 
constant function 1 is 8. More interestingly, it is a concise statement of the Fourier 
inversion theorem. Indeed, if we replace x by x - y, integrate both sides against 
¢ E S, and reverse the order of integration on the left, we obtain 

I I ¢(y)e21fit; · (x-y) dy dx = I 8(x - y)¢(y) dy . 
......... 

The integral on the left is ( ¢) v ( x) , and the integral on the right equals ¢( x) ! 
It is an important fact that every distibution is, at least locally, a linear combination 

of derivatives of continuous functions . The Fourier transform yields an easy proof of 
this :  

9.14 Proposition. 

a. IfF E £', there exist N E N, constants Ca ( I a !  < N), and f E Co (IRn ) such 
that F == Lla i <N CaBaj. 

b. IfF E 1J' ( U) and V is a pre compact open set with V C U, there exist N, Ca , f 
as above such that F == Ela i <N caaa f on v . 

......... 
Proof. By Proposition 9. 1 1 , ifF E £' then F is slowly increasing, so the function 

g(�) == ( 1  + 1 � 1 2 ) -M F(�) will be in £1 if the integer M is chosen sufficiently large. 
Let f == g; then f E Co and F == ( 1  + I � I 2 )M [, so F == (I - (47r2 ) - 1 I:� BJ )M f. 
This proves (a) ; for (b) , choose 'ljJ E C�(U) such that 'ljJ == 1 on V, and apply (a) to 
'lj;F. I 

We conclude this section with a sketch of the theory of periodic distributions; 
some of the detai ls are fleshed out in Exercises 22-24. 

The space C(X) (1'n ) of smooth periodic functions is a Frechet space with the 
topology defined by the seminorms ¢ � I I Ba¢ 1 1 u , and a distribution on 1'n is a 
continuous linear functional on this space; the space of distributions on rrn is denoted ......... 
by 1Y C1rn) .  If F E TI' C1rn) '  its Fourier transform is the function F on zn defined by 
J( !i) == (F, E-1'\,) where EK ( x) == e2-rriK ·x . Since F satisfies an estimate of the form 
I (F, ¢) I < C Lla l <N l l 8a¢ 1 1 u , there exist C, N such that 

(9 . 1 5) 
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and the Fourier transform is an isomorphism from 1)' (1'n) to the space of all functions 
on zn satisfying such an estimate. Moreover, if F E TI' (1'n ) ,  the Fourier series ,....._ 
EK F(/i;)EK converges in 1J' (1'n ) to F. 

Instead of defining periodic distributions as distributions on 1'n (linear functionals 
on C(X) (1'n ) ), one can define them as distributions on IRn (linear functionals on 
c� (IRn ) ) that are invariant under the translations T K ' /); E zn . Accordingly, let 

The periodization map P¢ == EKEZn rK¢ used in Theorem 8.3 1 is easily seen to map 
C� (IRn ) continuously into C(X)(1'n ) , so it induces a map P' : TI' (1'n) ---t TI' (IRn ) 
given by (P' F, ¢) == (F, P¢) . Since p 0 TK == p for /); E zn

' we have TK 0 P' == P' ' 
that is, the range of P' lies in TI' (IRn )per · In fact, P' : TI' (1'n ) ---t 1)' (IRn )per is a 
bijection . (The proof is nontrivial; see Exercise 24.) Moreover, if f E £1 (1'n ) , then 
f and P' f coincide as periodic functions on IR, for if ¢ E C� (IR n ) ,  

(P' /, ¢) = (!, P¢) = r f (x) L ¢(x - /1,) dx 
}[O , l ) n 

= L r t (x)¢ (x) dx = r t (x)¢(x) dx = u, ¢) . 
}[O , l )n +K }�n 

Thus the two descriptions of periodic distributions are equivalent. ,....._ If F E 1J' (1'n ) ,  the Fourier series E F(/i;)EK converges in D' (1rn ) to F; on the 
other hand, it follows easily from (9. 15) that it also converges in S' (IRn ) , and its sum 
there is P' f. Thus TI'(IRn)per C S' (IRn) ,  and by (9. 1 3 ) we have 

giving the relation between the JRn_ and 1'n-Fourier transforms for periodic distribu-,....._ 
tions .  In particular, if F == 8yn , the point mass at the origin in 1'n , then F( /);) == 1 

-for all /);; hence P' F and (P' F) are both equal to E rK8 - a restatement of the 
Poisson summation formula. 

Exercises 

16. Su!:_pose F E £' and 'ljJ E c(X). Show that for any ¢ E c�' J (F, Tx;f;) ¢ (x ) dx == 
(F, ¢ * 'l/J) . (The result can be reduced to Proposition 9.3 ; given F and ¢, the indicated 
expressions depend only on the values of 'ljJ in a compact set.) 

17. Suppose that F E  S' . Show that ....-... ........... ............ ....-... 
a. ( TyF) == e-2-rri� ·y F, r,,F == [ e2-rriry ·x F] . 
b. aa F == [ (-27rix) Q F]'� (BQ F)-== (27ri�) Q F. 
c. (F o T)-== I det Tl - 1 F o (T* ) - 1 for T E GL (n, IR) . 
d. (F * 'ljJ )- == ;j;_F for 'ljJ E S .  
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18. If n = l + m, let us write x E JRn as (y , z ) with y E JRl and z E JRm . Let 
9=" denote the Fourier transform on JRn and 9="1 , 9="2 the partial Fourier transforms 
in the first and second sets of variables - i.e . ,  9="1f(TJ , z ) = J f(y , z )e-2-rriry ·y dy 
and l ikewise for 9="2 . Then 9="1 and 9="2 are isomorphisms on 3 (1Rn ) and 3' (1Rn ) ,  and 
9=" = 9=" 1 9=" 2 = 9=" 2 9=" 1 . 
19. On JR, let Fa = PV ( 1/ x) as defined in Exercise 1 0. Also, for E > 0 let 
FE (x) = x(x2 + E2 ) - 1 ' G; (x) = (x ± iE) - 1 ' and SE (x) = e-2-rrE ix l sgn X .  

a.  limE-+a FE = Fa in the weak* topology of S' . (Theorem 8 . 14, with a =  0, 
may be useful .) 
b. limE-+a GE = Fa =f wi8 . (Hint: (x ± iE) - 1 = (x =f it: ) (x2 + t:2 ) - 1 . ) 
c. SE = (7ri ) - 1 FE and hence Sgn = (7ri) - 1 Fa . -
d. From (c) it follows that Fa = -1ri sgn. Prove this directly by showing 
that Fa = limE-+a , N-+rx> HE ,N ,  where HE ,N (x) = x- 1 if E < l x l < N and 
HE ,N (x) = 0 otherwise, and using Exercise 59b in §2.6. 
e. Compute X(a ,cx:>) (i) by writing X(a ,rx>) = � sgn + � and using (c) , (ii) by 
writing X(a ,rx>) (x) = lim e-ExX(a ,cx:>) (x) and using (b) . 

20. Suppose that F E  3' and G E £' .  - -
a. FG is well-defined element of 3' . 
b. If 'ljJ E 3, then G * 'ljJ E 3 . - - -
c. Let F * G (or G * F) be the tempered distribution such that (F * G) = FG . ........, ........, 
Then (F * G, 'l/J) = (F, G * 'l/;) = (G, F * 'l/;) for 'ljJ E 3 . 

21. Suppose that F, G, H E 3' . 
a. If at most one of F, G, H has noncompact support, then ( F * G) * H = 
F * ( G * H), where the convolutions are defined as in Exercise 20. 
b. On JR, let F be the constant function 1 ,  G = d8jdx, and H = X(a ,cx:>) ·  Then 
( F * G) * H and F * ( G * H) are well defined in 3' but are unequal . 

22. Let EK (x) = e21riK·x . If g :  zn ---t c satisfies l g(�<i:) l < C( 1 + l �<i: I )N for some 
C, N > 0, then the series EKEZn g( l"i: )EK converges in 1)' (1'n ) to a distribution -F that satisfies F = g. It also converges in 3' (1Rn ) to a tempered distribution G 
( = P' F) such that T KG = G for all l"i: .  

23. Suppose that F, G E 1)' (1'n ) . - - -
a. There is a unique F * G E D' (1'n) such that (F * G) = FG. (Use Exercise 
22.) ........, 
b. If G E C(X)(1'n ) ,  then F * G E Crx> (1'n ) and F * G(x) = (F, rxG) as on lRn . 

24. Let P be the periodization map, P¢ = EKEZn rK¢· 
a. P is a continuous linear map from C� (1Rn) to C(X) (Tn ) .  (Note that for 
¢ E C� and x in a compact set, only finitely many terms of the series E T K ¢( x) 
are nonzero.) 
b. Choose 1 E C� with f 1 = 1 ,  and let w = 1 * X[a , 1 ) n · Then w E C� and 
Pw = 1 .  
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c. If 'ljJ E coo ('JI'n ) , then 'ljJ = P( w'l/J) (where 'ljJ is regarded as a function on 1rn 
on the left and as a function on JRn on the right) . Consequently, P : C� (1Rn ) ---t 
coo ('JI'n ) is surjective and the dual map P' : 1)' ('JI'n ) ---t 1)' (1Rn )per is injective . 
d. Given G E 1J' (1Rn )per ,  define F E  1J' ('JI'n ) by (F, 'l/J) = (G, w'lfJ) (with the 
same understanding as in part (c)) . Then P'F = G, so P' maps 1J' ('JI'n ) onto 
1>' (JRn ) per · 

25. Suppose that P is a polynomial in n variables such that only zero of P (�) in JRn 
is � = 0, and let P(D) be as in §8 .7 .  

a. Every tempered distribution F that satifies P (D)F = 0 is a polynomial. (Use 
Proposition 9. 12  and Exercise 1 1 .) 
b. Every bounded function f that satisfies P( D) f = 0 is a con stant. (This 
result, for the special cases where P(D) is the Laplacian or the Cauchy-Riemann 
operator ax + iay on JR2 , is known as Liouville's theorem.) 

26. On 1Rn X JR, let G(x, t) = (47rt) -nl2e- lx l 2 /4tX (O ,oo ) (t) . 
a. G is the tempered function G(�, r ) = (27riT + 47r2 1� 1 2 ) - 1 . (Use Proposition 
8.24 and Exercise 1 8 .) 
b. Deduce that (at - �)G = 8. (Cf. Exercise 15 .) 

27. Suppose that 0 < Re a  < n. 
a. For any ¢ E 3 , 

r ( (n - a)/2) J l x l <> -nJ;(x) dx = 
r(a/2) J 1 � 1 -Q ¢(�) d� . 7r(n-a) /2 7ra/2 

(Hint: By Proposition 8 .24 and Lemma 8.25 , if t > 0 we have 

J e-1rt ix 1 2 J;(x) dx = cn/2 J e-7r l � l 2 /t¢(�) d� . 

Multiply both sides by t- l+ (n-a) /2 dt and integrate from 0 to oo.) 
b. Let Ra (x) = r((n - a)/2) [r (a/2)2a7rn/2] - 1 l x l a-n . Then Ra is a tem
pered function and Ra is the tempered function Ra (�) = (27r l� l ) -a . 
c. If n > 2, then �R2 == -8. (Cf. Exercise 14. See the next exercise for the 
case n = 2.) 

28. Suppose n = 2. For 0 < Re a < 2, let Ca = r((2 - a)/2) [r (a/2) 2Q7r] - l 
and Qa (x) = ca ( l� l a-2 - 1 ) .  (Note that Qa differs by a constant from the Ra in 
Exercise 27 .) 

a. lima-+2 Qa (x) == - (27r) - 1 log lx l , pointwise and in S' . 
......... ......... 

b. By (a), lima-+2 Qa exists in 3' , and by Exercise 27b, Qa (�) = (27r l � l ) -a -
ca8. Noting that (27r l � l ) -2 is not integrable near the origin and that lima-+2 Ca = 

......... 
oo, find an explicit formula for lima-+2 Qa . (Exercise 12  may help.) 

29. For 1 < p < oo, let eP be the set of all F E 3' for which there exists C > 0 
such that I I F * ¢ l i P < C I I ¢ 1 1 P for al l ¢ E 3, so that the map ¢ �  F * ¢ extends to a 
bounded operator on LP . 
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a. e1 = M(JR.n ) . (If F E e1 , consider F * 4Yt where { ¢t } is an approximate 
identity, and apply Alaoglu's theorem.) 
b. e2 = { F E 3' : F E L00 } .  (Use the Plancherel theorem.) 
c. If p and q are conjugate exponents , then eP = eq . (Hint: (F * ¢, 'l/J) = 

"'""'"' "'""'"' 

(F * 'l/J,  ¢) .) 
d. If 1 < p < 2 and q is the conjugate exponent to p, then eP c er for all 
r E (p , q) . (Use the Riesz-Thorin theorem.) 
e. el C ep C e2 for all p E ( 1 , oo) . 

9.3 SOBOLEV SPACES 

One of the most satisfactory ways of measuring smoothness properties of functions 
and distributions is in terms of £2 norms. There are two reasons for this : £2 has 
the advantage of being a Hilbert space, and the Fourier transform, which converts 
differentiation into multiplication by the coordinate functions, is an isometry on £2 • 

As a first step, suppose k E N and let H k be the space of all functions f E £2 (JR.n ) 
whose distribution derivatives aa f are L2 functions for l n l < k. One can make Hk 
into a Hilbert space by imposing the inner product 

(!, g) .__.. L J(fP f) (Oag) .  
l a l <k 

However, it is more convenient to use an equivalent inner product defined in terms of 
the Fourier transform. Theorem 8.22e and the Plancherel theorem imply that f E Hk ......... 
iff �a f E L2 for I n I < k. A simple modification of the argument in the proof of 
Proposition 8.3 shows that there exist C1 , C2 > 0 such that 

c1 (1 + l� l 2 ) k < L 1�0: 1 2 < c2 (1 + l� l 2 ) k , 
la l <k 

from which it follows that f E Hk iff ( 1  + l� l 2 ) kl2j E £2 and that the norms 

! ._. ( L l l 8af l l �f /2 and f ._. \ \ ( 1 + 1� 1 2 ) k/21] \ 2 l a l <k 
are equivalent. The latter norm, however, makes sense for any k E JR., and we can 
use it to extend the definition of H k to all real k. 

We proceed to the formal definitions .  For any s E IR the function � � (1 + l � l 2 ) s/2 
is coo and slowly increasing (Exercise 30), so the map As defined by 

is a continuous linear operator on 3' - actually an isomorphism, since A_;- 1 = A-s · 
If s E JR., we define the Sobolev space Hs to be 

Hs = {f  E 3' : Asf E £2 } ,  
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and we define an inner product and norm on Hs by 

(The equal ity of the two formulas for (f, g) (s) and for I I  J i l es ) follows from the 
Plancherel theorem.) Note that the inner products ( · , · )  (s ) are conjugate linear in 
the second variable, but we are continuing to use the notation ( · , · ) for the bilinear 
pairing between 3' and 3 . This will cause no confusion, since we shall not be using 
the inner products ( · ,  · ) ( s ) explicitly. 

The following properties of Sobolev spaces are simple consequences of the defi
nitions and the preceding discussion : 

i .  The Fourier transform is  a unitary isomorphism from Hs to £2 (JRn , fLs )  where 
dJ.Ls (�) = ( 1  + 1 � 1 2 ) 8  d�. In particular, Hs is a Hilbert space . 

ii . 3 is a dense subspace of Hs for all s E JR. (This follows easily from (i) and 
Proposition 8. 1 7 . )  

111 . If t < s,  Hs is a dense subspace of Ht in the topology of Ht, and 1 1 · 1 1  (t ) < I I · I I  (s ) . 
iv. At is a unitary isomorphism from Hs to Hs-t for all s , t E JR. 

v. Ho = L2 and I I  · I l ea ) = l l · l l 2 (by Plancherel). 

vi. aa is a bounded linear map from Hs to Hs- la l  for all s , a (because I �Q I < 
( 1  + � � � 2 ) l a l / 2) .  

By (iii) and (v), for s > 0 the distributions in  Hs are £2 functions. For s < 0 
the elements of Hs are generally not functions. For example, the point mass 8 is 
in Hs iff s < - �n, for 8 is the constant function 1 ,  and J(1  + 1 � 1 2 ) 8  d� < oo 
iff s < - � n. Another example : The distribution Wt whose Fourier transform is 
(27r l � l ) - 1 sin 21rt l� l , which arose in the discussion of the wave equation in §8 .7 ,  is 
in Hs iff s < 1 - � n; it i� in L1 n £2 when n = 1 and in L1 \ £2 for n = 2 , but is 
not a function for n > 3. 

9.16 Proposition. If s E JR, the duality between 3' and 3 induces a unitary isomor
phism from H_s to (Hs ) * . More precisely, if f  E H_ 8 , the functional ¢ � (f, ¢) 
on 3 extends to a continuous linear functional on Hs with operator norm equal to 
I I J i l e -s) ' and every element of (Hs ) * arises in this fashion. 

Proof. If f E H_s and ¢ E S , 
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since fv ( �) == 1( -�) is a tempered function. Thus by the Schwarz inequality, 

I U, ¢) 1 < [j IF (�W (l + 1 � 1 2 ) -s d�J 
1 12 [j 1 ¢(�) 1 2 ( 1 + 1 � 1 2r d�J 

1 12 

== l l ! l l c -s) l l ¢ 1 1 cs ) ' 
so the functional ¢ � (f, ¢) extends continuously to Hs, with norm at most I I  f i l e -s ) ·  
In fact, its norm equals I I ! I I  ( -s) , since if g E 3' is the distribution whose Fourier 

transform is g(�) == ( 1  + 1 � 1 2 ) -s 1(�) ,  we have g E Hs and 

(!, g) = j 1 1(�) 1 2 ( 1 + l � l 2r d� = I I J I I Z-s) = l l ! l l c -s l l l g l l cs l · 

Finally, if G E (Hs ) * ,  then G o  �-1 is a bounded linear functional on L2 (J.Ls ) where 
dJ.Ls (�) == ( 1  + 1 � 1 2 ) 8  d�, so there exists g E L2 (J.Ls ) such that 

G(¢) = j ¢(�)g(0 ( 1 + 1 � 1 2r d�. 

But then G(¢) == (!, ¢) where fv (�) == ( 1  + l � l 2 ) 8g (�) , and f E H_s since 

I I ! I I Z-s) = j 1 1(�) 1 2 ( 1 + 1 � 1 2 ) - s 
di. = j l g(�W (1 + 1 � 1 2r d� . 

I 
For s > 0, the elements of Hs are £2 functions that are "£2-differentiable up 

to order s,
" and it is natural to ask what is the relationship between this notion of 

smoothness and ordinary differentiability. Of course, if one thinks of elements of H s 
as distributions or elements of £2 , there is no distinction among functions that agree 
almost everywhere ; from this perspective, when one says that a function in H s is of 
class Ck , one means that it agrees a.e. with a Ck function. With this understanding, 
the question just posed has a simple and elegant answer. We introduce the notation 

C� == { f  E Ck (1Rn) :  aa f E Co for l n l < k } . 

ct is a Banach space with the ck norm f � Lla l <k I I BQ ! l l u · 
9.17 The Sobolev Embedding Theorem. Suppose s > k + � n. 

a. Iff E Hs, then (Ba Jf' E L 1 and I I (Ba f)-lh < C l l ! l l cs ) for l n l < k, where C 
depends only on k - s. 

b. Hs c ct, and the inclusion map is continuous. 

Proof. By the Schwarz inequality, 
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The first factor on the right is I I  f I I  c s ) , and the second one i s  finite by Corollary 2.52 
since 2 ( k - s) < - n .  This proves (a), and (b) follows by the Fourier inversion 
theorem and the Riemann-Lebesgue lemma. 1 

9.18 Corollary. Iff E H s for all s, then f E C(X). 
An example may help to elucidate this theorem. Let JA (x) = ¢(x) lx 1 A , where 

A E 1R and ¢ E C� with ¢ = 1 on a neighborhood of 0. Then the (classical) 
derivative aa fA is c(X) except at 0 and is homogeneous of degree A - I Q I near 0, so 
that 1 8a fA I < Ca,A i x i A- Ia l , and in particular aa fA E £1 provided A - la l > - n .  
In this case aa fA , as an L1 function, is also the distribution derivative of fA · (To 
see this, replace fA by the C(X) function ¢(x) ( lx l 2 + E2 ) A/2 and consider the limit as 
E � 0.) Moreover, aa fA E L2 iff A - ln l > - �n, so f E Hk (k = 0,  1 ,  2 ,  . . .  ) iff 
A > k - � n ,  whereas fA E C� iff A > k. See also Exercises 33-35 for some related 
results . 

Next, we show that multiplication by suitably smooth functions preserves the Hs 
spaces . We need a lemma: 

9.19 Lemma. For all � ,  TJ E JRn and s E JR, 

( 1 + 1 � 1 2 ) s ( 1 + I TJ 1 2 ) -s < 2 1 s l ( 1 + � � - TJ I 2 ) l s i . 
Proof Since 1� 1 < I� - TJ I  + I TJ I , we have 1 � 1 2 < 2( 1 � - TJ I 2 + I TJ I 2 ) and hence 

1 + 1� 1 2 < 2 (1 + I � - TJ I 2 ) ( 1 + ITJ I 2 ) . 
If s > 0, we have merely to raise both sides to the sth power. If s < 0, we interchange 
� and TJ and replace s by -s, obtaining 

which is again the desired result. I 

......... 
9.20 Theorem. Suppose that ¢ E Co (lRn) and that ¢ is a function that satisfies 

for some a > 0. Then the map Me�> (!) = ¢! is a bounded operator on Hs for 
l s i < a. 

Proof. Since As is a unitary map from Hs to H0 = £2 , it is equivalent to show 
that AsM¢A-s i s  a bounded operator on £2 • But 



where 

By Lemma 9. 1 9, 

SOBOLEV SPACES 305 

jK (� , ry) l < 2 1 s l /2 (1 + � � - ry l 2 ) l s l /2 1 ¢(� - ry) l , 

so if l s i < a, then J I K(�, ry) l d� and J I K(� , ry) l dry are bounded by 2ai2C. That 
AsM¢A-s is bounded on L2 therefore follows from the Plancherel theorem and 
Theorem 6. 1 8 . 1 

9.21 Corollary. If¢ E 3, then M4> is a bounded operator on Hs for all s E JR. 
Our next result is a compactness theorem that is of great importance in the appli

cations of Sobolev spaces .  

9.22 Rellich's Theorem. Suppose that {fk } is a sequence of distributions in Hs 
that are all supported in a fixed compact set K and satisfy supk l l !k l i es ) < oo. Then 
there is a subsequence {fki } that converges in Ht for all t < s . 

......... 
Proof. First we observe that by Proposition 9. 1 1 , fk is a slowly increasing C(X) 

function. Pick ¢ E C� such that ¢ = 1 on a neighborhood of K. Then fk = ¢fk , so ......... ......... ......... fk = ¢ * fk where the convolution is defined pointwise by an absolutely convergent 
integral . By Lemma 9. 1 9  and the Schwarz inequality, 

( 1 + l � l 2 ) s/2 lh (�) l 
< 2 1 s 1 12 j 1 ¢(� - ry) l ( 1 + I� - ry l 2 ) 1 s 1 12 lh (ry) l ( 1 + l ry l 2 ) s12 dry 
< 2 l s l /2 1 1 ¢ 1 1  ( l s i ) I I  fk I I  (s) < constant . 

Likewise, since 8j (¢ * _h )  = (aj ¢) * _h ,  we see that ( 1  + l � l 2 ) s/2 1 8j_h (�) l is ......... 
bounded by a constant independent of�, j , and k. In particular, the fk 's and their first 
derivatives are uniformly bounded on compact sets, so by the mean value theorem ......... 
and the ArzeUt-Ascoli theorem there is a subsequence {fkj }  that converges uniformly 
on compact sets . 

We claim that {fkj }  is Cauchy in Ht for all t < s. Indeed, for any R > 0 we can 
write the integral 

as the sum of the integrals over the regions I �  I < R and I �  I > R. For I� I < R we use 
the estimate 
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and for 1 � 1  > R we use the estimate 

( 1 + � � � 2 ) t < ( 1 + R2) t-s (1 + 1 � 1 2 ) s ' 
which yield 

Given E > 0, the second term will be less than � E provided R is chosen sufficiently 
large, since t - s < 0; once such an R is fixed, the first term will less than � E provided i and j are sufficiently large. The proof is therefore complete .  1 

Although the definition of Sobolev spaces in terms of the Fourier transform entails 
their elements being defined on all of 1Rn, these spaces can also be used in the study 
of local smoothness properties of functions. The key definition is as follows: If U is 
an open set in JRn , the localized Sobolev space H!oc ( U) is the set of all distributions 
f E 1)' ( U) such that for every precompact open set V with V c U there exists 
g E Hs such that g = f on V. 

9.23 Proposition. A distribution f E 1J' (U) is in H!oc (U) iff ¢! E Hs for every 
¢ E C�(U) . 

Proof If f E H!oc (U) and ¢ E C�(U) , then f agrees with some g E Hs 
on a neighborhood of supp(¢) ; hence ¢! =  ¢g E Hs by Corollary 9.2 1 . For the 
converse, given a precompact open V with V c U, we can choose ¢ E C� (U) 
with ¢ = 1 on a neighborhood of V by the C(X) Urysohn lemma; then ¢! E Hs 
and ¢! = f on V. (We have implicitly used Proposition 4.3 1 to obtain compact 
neighborhoods of supp ¢ and V in U.) 1 

We conclude this section with one of the classic applications of Sobolev spaces, a 
regularity theorem for certain partial differential operators . 

If L = E� aj ( d / dx )i is an ordinary differential operator with C(X) coefficients 
such that am never vanishes, it is not hard to show that smooth data give smooth 
solutions . More precisely, if Lu = f and f is Ck on an open interval I, then u is 
ck+m on I. No such result holds for partial differential operators in general . For 
example, for any f E Lfoc (JR) the function u( x,  t) = f ( x - t) satisfies the wave 
equation ( B'f - B� )u = 0, but u has only as much smoothness as f .  However, there 
is a large class of differential operators for which a strong regularity theorem holds . 
We restrict attention to the constant-coefficient case, although the results are valid in 
greater generality. 

Let P(D) = Ela l <m caDa (notation as in §8 .7) be a constant-coefficient opera
tor. We assume that m is the true order of P(D) , i .e . ,  that Ca i= 0 for some a with 
la l  = m .  The principal symbol Pm is the sum of the top-order terms in its symbol : 

Pm (�) = L Ca�a . 
l a J=m 
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P( D) is called elliptic if P m ( �) i= 0 for all nonzero � E JRn . Thus, ellipticity means 
that, in a formal sense, P(D) is genuinely mth order in all directions. (For example, 
the Laplacian � is elliptic on 1Rn , whereas the heat and wave operators at - � and 
a; - � are not elliptic on ]Rn+ 1 .) 
9.24 Lemma. Suppose that P(D) is oforder m. Then P(D) is elliptic iffthere exist 
C, R > 0 such that I P(�) I > Cl� lm when 1 � 1  > R. 

Proof. If P( D) is elliptic , let C1 be the minimum value of the principal symbol 
Pm on the unit sphere 1 � 1 = 1 .  Then C1 > 0, and since Pm is homogeneous of 
degree m, we have IPm (�) l > C1 l� lm for all � . On the other hand, P - Pm is of 
order m - 1 ,  so there exists C2 such that IP(�) - Pm(�) l < C2 l� lm- 1 . Therefore, 

IP (�) I > I Pm (�) I - IP(�) - Pm (�) l > �C1 I� Im for 1 � 1  > 2C2C! 1 . 

Conversely, if P(D) is not elliptic, say Pm (�o )  = 0, then IP(�) I < Cl� l m- 1 for 
every scalar multiple � of �0 .  1 

9.25 Lemma. If P(D) is elliptic of order m, u E H8, and P(D)u E H8, then 
U E Hs+m· 

Proof. The hypotheses say that ( 1  + l� l 2 ) sl2u E £2 and (1 + 1� 1 2 ) 812 Pu E £2 . 
By Lemma 9.24, for some R > 1 we have 

( 1 + 1� 1 2 ) m12 < 2m 1� 1m < c-12m iP(�) I for 1� 1 > R, 

and ( 1  + 1� 1 2 )ml2 < (1 + R2 )m/2 for 1 � 1  < R. It follows that 

( 1 + l� l 2 ) (s+m)/2 lul < C' (1 + l� l 2 ) s12 ( 1Pul + lu i )  E L2 , 

that is, u E Hs+m · I 

9.26 The Elliptic Regularity Theorem. Suppose that L is a constant-coefficient 
elliptic differential operator of order m, n is an open set in 1Rn, and u E 1J' (0). 
If Lu E H!oc (O) for some s E JR, then u E H!�m (O); and if Lu E 000 (0), then 
u E 000 (0 ) . 

Proof. The second assertion follows from the first in view of Corollary 9 . 1 8, so 
by Proposition 9.23 we must show that if Lu E H!oc (n) and ¢ E C� (O) , then 
¢u E Hs+m· Let V be a precompact open set such that supp(¢) c V C V C 0, 
and choose 'ljJ E c� ( n) such that 'ljJ = 1 on v. Then 'lj;u E £I ' so it follows 
from Proposition 9. 1 1  that 'lj;u E Ha for some a E JR. By decreasing a we may 
assume that s + m - a is a positive integer k. Set 'l/Jo = 'ljJ and 'l/Jk = ¢, and choose 
recursively 'lj;1 , . . .  , 'lfJk- 1 E C� such that 'l/Jj = 1 on a neighborhood of supp( ¢) 
and supp( 'l/Jj ) is contained in the set where 'l/Jj _1 = 1 .  We shall prove by induction 
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that 1/Jju E Ha+j · When j = k, we obtain ¢u = 'lfJku E Ha+k = Hm, which will 
complete the proof. 

The crucial observation is that for any ( E C� the operator [L , (] defined by 

[L, (] f  = L((f) - (Lf 
is a differential operator of order m - 1 whose coefficients are linear combinations of 
derivatives of (; in particular, these coefficients are C(X) functions that vanish on any 
open set where ( is constant. (This follows from the product rule for derivatives .) 
Thus, if f E Ht , we have aa f E Ht-(m- 1 ) for In I < m - 1 and hence [L , (] f  E 
Ht-(m- 1 ) by Theorem 9.20. 

For j = 0 we have 'lj;0u E Ha by assumption . Suppose we have establi shed that 
1/Jju E Ha+j ' where 0 < j < k. Then by the preceding remarks, 

L( 'l/Jj+ 1  u) = 1/Jj+ 1 Lu + [ L, 'l/Jj+ 1 ]u = 1/Jj+ 1 Lu + [L, 'l/Jj+ 1 ]1/Jju 
E Hs + Ha+j-(m- 1 ) = Ha+j+ 1-m · 

Since 'l/Jj+1 u = 'l/Jj+ 1  1/Jju E Ha+j ' Lemma 9.25 (with P(D) = L) implies that 
1/Jj+ l u E Ha+j+1 , and we are done. 1 

Two classical special cases of this theorem are particularly noteworthy. First, 
every distribution solution of Laplace 's equation �u = 0 is a C(X) function. (This 
fact is known as Weyl's lemma.) Second, if L = 81 + i82 on JR2 , the equation 
Lu = 0 is the Cauchy-Riemann equation, whose solutions are the holomorphic 
(or analytic) functions of z = x1 + ix2 • We thus recover the fact that holomorphic 
functions are c(X). 

Exercises 

30. Let fs (� ) = ( 1  + 1 � 1 2 ) 812 . Then l 8a fs (�) l < Ca ( 1  + l� l ) s- la l . 
31. If k E N, H k i s the space of all f E £2 that possess strong £2 derivatives aa f, 
as defined in Exercise 8 in §8 .2, for I a I < k ;  and these strong derivatives coincide 
with the distribution derivatives. 

32. Suppose r < s < t. For any E > 0 there exists C > 0 such that I I  ! I I  (s ) < 
t: l l f l l ct ) + C l l f l l cr) for all f E Ht . 
33. (Converse of the Sobolev Theorem) If Hs c C� , then s > k + !n. (Use the 
closed graph theorem to show that the inclusion map Hs ---t C� is continuous and 
hence that aa8 E (Hs ) * for I n I < k.) 

34. (A Sharper Sobolev Theorem) For 0 < a < 1, let 

Aa (1Rn) = {f E BC(lRn) : sup I J(x) - f (y) l < oo} .  
x#y lx - Y la 

a. If s = !n  + a where 0 < a < 1 ,  then l l rx8 - Ty8 1 1 ( -s ) < Ca lx - Y l a . (We 

have ( rx8f( � ) = e-21ri� · x . Write the integral defining l l rx8 - ry8 i l f -s) as the 
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sum of the integrals over the regions 1 � 1  < R and 1 � 1  > R, where R = lx - Y l - 1 , ......... 
and use the mean value theorem to estimate ( Tx8 - Ty 8) on the first region.) 
b. If s = !n + a  where 0 < a < 1 ,  then Hs C Aa (IRn ) . 
c. If s = ! n + k + a  where k E N  and 0 < a < 1 ,  then 

Hs C { f  E C� : aa f E Aa (IRn ) for l n l < k } .  

35. The Sobolev theorem says that if s > ! n, it makes sense to evaluate functions in 
H s at a point. For 0 < s < � n, functions in H s are only defined a.e . ,  but if s > � k 
with k < n, it makes sense to restrict functions in Hs to subspaces of codimension 
k. More precisely, let us write !Rn = !Rn-k x IRk , x = (y , z) , � = (TJ ,  () , and define 
R :  S (JRn ) ---+ S (!Rn-k ) by Rf (y) = f(y ,  0) . 

a. (Rf)-(TJ) = J f(rJ, () d(. (See Exercise 20 in § 8 .3 . )  
b. If s > ! k, 

c. R extends to a bounded map from Hs (1Rn ) to Hs- (k/2) (1Rn-k ) provided 
s > ! k . 

36. Suppose that 0 -=f ¢ E C� and { aj } is a sequence in !Rn with l ai I ---+ oo, and let 
cPi ( x) = ¢( x - aj ) .  Then { cPi } is bounded in H s for every s but has no convergent 
subsequence in Ht for any t. 

37. The heat operator at - � is not elliptic, but a weakened version of Theorem 
9.26 holds for it. Here we are working on JRn+ 1  with coordinates (x , t) and dual 
coordinates (� , r) ,  and at - � =  P(D) where P (� , r) = 2wir + 4w2 1� 1 2 • 

a. There exist C, R > 0 such that 1 � 1 1 (� , r) l 1 /2 < C IP (� , r) l for 1 (� ,  r) l > R. 
(Consider the regions l r l  < 1 � 1 2 and l r l  > 1� 1 2 separately.) 
b. If f E Hs and (at - �)f E Hs , then f E Hs+1 and axi f  E Hs+( 1/2) for 
1 < i < n. 
c. If ( E C�(JRn+1 ) , we have 

d. If 0 is open in JRn+1 , u E 1)' (0) , and (at - �)u E H!oc (O) , then u E 
H!+ 1 ( 0) . (Let 'l/Ji be as in the proof of Theorem 9 .26. Show inductively that 
if 'l/Jou E Ha , then 'l/Jju E Ha+(i /2) and axi ('l/;ju) E Ha+(j- 1) /2 provided 
a +  !i < s. ) 

38. Suppose so < s1 and to < t1 , and for 0 < ,\ < 1 let 

If T is a bounded linear map from Hso to Ht0 whose restriction to Hs1 is bounded 
from Hs1 to Ht1 , then the restriction of T to Hs>. is bounded from Hs>. to Ht>. for 



310 ELEMENTS OF DISTRIBUTION THEORY 

0 < ,\ < 1 .  (T is bounded from Hs to Ht iff AsTA_t is bounded on £2 . Observe 
that Az is well defined for all z E C and Az is unitary on every Hs if Re z = 0. Let 
s(z) = ( 1 - z)so + zs1 , t (z) = ( 1 - z)to + zt1 , and for 0 < Re z < 1 and ¢, 'ljJ E S 
let F(z) = J[At (z )TA_s (z) ¢]'l/J. Apply the three lines lemma as in the proof of the 
Riesz-Thorin theorem.) 

39. Let n be an open set in !Rn , and let G : n ---+ !Rn be a C(X) diffeomorphism. 
For any ¢ E C� (G(f2) ) ,  the map T f = (¢!) o G is bounded on Hs for all s ;  
consequently, f o G E H!oc (n) whenever f E H!oc (G(f2) ) .  Proceed as follows : 

a. If s = 0 ,  1 ,  2 ,  . . .  , use the chain rule and the fact that f E Hs iff aa f E £2 
for l n l < s. 
b. Use Exercise 3 8 to obtain the result for all s > 0. 
c. For s < 0, use Proposition 9. 1 6  and the fact that the transpose of T is another 
operator of the same type, namely, T' f = ( 'ljJ f) o H where H = c-1 and 
'l/J = (J¢) o G with J (x) = ! det DxG ! .  

40. State and prove analogues of the results in this section for the periodic Sobolev 
spaces 

9.4 NOTES AN D REFERENCES 

The mathematical foundations for the theory of distributions were largely laid in 
the 1930s. On the one hand, several researchers in partial differential equations 
arrived at the notion of "weak derivatives" of functions ;  to wit, if f, g E Lfoc (U) , 
g is the derivative aa f in the weak sense if J g¢ = (- 1 ) 1 a l  J f8Q¢ for all ¢ in 
some suitable space of test functions. On the other, various attempts were made to 
extend the domain of the Fourier transform beyond L 1 + £2 . The idea of defining 
"generalized functions" as linear functionals on certain function spaces goes back to 
Sobolev [ 1 36] , but it was Laurent Schwartz who systematically developed the theory 
of distributions and who introduced the spaces S and S' as natural domains for the 
Fourier transform. (See Dieudonne [33] for a more detailed historical account.) 

Rudin [ 1 26] contains a good concise introduction to the theory of distributions that 
includes some functional-analytic points we have elided, such as the definition of the 
topology on C� (U) and the properties of convolution on 1)' x £' . More extensive 
treatments can be found in Gelfand and Shilov [55] , Schwartz [ 1 32] , and Treves [ 1 50] . 
Hormander [77] contains an excellent full-scale treatment of distribution theory with 
a view toward its applications to differential equations. 

§9.2 : See Fol land [49] for a case study of the analytic techniques used in manip
ulating distributions and their Fourier transforms and applying them to differential 
equations. 

§9.3 : The spaces originally considered by Sobolev [ 1 37] are the spaces Hf of 
functions f E LP whose distribution derivatives aa f are in LP for l n l < k .  When 
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1 < p < oo, it turns out that H'f = { f : As f E LP} (although this is far from 
obvious when p -=f 2), and this characterization of Hk can be used to define Hf for 
all s E JR. Sobolev 's embedding theorem, in this setting, is that if s < njp then 
H� c Lq where q- 1 = p- 1 - n- 1  s, and if s > k + njp then Hf c Ck . See Stein 
[ 1 40, § §V.2-3] . Further results on Sobolev space and their applications can be found 
in Adams [ 1 ]  and Lieb and Loss [93] . 

In Rellich's theorem the hypothesis that K is compact can be replaced by the 
hypothesi s that m ( K) < oo when s > 0; see Lair [89] . 

A differential operator L = Lla l <m aaDa with C(X) coefficients is called elliptic 
on n c !Rn if Lla l =m aa (x)�Q -=1 0 for all X E n and all nonzero � E !Rn . The 
elliptic regularity theorem remains true as stated for such operators ; see Folland [48] . 
The LP version of this theorem is also valid for 1 < p < oo, but not for p = 1 or 
p == oo.  It is not true, except in dimension 1 ,  that if Lu E Ck (O) then u E Ck+m (O) , 
but if  aa Lu is not just continuous but Holder continuous of exponent A (0 < A < 1 ) 
for ja l  == k, then u E ck+m (O) and 8f3u sati sfies the same Holder condition for 
1 !3 1 == k + m. See Taylor [ 1 47 ,  Chapter XI] . 





Topics in Probability 
Theory 

Probability theory, originally conceived to analyze games of chance, has developed 
into a broadly useful discipline with deep connections to other branches of mathemat
ics and many applications to other subjects such as physics, statistics, and economics. 
The mathematical study of probability began some two and a half centuries ago, but 
until the advent of modem analytic tools the theory was limited to combinatorial the
orems involving discrete sample spaces and a few other results of somewhat doubtful 
rigor. It is now recognized that the fundamental datum in probability theory is a 
measure space (X, M, fL) such that J.L( X) = 1 ; such a measure fL is called a proba
bility measure. X is to be considered as the set of all possible outcomes of some 
process, such as an experiment or a gambling game, and the measure of a set E E Jv( 
is interpreted as the probabi lity that the outcome lies in E. Although measure spaces 
are the natural setting for the study of probability, it is hardly accurate to say that 
probability theory is a branch of measure theory, for its central ideas and many of its 
techniques are di stinctively its own . 

This brief chapter is intended not as a systematic introduction to probabi lity theory 
but rather as an advertisement for the subject; it also serves to il lustrate further some 
results of previous chapters . 

1 0.1  BASIC CONCEPTS 

Probability theory has its own vocabulary, which is partly a legacy of its development 
before the connection with measure theory was made explicit and partly a result of the 

313 
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fact that the probabilistic point of view is different. We therefore begin by presenting 
a brief dictionary of probabilists ' dialect. 

Analysts ' Term 

Measure space (X, M, J-L) (J-L (X) == 1 )  
(a-)algebra 
Measurable set 
Measurable real-valued function f 
Integral of f, J f dJ-L 
£P [as adjective] 
Convergence in measure 
Almost every( where), a.e. 
Borel probability measure on IR 
Fourier transform of a measure 
Characteristic function 

Probabilists ' Term 

Sample space (f2,  'B ,  P) 
(a-)field 
Event 
Random variable X 
Expectation or mean of X, E(X) 
Having finite pth moment 
Convergence in probability 
Almost sure(ly), a.s . 
Distribution 
Characteristic function of a distribution 
Indicator function 

Probabilists have an aversion to di splaying the arguments of random variables. 
For example, { w : X (w) > a} and P( { w : X (w) > a}) are commonly written as 
{X > a} and P(X > a) . 

Henceforth we shall , for the most part, adopt probabilistic language in this chapter, 
although we shall use the term "LP random variable" in preference to the more 
cumbersome "random variable with finite pth moment." One more standard piece of 
terminology, which has no equivalent in classical analysis , is the following: If X is a 
random variable, its variance a2 (X) and standard deviation a( X)  are defined by 

a(X) == Ja2 (X) .  

If X �  L2 , then a2 (X) == oo. If X E £2 , then E[(X-a) 2] = E(X2) -2aE(X)+a2 

is a quadratic function of a whose minimum occurs when a = E(X) ; hence 

a2 (X) == E [ (X - E(X) ) 2] = E(X2) - E(X) 2 (X E £2 ) .  

a (X) is a measure of how widely X deviates from its mean E(X) .  
At this point we must di scuss a general measure-theoretic construction. Let 

(n ,  'B ,  P) be a probability space (or, for that matter, an arbitrary measure space), let 
(n' ' 'B') be another measurable space, and let ¢ : n ---r n' be a ('B ,  'B') -measurable 
map. Then the measure P induces an image measure Pel> on n' by 

P4> (E) = P (¢-1 (E) ) . 

That this is indeed a measure follows from the fact that ¢- 1 commutes with unions 
and intersections. 

10.1 Proposition. With notation as above, iff  : f2' ---+ IR is a measurable function, 
then J0, f dPc/> = fn (J o ¢) dP whenever either side is defined. 

Proof. When f = XE with E E 'B', this is just the definition of P4> , since 
XE o ¢ = X¢- 1 c E) . The general result follows by taking linear combinations and 
limits . 1 
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If X is a random variable on 0, then Px is a probability measure on IR, called the 
distribution of X, and the function 

F(t) = Px ( ( -oo, t] ) = P(X < t) 
(which determines Px by Theorem 1 . 1 6) is called the distribution function of X. 
If { Xa }aEA is a family of random variables such that Pxa = Pxf3 for all a ,  {3 E A, 
the X a 's are said to be identically distributed. 

More generally, for any finite sequence X1 , . . .  , Xn of random variables, we can 
consider (X1 , . . . , Xn ) as a map from 0 to !Rn , and the measure Pcx1 , . • •  ,Xn ) on 
1R n is called the joint distribution of X 1 , . . . , X n . It is a general principle that all 
properties of random variables that are relevant to probability theory can be expressed 
in terms of their joint distributions. For example, by Proposition 1 0. 1 ,  

E(X) = I t dPx (t) , a2 (X) = I (t - E(X ) ) 2 dPx (t) , 
E(X + Y) = I (t + s) dPcx,n (t ,  s) . 

In fact, given a Borel probability measure A on JR, one can simply speak of the 
mean A and variance a2 of A, 

>. = 1 t d>. (t) , a2 = 1 (t - >.f d>.(t) , 
which are the mean and variance of any random variable with distribution A. 

One of the most important concepts in probability theory, and the one that most 
clearly sets it apart from general measure theory, is that of (stochastic) independence. 
To motivate thi s idea, consider a probability space (0, 9=", P) and an event E such that 
P(E) > 0 .  Then the set function PE (F) = P(EnF)/P(E) is a probabi lity measure 
on n called the conditional probability on E; PE (F) represents the probability of the 
event F given that E occurs . If PE (F) = P(F) , that is , if the probability of F is the 
same whether or not we restrict to E, then F is said to be independent of E. Thus, 
F is independent of E iff P(E n F) = P(E)P(F) ;  moreover, the latter condition is 
clearly symmetric in E and F and makes sense even if P(E) = 0. 

With thi s in mind, we define a collection { Ea }aEA of events in n to be indepen
dent if 

n 
P( Ea l n . . .  n Ean )  = IT P( Eaj )  for all n E N and all distinct 0'.1 . . .  ' O'.n E A. 

1 

(For the events Ea to be independent it does not suffice for them to be pairwise 
independent; see Exercise 1 . ) 

A collection {Xa }aEA of random variables on n is called independent if the 
events {X a E Ba } = X a 1 ( Ba ) are independent for all Borel sets Ba C JR. This 
condition can be neatly rephrased as follows. Observe that if a1 , . . .  , an E A and 
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we write Xj == Xo:i ' we have 

P(X11 (B1 ) n ° 0 0 n X�1 (Bn) ) == P( (X1 , 0 0 0 
' Xn) - 1 (B1 X 0 0 0 X Bn ) ) 

== Pc X 1 ' . . .  'X n )  ( B 1 X 0 0 0 X B n ) ' 

whereas 
n n n 
II P(x1- 1 (B1 ) ) = II Pxi (B1 ) = (II Pxj ) (B1 x 0 0 0 x Bn) o 
1 1 1 

These quantities are equal for all Borel sets Bj c IR iff 
n 

Pcx� , . . .  ,Xn ) == II Pxi · 
1 

That is, {Xo: }o:EA is an independent set of random variables iff the joint distribution 
of any finite set of X o: 's is the product of their individual distributions. 

The following proposition expresses the fact that functions of independent random 
variables are independent. 

10.2 Proposition. Let {X nj : 1 < j < J ( n) , 1 < n < N} be independent random 
variables, and let f n : JRJ(n) ---t 1R be Borel measurable for 1 < n < N. Then the 
random variables Yn == fn (Xn1 , . . .  , XnJ(n) ), 1 < n < N, are independent. 

Proof. Let Xn == (Xn1 , . . .  , XnJ (n) ) .  If B1 , . . .  , BN are Borel subsets of JR, 
we have yn- 1 (Bn )  == Xn 1 (!;; 1 (Bn ) )  and hence 

N 
( y1 ' . .  

0 
' y N )  - 1 ( B 1 X 0 0 0 X B N)  == n yn-1 ( Bn )  

1 
== (X1 , 0 0 0 

, XN) - 1 (f1 1 (B1 ) X 0 0 0 X JN1 (BN) ) . 

Therefore, by the independence of the X nj ' s and Fubini ' s theorem, 

P(Y1 ,  . . .  ,Yn ) (B1 X · · · X Bn )  == Pcx1 , . . .  ,XN ) (f1 1 (B1 ) x · · · X fN1 (BN) )  
N J(n) 

= (II II Pxni ) (fl l (Bl ) X 0 0 0 X JNl (BN ) ) 
n=1 j=1 
N 

== II Pxn (J;; 1 (Bn) )  
n= 1  
N 

== II Pyn (Bn) · 
n= 1  

I 
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We now present some fundamental properties of independent random variables. 
For the first one we need the notion of convolutions of measures on IR developed in 
§8 .6 . An easy induction on (8 .47) shows that if A1 , . . .  , An E M (IR) , then A1 * · · · * An 
is given by 

( 1 0.3) A1 * · · · * An (E) = J · · · J XE (t1 + · · · + tn )dAl (tl ) · · · dAn (tn ) .  

10.4 Proposition. If { Xj }1 are independent random variables, then 

Pxl + · · · +Xn = Pxl * · · · * Pxn · 

Proof. Let A(t1 , . . .  ' tn ) = L� tj · Then x1 + . . .  + Xn = A(X1 , . . .  ' Xn ) , so 

and by ( 1 0.3), the last expression equals P1 * · · · * Pn . I 

10.5 Proposition. Suppose that { Xj }1 are independent random variables. If Xj E 
£1 for all j, then IT� Xj E Ll, and E(IT� Xj ) = IT� E(Xj ) . 

Proof. We have IT� IXj l = f (X1 , . . . , Xn) where f(t1 , . . .  , tn ) == IT� j tj l · 

Hence 

n n 
= II j l ti l dPxj (ti ) = II E( IXi l ) .  

1 1 
This proves the first assertion, and once this is known, the same argument (with the 
absolute values removed) proves the second one. 1 

10.6 Corollary. If {Xj }1 are independent and in L2, then a2 (X1 + · · · + Xn) == 

L� a2 (Xj ) . 
Proof. Let }j == Xj - E(Xj ) .  Then {}j }1 are independent and have mean 

zero, so 

Therefore, 

(j i= k ) . 

a2 (X1 + · · · + Xn) = E( (Y1 + · · · + Yn)2 ) == L E(}j Yk ) j , k  

J J 

I 
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These results show that independence is a very stringent property. For one thing, 
it is usually not the case that the product of two £1 functions is in £1 . For another, 
suppose that X and Y are independent and E(X) = 0. Then for any Borel measurable 
function f on IR such that f o Y E £1 we have 

E (X · (! o Y) ) = E(X)E(j o Y) = 0. 

In other words, X is orthogonal (in the £2 sense) to every function of Y. This 
indicates that, for example, if one tries to construct a sequence of independent 
random variables on [0 , 1] with Lebesgue measure by using the familiar functions of 
calculus, one will probably not succeed. (Perhaps the simplest example is X n ( x) = 
the nth digit in the decimal expansion of x; see Exercise 23.) Rather, the natural 
setting for independence is product spaces. 

Indeed, suppose 

n = n1 X . . . X nn , 'B = 'B1 ® . . .  ® 'Bn , p = p1 X . . .  X Pn . 

Then any random variables X1 , . . .  , Xn on n such that Xj depends only on the jth 
coordinate are independent, for if xj = fj 0 1rj where 1rj : n ---t nj is the coordinate 
map, 

n 
(X 1 , . . .  , X n ) - 1 ( B 1 X · · · X Bn ) = IT Jj- 1 ( B j )  

1 
and hence 

n 
Pcx1 , . . .  ,Xn ) (Bl X · · ·  X Bn ) = P (IT !j- 1 (Bj )) 

1 
n n 

= IT Pj (fj- 1 (Bj )) = IT Pxj (Bj ) · 
1 1 

The same idea can be made to work for infinitely many factors ; see § 1 0.4. 
As an application of these ideas, we present Bernstein 's constructive proof of the 

Weierstrass approximation theorem. 

10.7 Theorem. Given f E C( [O ,  1 ] ), let 
n f 

Bn (x) = L f (kjn) k ! (n
n� k) ! xk ( l - xt-k . 

k=O 
Then Bn ---t f unzformly on [0 , 1 ]  as n ---t oo. 

Proof. Given x E [0 , 1 ] , let A =  x81 + ( 1 - x)8o where 8t is the point mass at t. 
Let n = !Rn ' p = A X . . .  X A, and Xj = the jth coordinate function on !Rn . Then 
X 1 , . . . , X n are independent and have the common distribution A. It is easy to check 
(Exercise 7) that 
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and hence, in view of Proposition 1 0.4, 

Now, L� n! [k! (n - k) !] - 1xk ( 1 - x)n-k = 1 by the binomial theorem, so 

n I 
( 10 .8) j J (x) - Bn (x) j < � j f (x) - f (kjn) j k ! (n

n
� k) ! x

k ( l - xt-k . 

Given E > 0, by the uniform continuity of f on [0 , 1] there exists 8 > 0, independent 
of x and y, such that l f (x) - f (y) l < E whenever l x - Y l < 8. The sum of the terms 
in ( 1 0.8) such that I x - ( k / n) I < 8 is at most E, while the sum of the remaining terms 
is at most 

But a2 (X1 )  = E(Xj ) - E(X1 ) 2 = x - x2 < 1 ,  

so by Corollary 1 0.6, 

E - x - a  < - - -
[ (Xl + · · · + Xn ) 2] _ 2 (X1 + · · · + Xn ) n _ 1  

n n - n2 n ' 

and Chebyshev 's inequality therefore gives 

which is less than 2E provided n is sufficiently large. 

Exercises 

I 

1. Let n consist of four points, each with probabi lity ! . Find three events that are 
pairwise independent but not independent. Generalize. 

2. Let { X1 } be a sequence of independent identically di stributed positive random 
variables such that E(X1 ) = a < oo and E( 1/  X1 ) = b < oo, and let Sn = L� Xj . 

a. E (Xj/Sn ) = 1 /n if j < n, and E (Xj/Sn ) = aE(1/Sn ) if j > n. 
b. E(Sm/ Sn ) = mjn if m < n and E(Sm/ Sn ) = 1 + (m - n) aE(1/  Sn ) if 
m > n. 

3. Suppose that { Ea } aEA is a collection of events in n. 
a. If Ea1 ,  • • •  , Ean are independent, so are Ea1 , • • •  , Ean- l , E�n . 
b. If { Ea } is an independent set, so is {Fa } ,  where each Fa is either Ea or E� . 
c. { Ea} is an independent set of events iff {XEa } is an independent set of 
random variables. 
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4. Let X, Y, Z be positive independent random variables with a common distribu
tion A, and let F(t) = A( (0 , t] ) . The probability that the polynomial X t2 + Y t + Z 
has real roots is J000 J000 F(t2 j4s) d>.. (t) d>.. (s) . 
5. If X is a random variable with distribution dPx (t) = f(t) dt where f(t) = 

! ( -t) , then the di stribution of X2 is dPx2 (t) = t- 112 j (t 1 12 )xco ,oo) (t) dt. 
6. For a, u > 0, let d'*'fa,u (t) = [f (a)] - 1uata- 1 e-utX(O ,oo) (t) dt, the gamma 
distribution with parameters a and u. 

a. The mean and variance of 'Ya ,u are aju and aju2 , respectively. 
b. 'Ya,u * 'Yb,u = 'Ya+b,u ·  (Use Exercise 60 in §2.6.) 
c. If X 1 , . . . , X n are independent and all have the distribution dPx ( t) 
(2w) - 1 12 e-t2 1 2 dt , then Xf + · · · + x;_ has the di stribution 'Yn/2 , 1 /2 · (Use 
(b) and Exercise 5. 'Yn;2 , 1;2 is called the chi-square distribution with n de
grees of freedom.) 

7. Let 8t denote the point mass at t E JR. Given 0 < p < 1 ,  let {3p == pb1 + ( 1 -p ) 80 ,  
and let f3;n be the nth convolution power of {3p . Then 

n f 
*n "'"" n. k ( )n-k 8 f3v = � k! (n - k) ! p l - p k , 

k=O 
and the mean and variance of f3;n are np and np( 1 - p) . f3;n is cal led the binomial 
distribution on {0 ,  . . .  , n} with parameter p. 

8. Let 8t denote the point mass at t E JR. Given a > 0, let Aa = e-a "£� ( ak / k ! )bk , 
the Poisson distribution with parameter a. 

a. The mean and variance of Aa are both equal to a. 
b. Aa * Ab = Aa+b · 
c. The binomial di stribution !3:/n (Exerci se 7) converges vaguely to Aa as n � 
oo. (Use Proposition 7. 19 .) 

9. Suppose that {Xn }1  is a sequence of random variables . If Xn � X in 
probabi lity, then Pxn � Px vaguely. (Use Proposition 7. 1 9.) 

10. (The Moment Convergence Theorem) Let X 1 , X2 , . . .  , X be random variables 
such that Pxn � Px vaguely and supn E( IXn l r ) < oo, where r > 0. Then 
E( IXn l s ) � E( IX I s ) for all s E (0 ,  r) , and if also s E N, then E(X�)  � E(X8 ) .  
(By Chebyshev' s inequality, if E > 0 ,  there exists a > 0 such that P( IXn I > a )  < E 
for all n. Consider J ¢(t) I t i s dPxn (t) and J[1 - ¢(t) ] I t i s dPxn (t) where ¢ E Cc (JR) 
and ¢(t) = 1 for l t l < a.) 

1 0.2 TH E LAW OF LARG E NUMBERS 

If one plays a gambling game many times, one 's average winnings or losses per 
game should be roughly the the expected winnings or losses in each individual game; 
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more general ly, if one plays a sequence of possibly different games, one's average 
winnings or losses should be roughly the average of the expected winnings or losses 
in the individual games. In symbols : If { Xj } 1 is a sequence of independent random 
variables and E (X j )  = J.Lj , then the average n -1 L� Xj should be close to the 
constant n - 1 L� J.-lj when n is large. 

The law of large number is a precise formulation of thi s idea. It comes in several 
versions, depending on the hypotheses one wishes to make. The first version, with 
the weakest hypotheses and conclusions, has a very simple proof. 

10.9 The Weak Law of Large Numbers. Let { Xj } 1 be a sequence of indepen
dent L2 random variables with means {J.Lj } and variances { o}}. Ifn-2 L� a} ---t 0 
as n ---t oo, then n - 1 L� ( Xj - J.Lj ) ---t 0 in probability as n ---t oo. 

Proof. n- 1 L� (Xj - J.Lj ) has mean 0 and variance n-2 L� a} (the latter by 
Corollary 1 0.6) .  Hence by Chebyshev' s inequality, for any E > 0 we have 

I 
Under slightly stronger hypotheses, we can obtain the sharper conclusion that 

n - 1 L� ( Xj - J.Lj ) ---t 0 almost surely. To establish this, we need the following two 
lemmas, which are of interest in their own right. 

10.10 The Borel-Cantelli Lemma. Let {An }! be a sequence of events. 
a. JfLc:; P(An ) < oo, then P(lim sup An ) = 0. 
b. If the An 's are independent and L� P(An ) = oo, then P(lim sup An ) = 1 .  

Proof. We recall that lim sup An = n� 1 U� k An , so that 

00 00 
P(lim sup An) < P ( U An) < L P(An ) , 

n=k n=k 
and the latter sum tends to zero as k ---t oo if L P( An ) converges. On the other 
hand, suppose that L P(An ) diverges and the An 's are independent. We must show 
that 00 00 

P( (lim sup Ann = P( U n A�) = 0 ,  
k=1 n=k 

and for this it is enough to show that P(n� k A� ) = 0 for all k. But the A� ' s are 
independent (Exercise 3), so since 1 - t < e-t , 

K K K K 
P( n A�) = IJ[l - P(An )] < II e-P(An ) = exp (-LP(An )) . 

n=k k k k 
The last expression tends to zero as K ---t oo, which yields the desired result. 1 
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10.11  Kolmogorov's Inequality. Let X 1 , . . .  , Xn be independent random variables 
with mean 0 and variances ar ' 0 0 0 ' a;, and let s k = X 1 + 0 0 0 + X k· For any E > 0, 

Proof. Let Ak be the set where I Sj I < E for j < k and I Sk I > E. Then the Ak ' s 
are disjoint and their union is the set where max I S k I > E, so 

n n 
P (max i Sk l > E) = LP(Ak ) < E-2 LE(xAk S� ) ,  

1 1 
because s� > E2 on Ak 0 On the other hand, 

n 
E(s; ) > L E(xAk s; ) 

1 n 
= LE(xAk [S� + 2Sk (Sn - Sk ) + (Sn - Sk )2 J) 

1 n n 
> LE(xAk S� ) + 2 LE(xAk Sk (Sn - Sk ) ) . 

1 1 
It wi ll suffice to show that E(XAk Sk (Sn - Sk ) ) = 0 for all k, for then we have 

n 
P (max ! Sk i > E) < E-2 E(s; ) = E-2 L a� 

1 
by Corollary 1 0.6, since the Xk ' s have mean zero. But XAk is a measurable function 
of S 1 , . . .  , S k and hence of X 1 , . . .  , X k , whereas Sn - S k is a measurable function 
of xk+ 1 , 0 0 0 ' Xn . Moreover, E(Sk ) = L� E(Xj ) = 0 for all k. Therefore, by 
Propositions 10.2 and 10 .5, 

I 

10.12 Kolmogorov's Strong Law of Large Numbers. If { Xn}1 is a sequence of 
independent L2 random variables with means {J.Ln } and variances {a; } such that 
L� n -2a; < oo, then n - 1 L� ( Xj - /-Lj ) ---t 0 almost surely as n ---t oo. 

Proof. Let Sn = L� ( xj - /-Lj ) 0 Given E > 0, for k E N let Ak be the set 
where n - 1 1 Sn I > E for some n such that 2k- 1 < n < 2k . Then on Ak we have 
I Bn ! >  E2k- 1 for some n < 2k , so by Kolmogorov ' s inequality, 

2
k 

P(Ak ) < (E2k- 1 ) -2 La� . 
1 
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so P(lim sup Ak) == 0 by the Borel-Cantelli lemma. But lim sup Ak is preci sely the 
set where n- 1 1 Sn I > E for infinitely many n, so 

Letting E � 0 through a countable sequence of values, we conclude that n- 1 Sn � 0 
almost surely. 1 

The hypotheses of thi s theorem are a bit stronger than those of the weak law 
(Exercise 1 1 ). They are certainly satisfied when the Xn 's are identically distributed 
£2 random variables, since then a; is independent of n. However, in the identically 
di stributed case the assumption that Xn E £2 can be weakened. 

10.13 Khinchine's Strong Law of Large Numbers. If {Xn }1 is a sequence 
of independent identically distributed L1 random variables with mean JL, then 
n- 1 I:� Xj � JL almost surely as n � oo. 

Proof. Replacing Xn by Xn - f.-£, we may assume that JL = 0. Let ,\ be the 
common distribution of the Xj 's ; we are thus assuming that 

J l t l d>.(t) < oo, J t d>.(t) = 0.  

Let Yj == X j on the set where \X j \ < j and Yj == 0 elsewhere. Then 

00 00 00 

LP(Yj i= Xj ) == LP( IXj l > j) == L""({t :  l t l > j} ) 
1 1 1 

00 00 

== LL""({t = k < l t l < k + 1 } ) . 
j=1 k=j 

Since I:r; 1 I:� j == I:� 1 2:�= 1 , interchanging the order of summation yields 

f, P(XJ -1- }j )  = f k>.( { t : k < l t l < k + 1 } ) < j i t l d>. (t) < oo. 
1 k=1 

By the Borel-Cantelli lemma, then, with probability one we have Xj == Yj for j 
sufficiently large, and it therefore suffices to show that n - 1 I:� Yj � 0 almost 
surely. 

We have 
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and hence 
CXJ CXJ n 
L n-2a2 (Yn) < :L :L n-2 � t2 d>.. (t) 

1 n= l j= l  Jj- l< l t i <J 
CXJ n 

< L Ljn-2 r _ l t l d>.. (t) .  n= l j=l Jj- l < l t i <J 

Reversing the order of summation again and using the fact that L� j n-2 < 2j- 1 

(by comparison to JjCX) x-2 dx) , we obtain 

� n-2a2 (Yn ) < 2 � l
- l <

l t i <J 
l t l d>.. (t) = 21: l t l d>.. (t) < oo. 

By Theorem 1 0 . 1 2 , therefore, if J.Lj == E(Yj ) we have n- 1 L�(Yj - J.Lj ) ---t 0 almost 
surely. However, by the dominated convergence theorem, 

Jlj = r t d>.. ( t) ....... joo t d>.. ( t) = 0,  
ll t l <j -CX) 

and it follows easily (Exercise 1 2) that n- 1 L� J.Lj ---t 0 also. Hence n- 1 L� Yj ---t 0 
a.s . ,  and the proof is complete. 1 

Thus far we have not shown how to construct sequences of random variables that 
satisfy the hypotheses of the theorems in this section. We shall do so in § 1 0.4. 

Exercises 

11. If L� n-2a� < oo, then limn�CX) n-2 L� aJ == 0. (Estimate Lj<cn aJ and 
Lj>En aJ separately.) 

12. If {an } C C and lim an == a, then lim n- 1 L� aj == a . 

13. The weak law of large numbers remains valid if the hypothesis of independence 
is replaced by the (much weaker) hypothesis that E[(Xj - J.Lj ) (Xk - J.Lk ) ] == 0 for 
j � k. 

14. If { Xn } is a sequence of independent random variables such that E(Xn) == 0 and 
L� a2 (Xn ) < oo, then L� Xn converges almost surely. (Apply Kolmogorov 's 
inequality to show that the partial sums are Cauchy a.s.) Corollary : If the plus and 
minus signs in L� ±n- 1 are determined by successive tosses of a fair coin , the 
resulting series converges almost surely. 

15. If { Xn } is a sequence of independent identically distributed random variables 
that are not in £1 , then lim supn�CX) n - 1 1 L� Xj I == oo almost surely. (Let 
An == { IXn l > n} . Using an idea from the proof of Theorem 1 0. 1 3 , show that 
L� P(An ) == oo, and apply the Borel-Cantelli lemma.) 

16. (Shannon's Theorem) Let {Xi } be a sequence of independent random variables 
on the sample space n having the common distribution ,\ == L� pj 8j where 0 < 
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Pj < 1 ,  2::� Pj = 1 ,  and 8j i s  the point mass at j .  Define random variables Y1 , Y2 , . . . 
on 0 by 

Yn (w) = P({w' : Xi (w' ) = Xi (w) for 1 < i < n} ) . 

a. Yn = IT� p xi . (The notation is peculiar but correct: Xi ( · ) E { 1 ,  . . .  , r} a.s. , 
so p xi is well-defined a.s.) 
b. limn�oo n- 1 log Yn = 2::� Pj log pj almost surely. (In information the
ory, the Xi 's are considered as the output of a source of digital signals, and 
- E� Pj log pj is called the entropy of the signal.) 

17. A collection or "population" of N objects (such as mice, grains of sand, etc.) 
may be considered as a smaple space in which each object has probabi lity N - 1 . 
Let X be a random variable on this space (a numerical characteristic of the objects 
such as mass, diameter, etc.) with mean JL and variance a2 •  In statistics one is 
interested in determining JL and a2 by taking a sequence of random samples from 
the population and measuring X for each sample, thus obtaining a sequence { Xj } of 
numbers that are values of independent random variables with the same distribution 
as X. The nth sample mean is Mn == n- 1 2::� Xj and the nth sample variance 
is s; == (n - 1 )- 1 l:�(Xj - MJ )2 • Show that E(Mn) == JL, E(s; )  == a2 , and 
Mn ---r JL and s; ---r a2 almost surely as n ---r oo. Can you see why one uses 
(n - 1 ) - 1 instead of n- 1 in the definition of s;? 

1 0.3 TH E CENTRAL LIMIT TH EOREM 

Suppose JL E IR and a > 0. By Proposition 2.53 and some elementary calculus, the 
2 measure v� on IR defined by 

dva2 ( t) = 1 e(t-J-£)2 /2a dt 
J-L avf2i 

is a probability measure that satisfies 

It is called the normal or Gaussian distribution with mean JL and variance a2 • The 
special case vJ is called the standard normal distribution. 

It is a matter of empirical observation that normal and approximately normal dis
tributions are extremely common in applied probability and statistics. The theoretical 
explanation for this phenomenon is the central limit theorem, the idea of which is 
as follows. Suppose that { Xj } is a sequence of independent identically distributed 
random variables with mean 0 and variance a2 . Then n- 1 2::� Xj has mean 0 and 
variance n - 1 a2 , so there is a high probabi lity that it is close to 0 when n is large; this 
i s  the content of the weak law of large numbers. On the other hand, n- 112 2::� XJ 
has mean 0 and variance a2 for all n, so one might ask if its distribution approaches 
some nontrivial limit as n ---r oo. The remarkable answer is that no matter what the 
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distribution of the Xj 's is, this limit exists and equals the normal distribution with 
mean 0 and variance a2 • 

The central limit theorem is really a theorem in Fourier analysis. We shall state it 
as such and then translate it into probablity theory. 

10.14 Theorem. Let A be a Borel probability measure on IR such that 

J t2 d>. (t) = 1 ,  J t d>. (t) = 0 .  

(The finiteness of the first integral implies the existence of the second. ) For n E N let 
A *n = A * · · · * A ( n factors) and define the measure An by An (E) = A *n (Vii E), 
where Vii E = {Vii t : t E E}. Then An ---+ vJ vaguely as n ---+ oo. 

......... 
Proof. The hypotheses on the measure A imply that its Fourier transform A ( e) = ......... ......... ......... 

J e-27rie ·x dA (x) is ofclass C2 and satisfies .A (O) = 1 , -A' (O) = O, and .A" (O) = -4w2 • 
(Differentiate the integral twice as in Theorem 8.22d.) Thus by Taylor's theorem, 

where o (a ) denotes a quantity that satisfies a- 1o(a) ---+ 0 as a ---+ 0. Moreover, ....... ......... (A *n ) = (A) n , so by the obvious change of variable , 

Thus, since log ( 1 + z ) = z + o (z ) , 

......... 2 2 
which tends to -2w2e2 as n ---+ oo .  In other words, -An (e) ---+ e-21r e as n ---+ oo for 
all e, so the conclusion follows from Propositions 8.24 and 8.50. 1 

10.15 The Central Limit Theorem. Let { Xj } be a sequence of independent iden
tically distributed L2 random variables with mean JL and variance a2• As n ---+ oo, 
the distribution of (ayfii) - 1 L�(Xj - JL) converges vaguely to the standard normal 
distribution vJ , and for all a E IR, 

1 n 1 fa 2 
lim P ( Vii ""(Xn - fL) < a) = J2ii e-t 12 dt. n�oo a n 7' 2w -()() 

Proof. Replacing Xj by a- 1 ( Xj - JL) ,  we may assume that JL = 0 and a = 1 .  If 
A is the common distribution of the Xj 's , then A satisfies the hypotheses of Theorem 
10. 14, and in the notation used there, An is the distribution of n- 1 12 2:::� Xj . The 
first assertion thus follows immediately, and the second one is equivalent to it by 
Proposition 7 . 1 9. 1 
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As the reader may readily verify, the same argument yields the following more 
general result. Under the hypotheses of the central limit theorem, if { Kn} i s  any 
sequence of finite subsets of N such that kn = card (Kn) ---t oo ,  then the distribution 
of (aVk-::) - 1 LjEKn (Xi - JL) converges vaguely to vJ . 

Exercises 

18. A fair coin is tossed 10,000 times; let X be the number of times it comes up 
heads. Use the central limit theorem and a table of values (printed or electronic) of 
erf (x) = 2w- 112 fox e-t2 dt to estimate 

a. the probability that 4950 < X < 5050; 
b. the number k such that IX  - 5000 1 < k with probability 0.98 .  

19. If { Xj } satisfies the hypotheses of the central limit theorem, the sequence 
Yn = (ay'n)- 1 L� (Xj - JL) does not converge in probability. (Use the remarks 
following the central limit theorem to show that {Y;k } is not Cauchy in probability. ) 

20. If { Xj } is a sequence of independent identically distributed random variables 
with mean 0 and variance 1 ,  the distributions of 

both converge vaguely to the standard normal distribution. 

21. Let { Xn} be a sequence of independent random variables, each having the 
Poisson distribution with mean 1 (Exercise 8). Let 

n ( Sn - n) - (n - Sn ) 
Yn = y'n = max y'n , 0 . 

n n - k nk nn+ ( 1/2) e-n 
a. E(Yn ) = e-n L y'n -k, 

= r . (For the first equation, use 
k=O 

n . n. 
Exercise 8b. As for the second, the sum telescopes.) 
b. Pyn converges vaguely to �8o + X(o ,oo) vJ . (Use Proposition 7. 1 9. )  
c. J t2 dPyn (t) = E(Y;)  < 1 for all n. 
d. E (Yn ) = J000 t dPyn ( t) ---t J t dvJ ( t) = (2w) - 112 . (Use Exercise 1 0.) 
Combining this with (a) , one obtains Stirling's formula: 

n' 
lim 

· 

= 1 .  n�oo nne-n� 
22. In this exercise we consider random variables with values in the circle 1', regarded 
as { z E C : l z l  = 1 } .  The distribution of such a random variable is a measure on 'lr. 

a. If X1 , . . . , Xn are independent, then Px1X2 · · ·Xn = Px1 * · · · * Pxn · 
b. If { Xj } is a sequence of independent random variables with a common 
distribution ,\, the distribution of Il� Xj converges vaguely to the uniform 
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distribution on 1r ( = arc length over 2w) unless ,\ is supported on a finite subgroup 
Zm = { e27rij/m : 0 < j < m} of 1', in which case it converges to the uniform 
distribution m-1 LzEZrn 8z on Zm. (Use Exercise 8.39.) 

1 0.4 CONSTRUCTIO N  OF SAMPLE SPAC ES 

The preceding two sections have dealt with sequences of random variables whose 
joint distributions have certain properties. We now address the question of finding 
examples of such sequences, and more generally of constructing families { Xa }aEA 
of random variables indexed by an arbitrary set A whose finite subfamilies have 
prescribed joint distributions. 

If the index set A is finite, this is easy : given any Borel probability measure P on 
IRn, P is by definition the joint distribution of the coordinate functions X 1 , . . .  , X n 
on the space (IRn , 'BRn , P) .  If A is infinite, however, the problem is more delicate . 
Suppose to begin with that { Xa}aEA is a family of random variables on some sample 
space (f2 , 'B , P) , and for each ordered n-tuple ( a1 , . . . , an ) of distinct elements of A 
(n E N) let Pea1 , . . . ,an ) be the joint distribution of Xa1 , . . . , X an . Then the measures 
Pe a1 , . . . ,an ) satisfy the following consistency conditions :  

( 10. 16) 

( 1 0 . 1 7 )  

If  a i s  a permutation of { 1 ,  . . .  , n} , then 
dPeau( l ) , . .  · au (n) ) (Xa e 1 ) , . . .  ' Xaen) ) = dPeal , . . .  ,an ) (x1 , . . .  ' Xn ) · 

If k < n and E E 'BRk , then 
P, (E) = P, (E X IRn-k ) ea 1 ,  . . .  ,ak ) ea 1 ,  . . .  ,an ) · 

Conversely, given any family of measures Pea 1 , . . . ,an ) satisfying ( 1 0. 1 6) and 
( 1 0 . 1 7) ,  we shall show that there exist a sample space (f2 ,  'B ,  P) and random variables 
{Xa } on n such that Pea1 ,  . . . ,an ) is the joint distribution of Xa1 , . . .  , Xan · To do 
this, it is convenient to make one minor technical modification : We replace IR by 
its one-point compactification IR* = IR U { oo } .  Any Borel measure on IRn can be 
regarded as a Borel measure on (IR* )n that assigns measure zero to (IR* )n \ IRn , and 
vice versa. In other words, we allow our random variables to assume the value oo ,  
although they will do so with probability zero. The point of this is that the space 
(IR* ) A is compact for any A, by Tychonoff's thoerem. 

With this modification , the construction of the sample space (f2, 'B ,  P) in the case 
where the random variables X a are independent, so that P should be the product of 
the Pa 's , is contained in Theorem 7.28 . The general case is achieved by a simple 
adaptation of the argument given there , which we review in detail for the convenience 
of the reader. 

10.18 Theorem. Let A be an arbitrary nonempty set, and suppose that for each 
ordered n-tuple of distinct elements of A (n E N) we are given a Borel probability 
measure Pea1 , . . .  ,an ) on IRn, or equivalently on (IR* )n, satisfying ( 10. 16) !lnd ( 10. 1 7). 
Then there is a unique Radon probability measure P on the compact Hausdorff space 
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f2 == (IR* )A such that Pca1 , . . . ,o:n ) is the joint distribution of Xa1 , • • •  , Xo:n ' where 
X a : n ---r IR* is the nth coordinate function. 

Proof. Let Cp (f2) be the set of all f E C(n) that depend only on finitely many 
coordinates . If f E Cp(f2) ,  say f(x) = F(xa1 , • • •  Xo:n ) , let 

I (f) is well defined because of ( 1 0. 16) and ( 1 0 . 17) : If we permute the variables 
or add some extra ones, the result is the same. Clearly I (f) > 0 if f > 0, and 
I I (!) I < l l f l l u  with equality when f is constant. 

Now, Cp (f2) is clearly an algebra that separates points, contains constant func
tions, and is closed under complex conjugation, so by the Stone-Weierstrass theorem 
it is dense in C(n) . Hence, the functional I extends uniquely to a positive linear 
functional on C ( f2) with norm 1 ,  and the Riesz representation theorem therefore 
yields a unique Radon measure P on n such that I(f) = J f dP for all f E C(n) . 
Let X a be the nth coordinate function on n and let P(o:1 , . . .  ,o:n ) be the joint distribu
tion of Xo: 1 , . . • , Xo:n on (IR* )n . If F E C( (IR* )n ) and f = F o (Xo: 1 , • • • , Xo:n ) as 
above, then 

But P(o: 1 ,  . . . , o:n ) and Pca1 , . . . , o:n ) are both Radon measures by Theorem 7 .8 ,  so they 
are equal by the uniqueness of the Riesz representation. 1 

The only property ofiR* used in this proof is that it is a compact Hausdorff space in 
which every open set is a-compact, so the theorem admits an obvious generalization. 
In particular, if for each a there is a compact set Ko: c IR such that Pca1 , . . .  , o:n ) is 
supported in Ko:l X . . . X Ko:n for all al , . . .  ' O'.n , we could take n = ITo:EA Ko: and 
thus avoid introducing the point at infinity. 

Of special interest is the independent case, in which P(o:1 , . . .  ,o:n ) = Po:1 x · · · x Pan . 
We state it as a corollary : 

10.19 Corollary. Suppose { Pa }o:EA is a family of probability measures on IR. Then 
there exist a sample space (n, 'B,  P) and independent random variables {Xa }o:EA 
on n such that Po: is the distribution of X a for every a E A. Specifically, we can 
take f2 to be (IR* )A and Xo: to be the ath coordinate function; if Po: is supported in 
the compact set Ko: C IRfor each a, we can take n to be ITo:EA Ko:. 

Exercises 

23. Given b E N \ { 1  } ,  let B == {0 , 1 ,  . . .  , b - 1 } ,  and let Po be the probability 
measure on B (or IR) that assigns measure b- 1 to each point in B. Let P be the 
measure on n = BN given by Corollary 1 0 . 1 9, where A =  N and Pn = Po for all 
n E N, and let {Xn}1 be the coordinate functions on n. 
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a. If A 1 , . . . , An c B, 

n n 
P (n x;1 (Aj )) = b-n II card (Aj ) ,  

1 1 

and P( { w} )  = 0 for all w E n. 
b. Let f2' = { w E f2 : Xn (w ) i= 0 for infinitely many n }. Then f2 \ f2' is 
countable and P(f2') = 1 .  
c. Define F : n ---+ [0 , 1 ] by F(w) = E� Xn (w)b-n (so F(w) is the number 
such that {Xn (w) }  is the sequence of digits in its base b decimal expansion) . 
Then Flf2' is a bijection from f2' to (0 , 1 ] that maps 'Bn' bijectively onto 'Bco , 1] . 
CBn' is generated by sets of the form Xn 1 (A) n n' . The image under F of 
such a set is a finite union of intervals of the form (jb-n , kb-n] , and these sets 
generate �(o , 1 ] .) 
d. The image measure of P under F is Lebesgue measure. 
e. (Borel's Normal Number Theorem) A number x E (0 , 1 ] is called normal 
in base b if the digits 0 ,  1 ,  . . .  , b - 1 occur with equal frequency in its base b 
decimal expansion, that is, if 

. card { m E { 1 ,  . . .  , n} : X m ( w) = j } 1 . hm n = b for J = 0,  1 ,  . . .  , b - 1 .  n�oo 
Almost every x E ( 0 ,  1] (with respect to Lebesgue measure) is normal in base b 
for every b. 

1 0.5 TH E WI ENER PROCESS 

It is observed that small particles suspended in a fluid such as water or air undergo 
an irregular motion, known as Brownian motion, due to the collisions of the particles 
with the molecules of the fluid. A physical derivation of the statistical properties of 
Brownian motion was developed independently by Einstein and Smoluchowski, but 
the rigorous mathematical model for Brownian motion - in the limiting case where 
the motion is assumed to result from an infinite number of collisions with molecules 
of infinitesimal size - is due to Wiener. This model, called the Wiener process or 
Brownian motion process, has turned out to be of central importance in probability 
theory and its applications to physics and mathematical analysis . 

One can consider Brownian motion in any number of space dimensions . We shall 
describe the theory in dimension one and indicate how to generalize it. 

The position of a particle undergoing Brownian motion on the line at time t > 0 
is considered to be a random variable Xt (on a sample space to be specified later) 
satisfying the following conditions. First, as a matter of normalization, we assume 
that the particle starts at the origin at time t = 0:  

( 10.20) X0 = 0 (almost surely) . 
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Second, si nce any given col lision affects the particle by only an infinitesimal amount, 
it has no long-term effect, so the motion of the particle after time t should depend on 
its position Xt at that time but not on its previous history. Thus we assume: 

( 10.2 1 )  
If 0 < to < t 1 < · · · < tn , 
the random variables XtJ - XtJ _ 1  ( 1 < j < n) are independent. 

Third, since the physical processes underlying Brownian motion are homogeneous 
in time, we shall postulate that the distribution of Xt - Xs depends only on t - s. If 
we divide the interval [s , t] into n equal subintervals [t0 , t1 ] ,  . . .  , [tn- 1 , tn ] (to == s,  

tn == t) and write Xt - Xs == L� (Xti - Xti _ 1  ) , it then follows from ( 1 0.2 1 )  that 
Xt - Xs is a sum of n independent identically distributed random variables .  Since n 
can be taken arbitrarily large, the central limit theorem suggests that the distribution 
of Xt - X s should be normal , and this conclusion is also supported by experimental 
evidence. Moreover, by Corollary 10 .6, o-2 (Xt - Xs ) == no-2 (Xh - Xt0 ) ,  and it 
follows that o-2 (Xt - Xs ) == ro-2 (Xt' - Xs' ) whenever t - s == r(t' - s

' ) and r is 
rational ; this strongly indicates that o-2 (Xt - Xs) should be proportional to t - s.  

Finally, since the particle is as likely to move to the left as to the right, the mean of 
Xt - Xs should be 0. Putting this all together, we are led to the third assumption : 

There is a constant C > 0 such that for 0 < s < t, Xt - Xs has 
( 1 0.22) C(t-s )  . the normal distribution v0 with mean 0 and vartance C ( t - s ) . 

The constant C, which expresses the rate of diffusion, is of course related to the 
physical parameters of the system. For simplicity, we shall henceforth take C == 1 .  

A family { Xt } t>o  of random variables satisfying ( 10.20)-( 1 0.22), with C == 1 ,  
is called an abstract Wiener process. The generalization to n dimensions can 
now be described easily : an n-dimensional abstract Wiener process is a family 
of 1Rn-valued random variables {Xt } t>o , where Xt == (Xl ,  . . .  , X[' ) ,  such that (i) 
{Xi } t>o  is a one-dimensional abstract Wiener process for each j, and (ii) if Yj is any 
function of the variables {X l }t>O for j == 1 ,  . . .  , n, then Y1 , . . .  , Yn are independent. 
In other words , an n-dimensional abstract Wiener process is just a Cartesian product 
of n one-dimensional abstract Wiener processes . In particular, Xt - Xs has the 
n-dimensional normal distribution [v6- s ]n for t > s:  

t-s n - -n/2 L..,.. 1 xj ( �n 2 ) d [v0 J (x1 , . . .  , xn ) - [2w(t - s)] exp 2 (t _ s) 
which has the appropriate sort of spherical symmetry. 

We return to the one-dimensional case . The conditions ( 1 0 .20)-( 10 .22) completely 
determine the joint distributions of the Xt 's as follows. If t1 < · · · < tn , then 
Xt1 , Xt2 - Xt 1 , • • • , Xtn - Xtn_ 1  are independent (since Xo == 0 a.s . ) ,  so their joint 
distribution is the product measure 
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But 

where 
T(yt , · · · , yn ) = (Yl , Y1 + Y2 , · · · , Y1 + · · · + Yn ) · 

Since det T = 1 ,  Theorem 2.44 implies that the joint distribution P(t 1  , . . .  , tn ) of 
Xt1 , • • • , Xtn is given by 

where to = xo = 0. We thus know Pt1 , . . .  , tn when t1 < · · · < tn , and we obtain it 
in the general case by permuting the variables according to ( 10. 1 6) .  Also, it follows 
easi ly from ( 10.23) that ( 10. 17) is satisfied. Therefore, by Theorem 10. 1 8 ,  abstract 
Wiener processes exist. 

This situation leaves something to be desired, however. Physically, one expects 
the position of a particle to be a continuous function of time, so one would like the 
sample space for the Wiener process to be C( [O ,  oo ) , �) (or some subset thereof) 
and the random variable Xt to be evaluation at t. Actually, Theorem 10 . 1 8  yields 
something along these lines : The sample space it provides is the space (IR* ) [O ,oo) of 
all functions from [0 , oo) into the compactified line , and Xt (w) is indeed w (t) . We 
can therefore achieve our goal by showing that the measure P of Theorem 1 0. 1 8  is 
concentrated on C( [O ,  oo ) ,  IR) , considered as a subset of (IR* ) [O ,oo) . The resulting 
realization of the abstract Wiener process on C( [O , oo ) , IR) is what is usually called 
the Wiener process. 

Henceforth we shal l use the notation 

f2 == (IR* ) [O ,oo) ' f2c == C( [O , oo ) ,  IR) , 

and P will denote the Radon measure on n whose finite-dimensional projections are 
given by ( 1 0.23). 

To begin with, we need to make a few comments about the role of the point 
at infinity. The function f(t , s) = I t - s l maps IR2 to [O , +oo) (we write +oo to 
distinguish it from the point at infinity in IR * ) , and we extend f to a map from 
(�* ) 2  to [0 , +oo] by declaring that I t  - oo l = loo - t l = +oo for t E IR and 
loo - oo l = 0 .  When thus extended, f is of course discontinuous at oo, but it is lower 
semicontinuous, as the reader may verify (Exercise 24 ) .  Thus for a , t ,  s E [0 , oo) the 
sets {w E f2 :  lw (t) - w (s) l > a} are open and the sets {w E f2 : lw (t) - w (s) l < a} 
are closed in n. 

Next, we need to make some estimates in terms of the quantity 

p(E ,  8) = sup dv6 (x) = sup - e-x 12t dx. 1 [ 2 ] 1/2 100 2 

t<8 l x i > E t<8 1rt E 
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These estimates are contained in the following four lemmas, after which we come to 
the main theorem. 

10.24 Lemma. For each E > 0, lim8-+0 8- 1 p( E , 8) = 0. 

Proof. We have 

whence p(E , 8) < (2/E) (28/w) 112 e-E2 /28 . The exponential term tends to zero faster 
than any power of 8, so the result follows. 1 

10.25 Lemma. Suppose E > 0, 8 > 0, 0 < t 1 < · · · < tk , tk - t1 < 8, and 

A =  {w : lw (tj ) - w(t1 ) l > 2Efor some j E {2 ,  . . .  , k } } .  
Then P(A) < 2p( E , 8). 

Proof. For j = 1 , . . .  , k, 1 et 

BJ = { w :  lw (tk ) - w(tJ ) I > E } , 
Dj = {w :  lw (tj ) - w(t 1 ) l > 2E and lw (ti ) - w (t 1 ) l < 2E for i < j } . 

If w E A, then w E Di for some j > 2; if w is not also in Bj , then w must be in B1 , 
for !w (tk ) - w(t 1 ) l > E whenever lw (tj ) - w(t 1 ) l > 2E and !w (tk ) - w (ti ) l < E. In 
other words , k 

A c B1 u U(Bj n Dj ) · 
2 

But P(Bj )  < p(E , 8) by ( 10.22), and Bi and Dj are independent events by ( 1 0.2 1 ) ; 
also, the Dj 's are clearly disjoint. Therefore, 

k k 
P(A) < P(Bl ) + L P(Bj )P(Dj )  < p(E , 8) [1 + L P(Dj ) ] < 2p(E , 8) . 

2 2 

10.26 Lemma. With the notation of Lemma 1 0.25, let 

E = {w : lw (ti ) - w (ti ) l > 4Efor some i , j E { 1 ,  . . .  , k} } .  
Then P(E) < 2p( E , 8) . 

I 

Proof. If lw ( ti ) - w(tj )  I > 4E, we have either l w (ti ) - w(t1 ) I > 2E or lw (tj )  -
w(t1 ) 1 > 2E. Thus E c A, so the result follows from Lemma 10.25 . 1 
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10.27 Lemma. Suppose E > 0, 0 < a < b, and b - a < 8. Let 

V = { w :  lw(t) - w(s) l > 4t:for some t , s E [a, b] } .  

Then P(V) < 2p( E ,  8) . 
Proof. If S is a finite subset of [a , b] , let 

V(S) = {w : lw (t) - w (s) l > 4t: for some t, s E S} . 

Then the sets V(S) are open in n by the remarks preceding Lemma 1 0.24, and their 
union is V. Also, by Lemma 1 0.26, P(V(S) )  < 2p(E ,  8) .  Since the family {V(S) : 
S is a finite subset of [a , b] } is closed under finite unions, if K is any compact subset 
of V we have K c V(S) for some S and hence P(K) < 2p(E ,  8) .  But then 
P(V) < 2p( E, 8) by the inner regularity of P. 1 

10.28 Theorem. Let n = (IR* ) [O ,oo) and f2c = C( [O ,  oo) , IR), and let P be the 
Radon measure on n whose finite-dimensional projections are given by ( 10.23), 
according to Theorem 10. 18. Then f2c is a Borel subset ofr2 and P(f2c )  = 1 .  

Proof. A real-valued function w on [0 , oo) is continuous iff i t is uniformly 
continuous on [0 , n] for each n, and it is uniformly continuous on [0 , n] iff for every 
j E N there exists k E N such that lw (t) - w(s) l < j- 1 (note the use of < rather 
than <) for all s E [0 , n] and all t E [0 , n] n ( s - k- 1 , s + k- 1 ) . Moreover, even if 
we only assume that w is IR* -valued, this last condition implies that it is real-valued 
unless it is identically oo .  Therefore, if w00 denotes the function whose value is 
identically oo, we have 

( 10.29) 00 00 00 
= n n u n 

n= 1 j=1 k= 1 s ,tE [O ,n] ,  l t-s l < 1/k 
{w E f2 :  lw (t) - w (s) l < j- 1 } .  

By the remarks preceding Lemma 10 .24, {w : lw (t) - w(s) l < j- 1 } is closed for all 
s '  t, and j . Hence nc u {Woo } is an Fa8 set, and nc is therefore a Borel set. 

Moreover, if for E ,  8 > 0 and n E N we set 

U(n, E ,  8) = {w E n :  lw (t) - w (s) l > 8E for some t, s E [0 , n] with I t - s l < 8 } , 

by ( 1 0.29) we have 

Clearly P( { W00 } ) = 0, so in order to show that P(f2c) = 1 ,  or equivalently that 
P(n \ nc ) = 0, it will suffice to show that limk-+oo P(U(n, E ,  k- 1 ) )  = 0 for all E 
and n. 
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The interval [0 , n] is the union of the subintervals [0 , k- 1 ] ,  [k- 1 , 2k- 1 ] ,  . . . , 
[n - k- 1 , n] . If w E U(n,  E ,  k- 1 ) , then l w(t) - w(s) l > 8E for some t , s lying in the 
same subinterval or in adjacent subintervals, and hence, in the notation of Lemma 
10 .27 , w E V where 8 == k- 1 and [a , b] is one of the subintervals .  (In the case of 
adjacent subintervals, use their common endpoint as an intermediate point. ) As there 
are nk subintervals, Lemma 10 .27 implies that P(U(n, E ,  k- 1 ) )  < 2nkp(c ,  k- 1 ) . 
Lemma 10 .24 then shows that P(U(n, E, k- 1 ) )  � 0 as k � oo, which completes 
the proof. 1 

Exercises 

24. The function f : (IR* )2 � [0 , +oo] defined by f(t , s) == I t - s l  for t , s E IR, 
f( oo,  t) == f(t , oo) == +oo for t E IR, and f( oo,  oo) == 0 is lower semicontinuous . 

25. Let n == (IR* ) [O ,oo) , {Xt }t>O the coordinate functions on n, and for any A c 
[O , oo ) , MA == the O"-algebra generated by {Xt }tEA · (Thus M[o ,oo) is the product 
CT-algebra on f2 corresponding to the Borel O"-algebras on the factors .) 

a. Suppose V E MA and w, w' E n. If w E  V and w' (t) == w(t) for all t E A, 
then w' E V. 
b. If V E M[o ,oo) ' then V E MA for some countable set A. (Use Exercise 5 in 
§ 1 .2.) 
c. The set f2c == C( [O ,  oo ) , IR) is not in M[o ,oo) · 

26. Let f2c and P be as in Theorem 10 .30. If w E f2c, it can be shown that w is 
almost surely not of bounded variation, so if f is a Borel measurable function on 
[0 , oo ) , the integral J000 f (t) dw(t) apparently makes no sense. However: 

a. If f == L� Cj X[aJ ,bj )  is a step function, define 

Then It is an £2 random variable on nc with mean 0 and variance f000 l f (x) 1 2 dx. 
(Hint: The intervals [ai , bi ) may be assumed disjoint.) 
b. The map f � It extends to an isometry from £2 ( [0 , oo) , m) to L2 (f2c , P) . 
c. If f E BV ( [0 ,  oo)) is right continuous and supp (f) is compact, there is a 
sequence {f n } of step functions such that f n � f in £2 and df n � df vaguely, 
where df denotes the Lebesgue-Stietjes measure defined by f. (By Exercise 4 1  
in §8 .6, there is a sequence {J.Ln } of linear combinations of point masses such 
that df.Ln � df vaguely. Consider fn ( x) == f.Ln ( (0 , x] ) + f (O) .) 
d. If f E BV ( [0 , oo) ) is right continuous and supp(f) is compact, then It ( w) == 

- J000 w(t) df(t) almost surely. (Check this directly when f is a step function 
and apply (b) and (c) .) 
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1 0.6 NOTES AN D REFERENCES 

The development of probability theory as a rigorous mathematical discipline began 
in the early part of the 20th century, when the tools of measure theory and Lebesgue
Stieltjes integrals became available. In 1933 Kolmogorov [85] put the subject on a 
solid foundation by explicitly identifying sample spaces and random variables with 
measure spaces and measurable functions. Since then it has grown extensively. 

More detailed accounts of probability theory on a level comparable to that of this 
book can be found in Billingsley [ 1 7] ,  Chung [25] , and Lamperti [90] . 

§ 10. 3 :  An account of the long history of the central limit theorem can be found in 
Adams [2] . More general versions of this result exist in which the random variables 
are not assumed to be identically distributed; see the references given above. The 
form of Taylor's theorem used in the proof is explained in Folland [45] . 

The proof of Stirling 's formula outlined in Exercise 21  is due to Wong [ 1 62] ; see 
Blyth and Pathak [ 1 8] for some other probabilistic proofs of Stirling 's formula. 

There is one more major result about the asymptotic behavior of sums of indepen
dent identically distributed random variables that should be mentioned along with 
the law of large numbers and the central limit theorem: 

The Law of the Iterated Logarithm: Suppose that { Xn }1 is a sequence 
of independent identically distributed L3 random variables with mean JL and 
variance o-2 , and let Sn = E� Xj . Then 

lim sup 
Sn - nJL = 1 almost surely. 

n -+ oo  o-y'2n log log n 

The proof may be found in Chung [25] , which gives a more general result; see also 
Lamperti [90] for the case in which the Xn 's are assumed uniformly bounded. 

§ 1 0 .4: Theorem 10 . 1 8  is a variant due to Nelson [ 1 03] of the fundamental 
existence theorem of Kolmogorov [85] . In Kolmogorov's original construction, the 
sample space is JRA (which could be replaced by (IR* )A ) and the o--algebra on which 
the measure P is constructed is ®aEA 'BJR . Theorem 10 . 1 8  is a decided improvement 
on Kolmogorov 's theorem, both in the simplicity of its proof and in the fact that the 
Borel o--algebra on (IR* ) A properly includes ®aEA 'BIR when A is uncountable. (The 
significance of the latter fact is evident from Exercise 25 .) 

§ 1 0.5 : Wiener constructed his measure P on C( [O ,  oo ) , IR) in [ 1 59] and [ 1 60] ; 
his approach is quite different from ours . Our proof of Theorem 10 .30 follows Nelson 
[ 104] . See also Nelson [ 1 05] for some related material, including the derivation of 
the postulates ( 1 0.20)-( 1 0 .22) from physical principles . 

A discussion of the many interesting properties of the Wiener process is beyond the 
scope of this book. We shall mention only one, as a complement to Theorem 10 .30 : 
The sample paths of the Wiener process are almost surely nowhere differentiable ; in 
fact, with probability one, at each point they are Holder continuous of every exponent 
a < � but not of exponent � .  This fact may be startling at first, but it seems almost 
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inevitable when one reflects that l w (t) - w (s) ! / l t - s l 1 12 has the standard normal 
distribution for all t , s. 

Knight [84] is a good source for further information about the Wiener process. 





More Measures and 
Integrals 

In this chapter we discuss some additional examples of measures and integrals that 
are of importance in analysis and geometry : invariant measures on local ly compact 
groups, geometric measures of lower-dimensional sets in IRn , and integration of 
densities and differential forms on manifolds .  Although we have grouped these 
topics together in one chapter, they are substantially independent of one another. 

1 1 . 1 TOPOLOGICAL G ROUPS AND HAAR MEASURE 

A topological group is a group G endowed with a topology such that the group 
operations (x, y) �-+ xy and x �-+ x- 1 are continuous from G x G and G to G. 
Examples include topological vector spaces (the group operation being addition) , 
groups of invertible n x n real matrices (with the relative topology induced from 
IRn x n ) , and all groups equipped with the discrete topology. If G is a topological 
group, we denote the identity element of G by e, and for A, B c G and x E G we 
define 

xA = { xy :  y E A} ,  
A- 1 = {x- 1 : x E A} ,  

Ax = {yx :  y E A} ,  
AB = {yz :  y E A, z E B } . 

We say that A c G is symmetric if A = A - 1 . 
Here are some of the basic properties of topological groups: 

1 1.1  Proposition. Let G be a topological group. 
a. The topology of G is translation invariant: If U is open and x E G, then U x 

and xU are open. 
339 
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b. For every neighborhood U of e there is a symmetric neighborhood V of e with 
V c U. 

c. For every neighborhood U of e there is a neighborhood V of e with VV C U. 
d. If H is a subgroup of G, so is H. 
e. Every open subgroup of G is also closed. 

f If K1 , K2 are compact subsets ofG, so is K1K2. 

Proof. (a) is equivalent to the continuity in each variable of the map ( x, y) � xy, 
and (b) and (c) are equivalent to the continuity of x � x - 1 and ( x, y) � xy at the 
identity. (Details are left to the reader.) For (d), if x, y E H, there exist nets (xa ) aEA , 
(Yf3 )6EB in H that converge to x and y. Then xa 1 � x- 1 and XaYf3 � xy (with 
the usual product ordering on A x B), so x- 1 and xy belong to H. For (e), if H is 
an open subgroup, the cosets xH are open for all x, so that G \ H = Ux�H xH is 
open and hence H is closed. Finally, (f) is true because K1K2 is the image of the 
compact set K1 x K2 under the continuous map (x, y) � xy. 1 

If f is a continuous function on the topological group G and y E G, we define the 
left and right translates of f through y by 

Ryf(x) = f(xy) . 

(The point of using y- 1 on the left and y on the right is to make Lyz = LyLz and 
Ryz = RyRz .) f is called left (resp. right) uniformly continuous if for every E > 0 
there is a neighborhood V of e such that l i Ly! - J l l u < E (resp. I I Ryf - J l l u < E) 
for y E V. (Some authors reverse the roles of Ly and Ry in this definition.) 

11.2 Proposition. Iff E Cc( G), then f is left and right uniformly continuous. 

Proof. We shall consider right uniform continuity ; the proof on the left is the 
same. Let K = supp(f) and suppose E > 0. For each x E K there is a neighborhood 
Ux of e such that l f (xy) - f (x) I < � E for y E Ux , and by Proposition l l . l (b,c) there 
is a symmetric neighborhood Vx of e with Vx Vx C Ux . Then {xVx }xEK covers K, 
so there exist X1 ' . . .  ' Xn E K such that K c U7 Xj VXj .  Let v = n7 VXj ;  we claim 
that l f (xy) - f (x) l < E if y E V. On the one hand, if x E K, then for some j we 
have xj 1x E Vxi and hence xy = xj (xj 1x)y E xjUxi ;  therefore, 

l f (xy) - f (x) l < l f (xy) - f(xj ) l + l f (xj ) - f(x) l < E. 

On the other hand, if x tt K, then f(x) = 0, and either f (xy) = 0 (if xy tt K) or 
xj 1xy E Vxi for some j (if xy E K); in the latter case xj 1x = xj 1xyy- 1 E Uxj ,  
so that l f(xj ) l < � E and hence l f(xy) l < E. 1 

One usually assumes that the topology of a topological group is Hausdorff. The 
following proposition shows that this is not much of a restriction. 
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11 .3 Proposition. Let G be a topological group. 
a. If G is T1 , then G is Hausdorff. 
b. If G is not T1 , let H be the closure of { e } .  Then H is a normal subgroup, and 

if G I H is given the quotient topology (i. e. , a set in G I H is open iff its inverse 
image in G is open), G I H is a Hausdorff topological group. 

Proof. (a) If G is T1 and x i= y E G, by Proposition 1 1 . 1 (b,c) there is a 
symmetric neighborhood V of e such that xy-1 tt VV. Then V x and Vy are 
disjoint neighborhoods of x and y, for it z = v1 x = v2y for some v1 , v2 E V, then 
xy- 1 = v1 1 zz- 1 v2 E V-1 V = VV. 

(b) H is a subgroup by Proposition 1 1 . 1 d; it is clearly the smallest closed subgroup 
of G. It follows that H is normal , for if H' were a conjugate of H with H' i= H, 
H' n H would be a smaller closed subgroup. It is routine to verify that the group 
operations on G I H are continuous in the quotient topology, so that G I H is a 
topological group. If e is the identity element in G I H, then { e }  is closed since 
its inverse image in G is H. But then every singleton set in G I H is closed by 
Proposition 1 1 . 1  a, so G I H is T1 and hence Hausdorff. 1 

In the context of Proposition 1 1 .3b, it is easy to see that every Borel measurable 
function on G is constant on the cosets of H and hence is effectively a function on 
G I H. Thus for most purposes one may as well work with the Hausdorff group G I H. 
We shall be interested in the case where G is locally compact, and we henceforth 
use the term locally compact group to mean a topological group whose topology is 
locally compact and Hausdorff. 

Sup pose that G is a locally compact group. A Borel measure JL on G is called 
left-invariant (resp. right-invariant) if JL(xE) = JL(E) (resp. JL(Ex) = JL(E) )  for 
all x E G and E E P,c . Similarly, a linear functional I on Cc ( G) is called left- or 
right-invariant if I(Lxf) = I(f) or I(Rxf) = I(f) for all f. A left (resp . right) 
Haar measure on G is a nonzero left-invariant (resp. right-invariant) Radon measure 
JL on G. For example, Lebesgue measure is a (left and right) Haar measure on IRn , and 
counting measure is a (left and right) Haar measure on any group with the discrete 
topology. (Other examples will be found in the exercises .) The following proposition 
summarizes some elementary properties of Haar measures; in it, and in the sequel, 
we employ the notation 

c: = { f  E Cc (G) : f > 0 and l l f l l u > 0} . 

11 .4 Proposition. Let G be a locally compact group. 
a. A Radon measure JL on G is a left Haar measure iff the measure ji defined by 

ji(E) = JL(E- 1 ) is a right Haar measure. 
b. A nonzero Radon measure JL on G is a left Haar measure iff J f dJL = J Ly f dJL 

for all f E c-;- and y E G. 
c. If JL is a left Haar measure on G, then JL(U) > 0 for every nonempty open 

U C G, and J f dJL > 0 for all f E c-;-. 
d. If f-L is a left H aar measure on G, then JL( G) < oo iff G is compact. 
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Proof. (a) is obvious . The "only if" implication of (b) follows by approximating 
f by simple functions ,  and the converse is true by (7 .3) .  As for (c), since JL i= 0, by the 
regularity of JL there is a compact K c G with JL( K) > 0. If U is open and non empty, 
K can be covered by finitely many left translates of U, and it follows that JL( U) > 0. 
If f E C"t , let U = { x : f(x) > � l l f l l u } · Then J f dJL > � l l f l l uJL(U) > 0. 

Finally, we prove (d). If G is compact, then JL( G) < oo since JL is Radon. If 
G is not compact and V is a compact neighborhood of e, then G cannot be covered 
by finitely many trans lates of V, so by induction we can find a sequence { Xn } 
such that Xn tt U7- 1 Xj V for all n. By Proposition l l . l (b,c) there is a symmetric 
neighborhood U of e such that UU c V. If m > n and xnU n xmU is nonempty, 
then Xm E xnUU C Xn V, a contradiction. Hence {xnU}! is a disjoint sequence, 
and JL(xnU) = JL(U) > 0 by (c), whence JL(G) > J.L(U� xmU) = oo .  1 

Our aim now is to prove the existence and uniqueness of Haar measures. In view 
of Proposition 1 1 .4a, one can pass from left Haar measures to right Haar measures at 
will, so for the sake of definiteness we shall concentrate on left Haar measures. We 
begin with some motivation for the existence proof. 

If E E 13c and V is open and nonempty, let (E : V) denote the smallest number 
of left translates of V that cover E, that is, 

(E : V) = inf{ #(A) : E c U xV } ,  
xEA 

where #(A) = card(A) if A is finite and #(A) == oo otherwise. Thus (E : V) is 
a rough measure of the relative sizes of E and V. If we fix a precompact open set 
Eo , the ratio ( E : V) I (Eo : V) gives a rough estimate of the size of E when the size 
of Eo is normalized to be 1 .  This estimate becomes the more accurate the smaller 
V is, and it is obviously left-invariant as a function of E. We might therefore hope 
to obtain a Haar measure as a limit of the "quasi-measures" ( E : V) I (Eo : V) as V 
shrinks to { e} .  

This idea can be made to work as it stands, but it i s  simpler to carry out if we 
think of integrals of functions instead of measures of sets . If f, ¢ E c-:_-, then 
{x : ¢(x) > � l l ¢ 1 1 u } is open and nonempty, so finitely many left translates of it 
cover supp(f) , and it follows that 

It therefore makes sense to define the "Haar covering number" of f with respect to 
¢: 

n n 
(! : ¢) = inf{L:>j : f < :�::.>jLxi ¢  for some n E N  and x1 , . . . , Xn E G } · 

1 1 

Clearly (f : ¢) > 0; in fact, (f :  ¢) > l l f l l ul l l ¢ 1 1 u ·  
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11 .5 Lemma. Suppose that J, g ,  ¢ E c:. 
a. (f : ¢) = (Lxf : ¢) for any x E G. 
b. (cf : ¢) = c(f : ¢) for any c > 0. 
c. (! + g : ¢) < (! : ¢) + (g : ¢ ) .  
d. ( f : ¢) < ( f : g) ( g : ¢) 

0 

Proof. We have f < L cjLxi ¢  iff Lxf < E cjLxxi ¢; this proves (a) , and 
(b) is equally obvious. If f < L� cjLxi ¢ and g < L�+1 cjLxi ¢, then f + g < 
L� cj Lxi ¢, so (c) follows by minimizing E� Cj and E�+1 Cj . Similarly, if 
f < E Cj Lxj g and g < L dkLyk ¢, then f < Ej,k cjdkLxiYk ¢. Since Ej,k Cj dk = 
(L Cj ) (L dk ) , (d) follows . 1 

At this point we make a normalization by choosing fo E c: once and for all and 
defining 

I <I> (f) = (� :
: 
�) for f, ¢ E c: . 

By Lemma 1 1 .5(a-c), for each fixed ¢ the functional !4> is left-invariant and bears 
some resemblance to a positive linear functional except that it is only subadditive. 
Moreover, by Lemma 1 1 .5d it satisfies 

( 1 1 .6) (fo : !) - 1 < lc�> (f) < (! :  fo) .  
We now show that, in a certain sense, I 4> is approximately additive when supp( ¢) is 
small. 

11 .7 Lemma. If f1 , !2 E c: and E > 0, there is a neighborhood V of e such that 
lc�> (f1 ) + I<t> (f2 ) < lc�> (f1 + !2 ) + E whenever supp(¢) C V. 

Proof Fix g E c: such that g = 1 on supp(fl + !2 ) ,  and let b be a positive 
number to be specified later. Set h = f1 + !2 + bg and hi = fi /h (i = 1 , 2), where 
it is understood that hi = 0 outside supp(fi ) .  Then hi E c:, so by Proposition 1 1 .2 
there is a neighborhood V of e such that l hi (x) -hi (Y) I < b if i = 1 ,  2 and y- 1x E V. 
If ¢ E c:, supp( ¢) c V, and h < E� cj Lxj ¢, then l hi (x) - hi (xj ) I < b whenever 
xj 1x E supp(¢) , so 

fi (x) = h(x) hi (x) < L cj ¢(xj 1x)hi (x) < L cj¢(xj 1x) [hi (xj ) + b] . 
J J 

But then (fi : ¢) < L cj [hi (xj ) + b] , and since h1 + h2 < 1 , 

(!1 : ¢) + (!2 : ¢) < :L cj [1 + 2b] .  
J 

Now, E Cj can be made arbitrari ly close to (h : ¢) , so by Lemma 1 1 .5(b,c), 

Ic�> (f1 ) + lc�> (!2 ) < ( 1 + 2b)Ic�> (h) < ( 1 + 2b) [Ic�> (!1 + !2 ) + blc�> (g) ] . 

In view of ( 1 1 .6), therefore, it suffices to choose b small enough so that 

2b(fl + !2 : fo) + b( 1 + 2b) (g : fo ) < E. 

I 
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11.8 Theorem. Every locally compact group G possesses a left Haar measure. 

Proof. For each f E C"t let Xf be the interval [ (fo : f) - 1 , (J : fo) ] , and let 
X = IltECt X! .  Then X is a compact Hausdorff space by Tychonoff's theorem, 
and by ( 1 1 .6), every I 4> is an element of X. For each compact neighborhood V of 
e, let K(V) be the closure in X of {Ic�> : supp(¢) c V} . Clearly n� K(Vj ) :) 
K(n� Vj ) , so by Proposition 4.2 1 there is an element I in the intersection of all 
the K (V) 's .  Every neighborhood of I in X intersects { I4> : supp( ¢) c V} for 
all V; in other words, for any neighborhood V of e and any !1 , . . . , fn E c-;- and 
E > 0 there exists ¢ E C"t with supp(¢) C V such that I I (fj ) - Ic�> (fi ) l  < E 
for j = 1 ,  . . .  , n. Therefore, in view of Lemmas 1 1 .5 and 1 1 .7 ,  I is left-invariant 
and satisfies I(af + bg) = ai (f) + bi (g) for all f, g E C"t and a, b > 0. It 
follows easily, as in the proof of Lemma 7 . 15 ,  that if we extend I to Cc by setting 
I(f) = I(J+ ) - I(f- ) , then I is a left-invariant positive linear functional on Cc ( G) . 
Moreover, I(f) > 0 for all f E c-;- by ( 1 1 .6) . The proof is therefore completed by 
invoking the Riesz representation theorem. 1 

11.9 Theorem. If J.-L and v are left Haar measures on G, there exists c > 0 such that 
J.-L = Cll. 

Proof. We first present a simple proof that works when J.-L is both left- and right
invariant - in particular, when G is Abelian. Pick h E c-;- such that h E c-;- and 
h(x) = h(x- l ) (e.g. , h(x) = g(x) + g(x-1 ) where g is any element of c:). Then 
for any f E Cc ( G) , 

J h dv J f dfL = J J h (y)f(x) dfL(x) dv(y) 

= JJ h(y)f(xy) dfL(x) dv(y) = J J h(y)f(xy) dv(y) dfL(x) 

= JJ h(x- 1 y)f(y) dv (y) dfL(x) = J J h(y- 1x)f (y) dv(y) dfL(x) 

= J J h(y- 1 x)f (y) dfL(x) dv(y) = J J h(x)f (y) dfL(x) dv(y) 

= j h dfL j f dv, 
so that J.-L = cv where c = (J h dJ.-L)/ (J h dv) . (J h dv i= 0 by Proposition 1 1 .4c, and 
Fubini 's theorem is applicable since the functions in question are supported in sets 
which are compact and hence of finite measure. The same remarks apply below. ) 

Now, another proof for the general case. The assertion that J.-L = cv is equivalent 
to the assertion that the ratio r f = (J f dJ.-L) / (J f dv) is independent of f E c-;- . 
Suppose, then, that f, g E C"t ; we shall show that rf = r9 . 

Fix a symmetric compact neighborhood V0 of e and set 

A =  [supp(f) ]Vo U Vo [supp(f) ] ,  B = [supp(g) ] Vo U Vo [supp(g)] . 
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Then A and B are compact by Proposition 1 1 . 1  f, and for y E V0 the functions 
x � f(xy) - f(yx) and x � g(xy) - g(yx) are supported in A and B, respectively. 
Next, given E > 0, by Proposition 1 1 .2 there is a symmetric compact neighborhood 
V C Vo of e such that supx l f (xy) - f(yx) l < E and supx l g (xy) - g(yx) l < E for 
y E V. Pick h E c-;- with supp(h) c V and h(x) == h(x- 1 ) . Then 

J h dv J f dfL = JJ h(y)f (x) dfL(x) dv(y) 

= J J h(y)f (yx) dfL(x) dv(y) , 

and since h( x) == h( x- 1 ) ,  

J h dfL J f dv = J J h(x)f(y) dfL(x) dv(y) 

= j j h(y- 1x)f (y) dfL(x) dv(y) = j j h (x- 1 y)f(y) dv(y) dfL(x) 

= J J h(y)f(xy) dv(y) dfL(x) = J J h(y) f(xy) dfL(x) dv(y) .  

Thus, 

J h dv J f dfL - J h dfL J f dv = J J h(y) [f(xy) - f(yx)] dfL(x) dv(y) 

< EfL(A) j h dv. 
By the same reasoning, 

j h dv j g dfL - j h dfL j g dv < EfL(B) j h dv. 

Dividing these inequalities by (J h dv) (J f dv) and (J h dv) (J g dv ) ,  respectively, 
and adding them, we obtain 

J f df-L 
J f dv 

J g df-L 
< E 

( f.L(A) + !-L(B) ) . J g dv - J f dv J g dv 
Since E is arbitrary, we are done. I 

We conclude this section by investigating the relationship between left and right 
Haar measures . If f-L is a left Haar measure on G and x E G, the measure f-Lx (E) == 
/-L( Ex) i s  again a left Haar measure, because of the commutativity of left and right 
translations (i .e . ,  the associative law) . Hence, by Theorem 1 1 .9 there is a positive 
number �(x) such that /-Lx == �(x)f-L. The function � : G � (0, oo) thus defined 
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is independent of the choice of JL by Theorem 1 1 .9 again ; it is called the modular 
function of G. 

11.10 Proposition. � is a continuous homomorphism from G to the multiplicative 
group of positive real numbers. Moreover, if JL is a left Haar measure on G, for any 
f E L1 (J.L) and y in G we have 

( 1 1 . 1 1 ) 

Proof. For any x, y E G and E E 13c, 

�(xy)JL(E) = JL(Exy) = �(Y)JL(Ex) = �(y)�(x)JL(E) , 
so � is a homomorphism from G to (0, oo) . Also, since XE (xy) = XEy- 1  (x) , 

This proves ( 1 1 . 1 1 ) when f = XE , and the general case follo\vs by the usual linearity 
and approximation arguments . Finally, it is an easy consequence of Proposition 1 1 .2 
that the map x � J Rxf dJL is continuous for any f E Cc ( G) (Exercise 2), so the 
continuity of � follows from ( 1 1 . 1 1 ) . 1 

Evidently, the left Haar measures on G are also right Haar measures precisely when 
� is identically 1 ,  in which case G is called unimodular. Of course, every Abelian 
group is unimodular; remarkably enough, groups that are highly noncommutative 
are also unimodular. To be precise, let [ G, G] denote the smallest closed subgroup 
of G containing all elements of the form [x , y] = xyx-1 y- 1 . [G, G] is called the 
commutator subgroup of G; it is normal because z [x, y] z- 1 = [zxz- 1 , zyz -1 ] ,  
and it is trivial precisely when G is Abelian. 

11 .12 Proposition. IJG / [G, G] is finite, then G is unimodular. 

Proof. Every continuous homomorphism (such as �) from G into an Abelian 
group must annihilate [ x, y] for all x, y and must therefore factor through G / [ G, G] . 
If the latter group is finite, �(G) is a finite subgroup of (0, oo ) ; but (0, oo) has no 
finite subgroups except { 1 } .  1 

11.13 Proposition. If G is compact, then G is unimodular. 

Proof. For any x E G, obviously G = Gx . Hence if JL is a left Haar measure, 
we have JL( G) = JL( Gx) = �( x )JL( G) , and since 0 < JL( G) < oo we conclude that 
�(x) = 1 .  1 

We observed above that if JL is a left Haar measure, ji(E) = J.L(E-1 ) is a right 
Haar measure. We now show how to compute it in terms of JL and �. 
11.14 Proposition. dji( x) = � ( x) - 1 dJL( x ) . 
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Proof. By ( 1 1 . 1 1 ) , if f E Cc ( G) , 

J f(x)6.(x) - 1 dJL(x) = 6.(y) J f(xy)6.(xy) -1 dJL(x) 

= J Ryf(x)6.(x) - 1 dJL(x) . 

Thus the functional f � J f � - 1 dJL is right-invariant, so its associated Radon 
measure is a right Haar measure. However, this Radon measure is simply � - 1 dJL by 
Exercise 9 in §7 .2; hence, by Theorem 1 1 .9, � - 1 dJL = c dJ:L for some c > 0. If c i= 1 ,  
we can pick a symmetric neighborhood U of e in G such that I � ( x) - 1 - 1 1 < � I c - 1 1 
on U. But J:l(U) = JL(U) , so 

l c - l iJL(U) = l c/J:(U) - JL(U) I = L (6. (x) - 1 - l) dJL(x) < � l c - l iJL(U) ,  

a contradiction . Hence c = 1 and dJ:L == � -1 dJL. I 

11.15 Corollary. Left and right Haar measures are mutually absolutely continuous. 

Exercises 

1. If G is a topological group and E c G, then E == n{ EV : V is a neighborhood 
of e } .  

2. If JL is a Radon measure on the locally compact group G and f E Cc (G) ,  the 
functions x ---r J Lx f dJL and x ---r J Rx f dJL are continuous . 

3. Let G be a locally compact group that is homeomorphic to an open subset U of 
1Rn in such a way that, if we identify G with U, left translation is an affine map - that 
is, xy == Ax (y) + bx where Ax is a linear transformation of 1Rn and bx E JRn . Then 
I det Ax 1 - 1 dx is a left Haar measure on G, where dx denotes Lebesgue measure on 
JRn . (Similarly for right translations and right Haar measures .) 

4. The following are special cases of Exercise 3 .  
a. If G i s  the multiplicative group of nonzero complex numbers z == x + iy, 
(x2 + y2) - 1 dx dy i s  a Haar measure. 
b. If G is the group of invertible n x n real matrices, I det A I -n dA i s  a left 
and right Haar measure, where dA == Lebesgue measure on 1Rnxn . (To see 
that the determinant of the map X � AX is I det A In , observe that if X is 
the matrix with columns X1 , . . .  , xn, then AX is the matrix with columns 
AX1 , . . . , AXn . ) 
c. If G is the group of 3 x 3 matrices of the form 

1 X y 
0 1 z 

0 0 1 
(x , y, z E JR) ,  
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then dx dy dz is a left and right Haar measure . 
d. If G is the group of 2 x 2 matrices of the form 

( �  i )  (x > 0 ,  y E IR) ,  

then x-2dx dy is a left Haar measure and x- 1 dx dy is a right Haar measure .  

5. Let G be as in Exercise 4d. Construct a Borel set in G with finite left Haar 
measure but infinite right Haar measure, and a left uniformly continuous function on 
G that is not right uniformly continuous . 

6. Let {Ga }aEA be a family of topological groups and G = IlaEA Ga . 
a. With the product topology and coordinatewise multiplication, G is a topolog
ical group. 
b. If each G a is compact and /-La is the Haar measure on G a such that /-La ( G a )  = 
1 , then the Radon product of the /-La 's, as constructed in Theorem 7 .28, is a Haar 
measure on G. 

7. In Exercise 6, for each a let G a be the multiplicative group { - 1 , 1 } with the 
discrete topology. Let JL be a Haar measure on G. 

a. If 1r a : G ---+ { - 1 , 1 } is the nth coordinate function, then J 1r a 1r f3 dJL = 0 for 
Q -1= {3. 
b. If A is uncountable, £2 (JL) is not separable even though JL( G) < oo .  

8. Let Q have the relative topology induced from JR. Then Q is a topological 
group that is not locally compact, and there is no nonzero translation-invariant Borel 
measure on Q that is finite on compact sets. 

9. Let G be a locally compact group with left Haar measure f-L· 
a. G has a subgroup H that is open, closed, and a-compact. (Let H be the 
subgroup generated by a precompact open neighborhood of e . )  
b. The restriction of JL to subsets of H i s a left Haar measure on H. 
c. JL is decomposable in the sense of Exercise 15 in §3 .2 . 
d. If the topology of G is not discrete, then JL( { x} ) = 0 for all x E G. In this 
case, JL is regular iff JL is semifinite iff JL is a-finite iff G is a-compact. (See 
Exercises 12  and 14 in §7.2 .) 

1 1 .2 HAUSDORFF M EASU RE 

In geometric problems it is important to have a method for measuring the size of 
lower-dimensional sets in IRn , such as curves and surfaces in IR3 . Differential
geometric techniques provide such a method that applies to smooth submanifolds of 
IRn ; see § 1 1 .4. However, there is also a measure-theoretic approach to the problem 
that applies to more general sets . Indeed, the basic ideas can be carried out just as 
easi ly in arbitrary metric spaces, so we begin by working in this generality. 
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Let (X, p) be a metric space . (See §0.6 for the relevant terminology. ) An outer 
measure JL* on X is called a metric outer measure if 

JL* (A U B) = JL* (A) U JL* (B) whenever p(A, B) > 0. 

1 1.16 Proposition. If JL* is a metric outer measure on X, then every Borel susbset 
of X is JL * -measurable. 

Proof. Since the closed sets generate the Borel a-algebra, it suffices to show that 
every closed set F C X is J.L* -measurable . Thus, given A C X with JL* (A) < oo ,  
we wish to show that 

Let Bn = { x E A \ F : p( x , F) > n - 1 } .  Then Bn is an increasing sequence of sets 
whose union is A \  F (since F is closed), and p(Bn , F) > n- 1 . Therefore, 

so it will be enough to show that JL* (A \ F) = lim JL* (Bn) · Let Cn = Bn+ 1 \ Bn . 
If x E Cn+1  and p(x, y) < [n (n + 1 ) ] - 1 , then 

1 1 1 p(y, F) < p(x , y) + p(x, F) < n(n + l ) + n + l = n ' 

so that p(Cn+ 1 , Bn ) > [n(n + 1) ] - 1 . A simple induction therefore shows that 

JL* (B2k+1 ) > JL* (C2k U B2k- 1 ) = JL* (C2k ) + JL* (B2k- 1 ) 
k 

> JL* ( c2k ) + JL* ( c2k-2 u B2k-3 ) · · · > L JL* ( C2j ) , 
1 

and similarly JL* (B2k ) > I:� J.L* (C2j-1 ) . Since JL* (Bn ) < JL* (A) < oo, it follows 
that the series I:� JL * ( C2j ) and I:� JL * ( C2j _ 1 ) are convergent. But by subadditivity 
we have 

00 

JL* (A \ F) < JL* (Bn ) + L JL* (Cj ) · 
n+ 1 

As n ---r oo, the last sum vanishes and we obtain 

as desired. I 
We are now ready to define Hausdorff measure . Suppose that (X, p) is a metric 

space, p > 0, and 8 > 0. For A c X, let 

00 00 

Hp,6 (A) = inf{L(diam Bj )P : A C U Bj and diam Bj < 8 } ,  
1 1 
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with the convention that inf 0 = oo. As 8 decreases the infimum is being taken over 
a smaller family of coverings of A, so Hp,8 (A) increases . The limit 

is called the p-dimensional Hausdorff (outer) measure of A. 
Several comments on this definition are in order: 

• The sets B j in the definition of H p,8 are arbitrary subsets of X. However, 
one obtains the same result if one requires the Bj ' s to be closed (because 
diam Bj = diam B j ) ,  or if one requires the Bj ' s to be open (because one can 
replace Bj by the open set uj = {X : p(x ,  Bj ) < E2-j- 1 } , whose diameter is 
at most ( diam Bj ) + E2-J ) . Similarly, if X = JR, one can restrict the Bj ' s to 
be closed or open intervals. 

• The intuition behind the definition of Hp is that if p is an integer and A is a 
"p-dimensional" subset of JRn such as a relatively open set in a p-dimensional 
linear subspace of 1Rn , the amount of A that is contained in a region of diameter 
r should be roughly proportional to rP . 

• The restriction to coverings by sets of small diameter is necessary to provide an 
accurate measure of irregularly shaped sets ; otherwise one could simply cover 
a set by itself, with the result that its measure would be at most the pth power of 
its diameter. Consder, for example, the curve Am = { ( x, sin nx) : I x I < 1 }  in 
JR2 • Clearly diam Am < 2312 for all m, but the length of An tends to oo along 
with m. One needs to take 8 << m- 1 before H1 ,8 (A) becomes an accurate 
estimate of the length of Am . 

We now derive the basic properties of Hp . 

11.17 Proposition. Hp is a metric outer measure. 

Proof. Hp,8 is an outer measure by Proposition 1 . 1  0, and it follows that Hp is an 
outer measure . If p( A, B) > 0 and { Cj } is a covering of AUB such that ( diam Cj ) < 
8 < p(A , B) for all j, then no cj can intersect both A and B. Splitting L( diam cj )P 
into two parts according to whether Cj n B = 0 or Cj n A = 0 shows that 
L(diam Cj )P > Hp,8 (A) +Hp,8 (B) , and hence Hp,8 (AuB) > Hp,8 (A) +Hp,8 (B) . 
As this inequality is valid whenever 8 < p( A, B) , the desired result follows by letting 
8 ---+ 0. 1 

In view of Propositions 1 1 . 1 6 and 1 1 . 1 7 ,  the restriction of H P to the Borel sets is 
a measure, which we sti ll denote by H P and call p-dimensional Hausdorff measure. 

11.18 Proposition. Hp is invariant under isometries of X. Moreover, if Y is any 
set and f, g : Y ---+ X satisfy p(f (y) , f(z) ) < Cp(g(y) , g (z) ) for all y , z E Y, then 
Hp (f(A) ) < CPHp(g (A) ) for all A C Y. 

Proof. The first assertion is evident from the definition of Hp. As for the 
second, given E ,  8 > 0, cover g (A) by sets Bj such that diam Bj < c- 18 and 
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L(diam BJ )P < Hp (g (A) ) + E.  Then the sets Bj = f(g- 1 (BJ ) )  cover f(A) , and 
diam Bj < C(diam BJ ) < 8, so that 

The proof is completed by letting 8 ---+ 0 and E ---+ 0. I 

1 1.19 Proposition. If Hp (A) < oo, then Hq (A) = Ofor all q > p. If Hp(A) > 0, 
then Hq (A) = oofor all q < p. 

Proof. It suffices to prove the first statement, as the second one is its contra
positive . If Hp (A) < oo, for any 8 > 0 there exists {BJ }1 with A c U BJ , 
diam Bj < 8, and L( diam Bj )P < Hp (A) + 1 . But if q > p, 

L(diam BJ )q < 8q-p L(diam BJ )P < 8q-p (Hp (A) + 1 ) , 

so Hq,8 (A) < 8q-

p (Hp (A) + 1 ) .  Letting 8 ---+ 0, we see that Hq (A) = 0. 1 
According to Proposition 1 1 . 1 9, for any A c X the numbers 

inf {p > 0 :  Hp (A) = 0} and sup {p > 0 : Hp (A) = oo } 

are equal . Their common value is called the Hausdorff dimension of A. 
From now on we restrict attention to the case X = 1Rn. Our object is to show 

that for p = 1 ,  . . . , n, Hp gives the geometrically correct notion of measure (up to a 
normalization constant) for p-dimensional submanifolds of 1Rn. We begin with the 
case p = n. 

11.20 Proposition. There is a constant 1n > 0 such that 1nHn is Lebesgue measure 
on 1Rn. 

Proof. Hn is a translation-invariant Borel measure on 1Rn. If Q C 1Rn is a cube, 
it is easily verified that 0 < H n ( Q) < oo (Exercise 1 0). It follows that H n i= 0 
and that Hn is finite on compact sets, whence Hn is a Radon measure by Theorem 
7 .8. The desired result is therefore a consequence of Theorem 1 1 .9. (The simple 
argument given there for the Abelian case can be read without going through the rest 
of § 1 1 . 1 :  Simply read x + y for xy and -x for x- 1 .) 1 

The normalization constant 1n turns out to be the volume of a ball of diameter 
1 , which by Corollary 2 .55 is wn/2 /2nr( �n + 1 ) .  We shall not give the proof 
here, as the value of 1n is irrelevant for our purposes . (The hard part is proving 
the intuitively obvious fact that among al l sets of diameter 1 ,  the ball has the largest 
volume.) Many authors build 1n into the definition of Hausdorff measure; that is , 
they define p-dimensional Hausdorff measure, for p E [0 , oo ) , to be 1PHP where 
1p = 7rP/2 j2Pf( �p + 1) . 

We now consider lower-dimensional sets in JRn. If 1 < k < n, a k-dimensional 
C1 submanifold of 1Rn is a set M c 1Rn with the following property : For each 
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x E M there exist a neighborhood U of x in JRn , an open set V C 1R k , and an 
injective map f : V ---+ U of class C1 such that f(V) = M n U and the differential 
Dxf - i .e . ,  the linear map from JRk to 1Rn whose matrix is [ (8fi/8xj ) (x) ] - is 
injective for each x E V. Such an f is called a parametrization of M n U. Every 
submanifold M can be covered by countably many U's for which M n U has a 
parametrization, so for our purposes it will suffice to assume that M = M n U has a 
global parametrization. 

(There are other common definitions of "submanifold" : M is a k-dimensional C1 
submanifold if it is locally the set of zeros of a C1 map g : JRn ---+ JRn-k such that Dxg 
is surjective at each x E M, or if it is locally the image of a ball in a k-dimensional 
linear subspace of 1Rn under a C1 diffeomorphism of 1Rn . The equivalence of these 
definitions with the one given above is a standard exercise in the use of the implicit 
function theorem. )  

We begin our study of submanifolds with the linear case. If T is a linear map from 
]Rk to ]Rn and T* : JRn ---+ ]Rk is its transpose, then T*T is a positive semidefinite 
linear operator on 1R n . Its determinant is therefore nonnegative, and we may define 

J(T) = yldet (T*T) . 
11.21 Proposition. If k < n, A C JRk, and T : JRk ---+ 1Rn is linear, then 
Hk{T(A) ) = J(T)Hk (A). 

Proof. If k = n, then det (T*T) = (det T) 2 , so J(T) = j det T I and the 
assertion reduces to Theorem 2.44 because of Proposition 1 1 .20. If k < n, let R 
be a rotation of 1Rn that maps the range of T to the subspace JRk x {0} = {y E 
1Rn : Yj = 0 for j > k} , and let S = RT. Then S* S = T* R* RT = T*T, so that 
J(S) = J(T) , and Hk (S (A) ) = Hk (T(A) ) since Hk is rotation-invariant. But if 
we identify 1R k x { 0} with 1R k , S becomes a map from 1R k to itself, and the definition 
of S* S is unchanged when this identification is made. We are therefore back in the 
equidimensional case, which was disposed of above. 1 

It is now easy to guess what the corresponding formula must be for a general 
smooth injection f : JRk ---+ 1Rn , since locally every smooth map is approximately 
linear. Our next lemma makes this idea precise. 

11.22 Lemma. Suppose M is a k-dimensional C1 submanifold of1Rn parametrized 
by f : V ---+ 1Rn. For any a > 1 there is a sequence { Bj } of disjoint Borel subsets of 
V such that V = U� Bj, and a sequence {Tj }  of linear maps from JRk to 1Rn, such 
that 
( 1 1 .23) a- 1 1Tj z l < I (Dxf)z l < ajTj z l for x E Bj , z E JRk 
and 
( 1 1 .24) a -

1 1Tjx - Tjy l < l f (x) - f(y) I < a iTj x - Tjy l for x, y E Bj .  
Proof. Let us fix E > 0 and {3 > 1 such that 

a- 1 + E < {3-1  < 1 < {3 < Q - E,  
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and let 'J be a countable dense subset of the set of linear maps from JRk to JRn (e.g., 
the set of matrices with rational entries). For T E 'J and m E N let E(T, m) be the 
set of al l x E V such that 

{3-1 1Tz l < I (Dxf)z l < f3!Tz l for z E JRk , 
a- 1 1Tx - Ty l < l f(x) - f(y) l < a !Tx - Ty l for all y E V with I Y - x l < m- 1 . 
The definition of E(T, m) is unaffected if y and z are restricted to lie in countable 
dense subsets of V and JRk ; hence E(T, m) is defined by countably many inequalities 
involving continuous functions, so it is a Borel set. It will therefore suffice to show 
that the sets E(T, m) cover V. Indeed, each E(T, m) is a countable union of sets 
Ei (T, m) of diameter less than m - 1 , so by disjointifying the countable collection 
{ Ei (T, m) : T E T ,  i ,  m E N} we obtain the desired sets Bj and the associated 
maps Tj . 

Suppose, then, that x E V, and let 8o = inf{ l (Dxf)z l : l z l = 1 } .  Since Dxf is 
injective, 80 is positive. Choose 8 > 0 so that 8 < ({3 - 1 ) 80 and 8 < ( 1 - {3- 1 ) 80 , 
and then pick T E 'J such that l i T - Dxf l l  < 8. Then 

ITz l < I (Dxf)z l + ITz - (Dxf)z l < I (Dxf)z l + 8 l z l < f3I (Dxf)z l , 
and similarly ITz l > {3- 1 1 (Dxf)z l . This establishes the first inequality and also 
shows that T is injective, so TJ = inf { IT z I : I z I = 1 } is positive . Since f is 
differentiable at x, there exists m E N such that 

j J (y) - f(x) - (Dxf) (y - x) j < E1J IY - x l < E IT(y - x) l for l x - Y l  < m-1 . 
But then 

l f (y) - f(x) l < j J(y) - f(x) - (Dxf) (y - x) j + j (Dxf) (y - x) j 
< E ITy - Tx l + f31Ty - Tx l < a iTy - Tx l , 

and similarly l f(y) - f(x) l > a- 1 1Ty - Tx l . In short, x E E(T, m) , so we are 
done. 1 

1 1.25 Theorem. Let M be a k-dimensional C1 submanifold of1Rn parametrized by 
f : V ---+ 1Rn. If A is a Borel subset ofV, then f(A) is a Borel subset of1Rn, and 

( 1 1 .26) 

Moreover, if¢ is a Borel measurable function on M that is either nonnegative or in 
L1 (M, Hk ), then 

( 1 1 .27) 

Proof. Since V is an open subset of JRk , it is a-compact . It follows that if A is 
closed in V, then A is a-compact, and hence f(A) is a-compact since f is continuous. 
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The collection of al l A c V such that f (A) is Borel is therefore a a-algebra that 
contains all closed sets , hence all Borel sets . We shall prove ( 1 1 .26) ; this establishes 
( 1 1 .27) when ¢ = X! (A) , and the general result follows from the usual linearity and 
approximation arguments . 

Given a > 1 ,  let { Bj } ,  {Tj }  be as in Lemma 1 1 .22, and let Aj = A n Bj .  It 
follows from ( 1 1 .23) and Proposition 1 1 . 1 8 that 

and hence by Proposition 1 1 .2 1 ,  

But it also follows from ( 1 1 .24) and Proposition 1 1 . 1 8  that 

a-kHk (Tj (Aj ) )  < Hk (f(Aj ) )  < akHk (Tj (Aj ) )  

a-2k Hk (f(Ai ) )  < a-k J(Tj )Hk (Ai )  < i .  J(Dxf) dHk (x) 
J 

Summing over j ,  we obtain 

< akJ(Tj )Hk (Aj ) < a2kHk (!(Aj ) ) .  

so the proof is completed by letting a ---+ 1 .  I 
If both sides of the identities ( 1 1 .26) and ( 1 1 .27) are multiplied by the normalizing 

constant 1k in Proposition 1 1 .20, the integrals on the right become ordinary Lebesgue 
integrals, and we obtain the formula for measures and integrals on M given by Rie
mannian geometry (see § 1 1 .4) . Moreover, if k = n we have J(Dxf) = I det Dxf l , 
so the result reduces to Theorem 2.4 7 .  See also Exercises 1 1  and 12 .  

There remains the question of whether p-dimensional Hausdorff measure i s  of any 
interest when p ¢:. N. An affirmative answer will be provided in the next section . 

Exercises 

10. Show directly from the definition of Hn that if Q is a cube in JRn , then 0 < 
Hn (Q) < oo. (Hint: There is a constant C such that if E C JRn, the Lebesgue 
measure of E is at most C( diam E)n .) 
1 1. If f : (a ,  b) ---+ JRn is a parametrization of a smooth curve (i .e . ,  a 1 -dimensional 
C1 submanifold of JRn ), the Hausdorff 1 -dimensional measure of the curve is 
J: lf' (t) l dt . 
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12. If ¢ : JRk ---+ 1R is a C1 function, the graph of¢ is a k-dimensional C1 submanifold 
of JRk+ I parametrized by f(x) = (x, ¢(x) ) .  If A c JRk , the k-dimensional volume 
of the portion of the graph lying above A is 

l J1 + I 'V¢(x) l 2 dx . 

(First do the linear case, ¢(x) = a ·  x .  Show that if T : JRk ---+ JRk+l is given by 
Tx = (x , a ·  x) , then T*T = I +  S where Sx = (a ·  x)a, and hence det (T*T) = 

1 + I a 1 2 . Hint: The determinant of a matrix is the product of its eigenvalues; what 
are the eigenvalues of S?) 

13. In any metric space, zero-dimensional Hausdorff measure is counting measure. 

14. If Am is a subset of a metric space X of Hausdorff dimension Pm for m E N, 
then U� Am has Hausdorff dimension supm Pm · 

15. If A C 1Rn has Hausdorff dimension p, then A x A c JR2n has Hausdorff 
dimension 2p. 

1 1 .3 SELF-SI MILARITY AND HAUSDORFF DIM ENSION 

In this section we produce some geometrically interesting examples of sets of frac
tional Hausdorff dimension. The sets we consider are "self-similar," which means 
roughly that each small part of the set looks like a shrunken copy of the whole set. We 
begin by establishing the terminology necessary to discuss such sets . Our definitions 
will be more restrictive than is really necessary, since we aim only to give the flavor 
of the theory and to display some examples .  

For r > 0, a similitude with scaling factor r is a map S : JRn ---+ JRn of the 
form S(x) = rO (x) + b, where 0 is an orthogonal transformation (a rotation or 
the composition of a rotation and a reflection) and b E JRn . Suppose that S = 

(81 , . . .  , Sm) is a finite family of similitudes with a common scaling factor r < 1 .  If 
E C 1Rn , we define 

m 
Sk (E) = S(sk-1 (E) ) for k > 1 .  

E is called invariant under S if S(E) = E. In this case, Sk (E) = E for all k, 
which means that for every k > 1, E is the union of mk copies of itself that have 
been scaled down by a factor of rk . If, in addition, these copies are disjoint or have 
negligibly small overlap, E can be said to be "self-similar." 

Before proceeding with the theory, let us examine some of the standard examples 
of self-similar sets . They are al l obtained by starting with a simple geometric figure, 
applying a family of similitudes repeatedly to it, and passing to the limit. 

• Given {3 E (0, � ) , let C f3 be the Cantor set obtained from [0 , 1] by successively 
removing open middle ( 1 - 2{3)ths of intervals, as discussed at the end of § 1 .5 .  
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That is, Cf3 == n� Sk (E) where 

See Figure 1 1 . 1  a. 

• The Sierpinski gasket r is the subset of JR2 obtained from a solid triangle 
by dividing it into four equal subtriangles by bisecting the sides, deleting the 
middle subtriangle, and then iterating. Thus, if we take the initial triangle � 
to be the closed triangular region with vertices (0, 0) , ( 1 ,  0) , and ( � , 1 ) , then 
r == n� Sk (�) ,  where S == (81 , 82 , 83 ) with 

8J (x) == �x + bJ , b1 == (0 , 0) , b2 == ( � , 0) , b3 == ( ! , � ) . 

See Figure 1 1 . 1  b. 

• The snowflake curve � is the subset of JR2 obtained from a line segment by 
replacing its middle third by the other two legs of the equilateral triangle based 
on that middle third (there are two such triangles; make a definite choice) , 
and then iterating. That is, let L be the broken line joining (0, 0) to ( � ,  0) to 
( � , � J3) to ( � , 0) to (1 , 0) , and let 

S == (81 , . . .  , 84 ) ,  8j (x) == � Oj (x) + bj , 
bl == (0, 0) , b2 == ( � '  0) , b3 == ( � , � V3) , b4 == ( � .' 0) , 

01 == 0 4 == I, 02 == R1r 13 , 03 == R_1r 13 , 
where Ro denotes the rotation through the angle 0. Then � == limk-+oo Sk (L ) ; 
more precisely, � == U� Sk (L) \ U� Sk (M) , where M is the union of the 
open middle thirds of the line segments that constitute L. See Figure 1 1 . 1  c .  
(The actual "snowflake" is made by joining three rotated and reflected copies 
of � in the same way in which one can join three copies of the initial figure L 
to make a six-pointed star. ) 

The Cantor sets, the S ierpinski gasket, and the snowflake curve are all clearly 
invariant under the families of similitudes used to generate them. The condition of 
negligible overlap of the rescaled copies is also satisfied, for in all cases 8i (E) n8J (E) 
is either empty or a single point. 

We now return to the general theory. Suppose that S == (81 , . . .  , 8m) is a family of 
similitudes with scaling factor r < 1 .  We introduce some notation for the actions of 
the iterations of S on points, sets , and measures : For x E JRn, E c JRn, JL E M(JRn) ,  
and ii , . . .  , i k E { 1 ,  . . .  , m} , we set 

xi 1 . .  · i k  == 8i1 o · · · o 8ik ( x) , Ei 1 . · · i k  == 8i1 o · · · o 8ik (E) , 
/-Li 1 · · · i k (E) == JL ( (8i 1  o · · · o 8ik ) - 1 (E) ) . 

It is an important property of compact sets that are invariant under a family of 
similitudes that they carry measures with a corresponding invariance property. 
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(a) 

(c) 

Fig. 1 1. 1  The first three approximations to (a) the Cantor set C3;8 , (b) the Sierpinski gasket, 
and (c) the snowflake curve. 
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1 1.28 Theorem. Suppose that S = (81 , . . . , Sm) is a family of similitudes with 
scaling factor r < 1 and that X is a nonmempty compact set that is invariant under 
S. Then there is a Borel measure JL on 1Rn such that JL(1Rn) = 1, supp(J.L) = X, and 
for all k E N, 

( 1 1 .29) 

Proof. We shall construct JL as a measure on X, extending it to 1Rn by setting 
JL(Xc) = 0. Pick x E X, let 8x be the point mass at x, and for k E N define 
J.Lk E M(X) by 

that is, for f E C( X),  

Thus each J.Lk is a probability measure on X. We claim that the sequence {J.Lk } 
converges vaguely as k ---+ oo .  Indeed, given f E C (X) and E > 0, there exists 
K > 0 such that l f (x) - f(y) l < E whenever x, y E X  and l x - Y l  < rK ( diam X) . 
Suppose l > k > K. Since Xil · · · i l  E xil · · · i k and diam Xi l · · · ik = rk (diam X) , we 
have 

Summing over ik+ l , . . .  , i z gives 

and then summing over i 1 , . . .  , ik yields I J f dJ.Lk - J f dJ.Lz l < E .  Thus the sequence 
{f f dJ.Lk } converges for every f, and the limit defines a positive linear functional on 
C(X) . 

Let JL be the associated Radon measure, according to the Riesz representation 
theorem. Clearly JL(X) = J 1 dJL = lim J 1 dJ.Lk = 1 .  Also, we have Xi 1 · · · xk E 
xi� · · · i k ' diam Xi l · · · i k  = rk (diam X),  and X =  u xil . . .  ik ' so the points Xi l · · · i k 
(k E N) are dense in X; it follows that supp(J.L) = X. Also, from the definition of 
J.Lk we have 

As l ---+ oo, J.Lk+l and J.Lz both tend vaguely to JL, and composition with similitudes 
preserves vague convergence, so ( 1 1 .29) follows. 1 
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The existence of an invariant measure on the invariant set X requires no special 
hypotheses on the similitudes S j ,  but in order to be able to compute the Hausdorff 
dimension of X, we need to impose an extra condition which (as we shall see 
in Theorem 1 1 .33b) guarantees that the sets Sj (X) have negligibly small overlap. 
Namely, we require S to possess a separating set: a nonempty bounded open set U 
such that 

( 1 1 .30) S (U) c U, 

The existence of a separating set is more delicate than it might seem at first; the 
first condition in ( 1 1 .30) will fail if U is too small, and the second one will fail if U 
i s  too big . However, all the examples considered above admit separating sets . As 
the reader may easily verify, for the Cantor sets 0 f3 one can take U == (0 ,  1 ) , for the 
Sierpinski gasket one can take U to be the interior of the initial triangular region �' 
and for the snowflake curve one can take U to be the interior of the triangular region 
with vertices (0 , 0) , ( 1 , 0) , and ( ! , � J3),  i .e . ,  the interior of the convex hull of the 
initial figure L. 

1 1.31 Proposition. Suppose that S is a family of similitudes with scaling factor 
r < 1 that admits a separating set U. Then there is a unique nonempty compact set 
that is invariant under S, namely, n� Sk ( U). 

Proof. Since S (U) c U and the Sj 's are continuous, we have 

It follows that X == n� Sk (U) is a compact invariant set for S, and it is nonempty 
by Proposition 4.2 1 . If Y is another such set, let d(Y, X) == maxyEY p(y , X) be 
the maximum distance from points in Y to X. Since Sj decreases distances by 
a factor of r, we have d(Sj (Y) , Sj (X) ) == rd(Y, X) . But Y == U� Sj (Y) , so 
d(Y, X) < maxj d( Sj (Y) , X) < rd(Y, X) . It follows that d(Y, X) == 0, which 
means that Y c X since X and Y are compact. By the same reasoning, X C Y, so 
X is the unique compact invariant set. 1 

11 .32 Lemma. Let c, 0, 8 be positive numbers. Suppose that {Ua }aEA is a collec
tion of disjoint open sets in ]Rn such that each Ua contains a ball of radius c8 and 
is contained in a ball of radius 08. Then no ball of radius 8 intersects more than 
( 1  + 20)nc-n of the sets U a ·  

Proof. If B i s  a ball of radius 8 and B n U a i= 0, then U a i s  contained in the ball 
concentric with B with radius ( 1  + 20)8. Hence, if N of the U a 's intersect B, there 
are N disjoint balls of radius c8 contained in a ball of radius ( 1  +20)8.  Adding up their 
Lebesgue measures, we see that N(c8)n < [ ( 1 + 20)8] n , so N <  ( 1  + 20)nc-n . 1 
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11 .33 Theorem. Suppose that S = (S1 , . . .  , Sm) is a family of similitudes with 
scaling factor r < 1 that admits a separating set U, let X be the unique nonempty 
compact set that is invariant under S, and let p = log1 ;r m. Then 

a. 0 < Hp(X) < oo; in particular, X has Hausdorff dimension p. 

b. Hp(Si (X) n SJ (X) ) = Ofor i i= j. 

Proof. For any k E N  we have X =  Sk (X) = U Xi1 · · · ik and diam Xi1 · · · i k = 
rk (diam X) , so if 8k = rk (diam X) ,  

Since 8k ---+ 0 as k ---+ oo, it follows that Hp(X) < ( diam X)P < oo . 
Next we show that Hp(X) > 0.  Choose positive numbers c and C so that the 

separating set U contains a ball of radius cr- 1 and is contained in a ball of radius C, 
and let N = ( 1  + 2C)nc-n . We shall prove that Hp(X) > N- 1 by showing that if 
{ Ej }1 is any covering of X by sets of diameter < 1, then 2:( diam Ej )P > N-1 . 
Since any set E with diameter 8 i s  contained in a (closed) ball of radius 8, it i s  enough 
to show that if X c U� BJ where BJ is a ball of radius 8J < 1 ,  then 2:� 8r > N-1 . 

Let JL be the measure on X given by Theorem 1 1 .28. We claim that if B i s  any 
ball of radius 8 < 1 ,  then JL(B) < N8P . The desired conclusion is an immediate 
consequence : 

1 = JL(x) < L JL(Bj )  < N L 8r .  
To prove the claim, let k be the integer such that rk < 8 < rk- 1 . By ( 1 1 .29), 

m 
JL(B) = m-k L /-Li 1 · · · ik (B) . 

i l , • • • , ik = 1 
Since X c U by Proposition 1 1 .3 1 ,  we have supp(J.Li 1  . . · ik ) = Xii . .  · ik c U i i . .  · i k , so 
J.Li 1 . .  · i k (B) = 0 unless B intersects U i 1 . .  · ik . On the other hand, iteration of ( 1 1 .30) 
shows that the sets Ui1 . . · ik are all disjoint, and each of them contains a ball of radius 
crk- 1 > c8 and is contained in a ball of radius Crk < C8. By Lemma 1 1 .32, B can 
intersect at most N of the U i 1 . . · ik ' s .  Therefore, 

as claimed. 
Finally, since Sj decreases distances by a factor of r, we have Hp(Sj (X) )  

rPHp(X) = m- 1Hp(X) and hence Hp(X) = I:� Hp(Sj (X) ) .  But since X =  
U� SJ (X) , this can happen only if Hp(Si (X) n SJ (X) ) = 0 for i i= j .  1 

11 .34 Corollary. The Cantor sets C f3, the Sierpinski gasket, and the snowflake curve 
have Hausdorff dimension log1; f3 2, log2 3, and log3 4, respectively. 
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16. Modify the construction of the snowflake curve by using isosceles triangles rather 
than equilateral ones. That is , given � < {3 < � , let L be the broken line connecting 
(0 ,  0) to ({3, 0) to � ( 1 ,  J4[3 - 1 )  to ( 1 - {3, 0) to ( 1 , 0) . Proceeding inductively, 
let Lk be the figure obtained by replacing each line segment in Lk-1 by a copy of 
L, scaled down by a factor of {3k , and let �f3 be the limiting set. (Thus �1;3 is 
the ordinary snowflake curve .) Find the family of similitudes under which �f3 is 
invariant, show that it possesses a separating set, and find the Hausdorff dimension 
of �f3 · 
17. Investigate analogues of the S ierpinski gasket constructed from squares, or 
higher-dimensional cubes, rather than triangles . (There are various possibilities 
here .) 

18. Given n E N and p E (0 , n ) , construct Borel sets E1 , E2 , E3 C 1Rn of Hausdorff 
dimension p, with the fol lowing properties .  

a. 0 < Hp(E1 ) < oo . (Exercise 15  or Exercise 17  could be used here .) 
b. Hp(E2 ) = oo . (Use (a) .) 
c. Hp(E3) = 0. (Use Exercise 14 .) 

19. The measure JL in Theorem 1 1 .28 is unique. 

1 1 .4 INTEG RATION ON MANIFOLDS 

This section is a brief essay on integration on manifolds for the benefit of those 
who are familiar with the language of differential geometry and wish to see how 
the geometric notions of integration fit into the measure-theoretic framework. The 
discussion and the notation will both be quite informal . 

Let M be a C(X) manifold of dimension m. (We work in the C(X) category for con
venience; C1 would actually suffice.) Given a coordinate system x = ( x1 , . . .  , xm) 
on an open set U c M, one can consider Lebesgue measure dx = dx1 · · · dxm on 
U. This has no intrinsic geometric significance, for if y = (Y1 , . . .  , Ym ) is another 
coordinate system on U, by Theorem 2.47 we have dy = I det (aylax) l dx where 
( ay I ax) denotes the matrix ( ayi I axj ) .  However, dy and dx are mutually absolutely 
continuous , and the Radon-Nikodym derivative I det( ay I ax) I is a c(X) function . It 
therefore makes sense to define a smooth measure on M to be a Borel measure JL 
which, in any local coordinates x, has the form dJL = ¢x dx where ¢x is a nonnega
tive C(X) function. The representations of JL in different coordinate systems are then 
related by 

( 1 1 .35) 

(This conveniently sloppy notation is in the same spirit as the formula dul dt 
(duldx) (dxldt) for the chain rule .  More precisely, if y = F(x) , then ¢x 
I det(ayjax) I (¢Y o F) .) 
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Equation ( 1 1 .35) may be interpreted in the language of geometry as follows. The 
functions I det ( By I 8x) I are the transition functions for a line bundle on M; a section 
of this bundle , called a density on M, is an object that is represented in each local 
coordinate system x by a function q;x , such that the functions for different coordinate 
systems are related by ( 1 1 .35) . In short, smooth measures can be identified with 
nonnegative densities on M. More generally, any density ¢ defines, at least locally, 
a smooth signed or complex measure JL on M, so the integral JK ¢ = JL(K) is well 
defined for any compact K C M, as is J f¢ = J f dJL for any f E Cc (M) . 

Suppose now that M is equipped with a Riemannian metric . In any coordinate 
system x, the metric is represented by a positive definite matrix-valued function 
gx = (gfj ) . The matrix gY for another coordinate system is related to gx by ( ay ) * ( ay )  

Or gx = 
8x 

gY 
8x ' 

so that 

det gx = [ det 
( ��) r det gY . 

It follows that v det g is a positive density on M canonically associated to the metric 
g; it is called the Riemannian volume density on M. In particular, if M is a 
submanifold of 1Rn ( n > m ), it inherits a Riemannian structure from the ambient 
Euclidean structure . If M is parametrized by f : V ---+ 1Rn as in § 1 1 .2, the metric g 
is given in the coordinates induced by f by 

gx. = """" 8fk 8fk 'tJ L-t ax . ax . ' k '1, J X ( 8! ) * ( 8!) or g = ax ax . 
Theorem 1 1 .25 therefore asserts that integration of the Riemannian volume density 
gives m-dimensional Hausdorff measure on M, up to the factor 1m · 

These ideas yield an easy construction of a left Haar measure on any Lie group, 
that is , any topological group that is a C(X) manifold and whose group operations are 
C(X) . Namely, choose an inner product on the tangent space at the identity element 
and transport it to every other point by left translation . The result is a left-invariant 
Riemannian metric, and the associated volume density defines a left Haar measure . 

The most popular things to integrate on manifolds are differential forms. For 
our purposes it will suffice to describe a differential m-form on an m-dimensional 
manifold M as a section of the line bundle whose transition functions are det ( By I 8x) .  
That is, a differential m-form w is given in local coordinates x by a function wx , 
and the function wY for a different coordinate system is related to wx by wx = 
det ( By I ax )wY . (The usual notation is w = wx dxl A . . .  A dxm .) Differential m
forms thus look just like densities if one restricts oneself to coordinate systems whose 
Jacobian matrices have positive determinant. If it is possible to do this consistently 
on all of M, M is called orientable. In this case, assuming that M is connected, the 
coordinate systems on subsets of M fall into two classes such that within each class 
one always has det ( By I 8x) > 0; a choice of one of these classes is an orientation of 
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M. (In JR.3 , for example, one speaks of left-handed or right-handed coordinates .) If 
M is equipped with an orientation, therefore, differential m-forms may be identified 
with densities and as such may be integrated over compact subsets of M. 

The notion of density can be generalized. If 0 < 0 < 1 ,  a 0-density on M is a 
section of the line bundle whose transition functions are I det ( 8y / 8x) 1 ° .  (Thus, a 
1 -density is a density, and a 0-density is just a smooth function . )  Suppose 0 > 0 and 
p = o-1 . If ¢ is a 0-density, I ¢ 1 P is well defined as a nonnegative density and so can 
be integrated over M. The set of 0-densities ¢ such that I I ¢ 1 1 P = (J I ¢ 1P) 1 1P < oo 
is a normed linear space whose completion LP ( M) is called the intrinsic LP space 
of M. The duality results of Chapter 6 work in this setting: If ¢i is a Oj -density for 
j = 1 ,  2, where 01 + 02 == 1 ,  then ¢1¢2 is a density and I J ¢1¢2 1 < l l ¢1 l l p1 l l ¢2 l l p2 , where Pi = Bj1 , and £P1 (M) � (LP2 (M) ) * . 

1 1 .5 NOTES AND REFERENCES 

§ 1 1 . 1 :  The existence and uniqueness ofHaar measure were first proved by Haar [59] 
and von Neumann [ 1 55] , respectively, for groups whose topology is second countable; 
the general case is due to Weil [ 1 58] . Our proof of existence and uniqueness follows 
Weil [ 1 58] and Loomis [94] . There is another proof, due to H. Cartan, which yields 
exi stence and uniqueness simultaneously and avoids the use of the axiom of choice 
(which we invoked via Tychonoff's theorem). This proof, as wel l as further references 
and historical remarks, can be found in Hewitt and Ross [75, § 1 5] . 

Haar measure is the foundation for harmonic analysis on locally compact groups. 
The articles by Graham, Weiss, and Sally in Ash [7] provide a good introduction to 
this field; a more extensive treatment can be found in Folland [47] . 

§ 1 1 .2 : Proposition 1 1 . 1 6  is due to Caratheodory [22] , and the theory of Hausdorff 
measure was developed in Hausdorff [69] . The computation of the constant 1n can 
be found in Bill ingsley [ 17] or Falconer [39, § 1 .4] . There are other ways of defining 
lower-dimensional measures on JR.n, all of which agree on smooth submanifolds but 
sometimes differ on more irregular sets ; see Federer [ 4 1 ] .  

The concept of Hausdorff measure can be generalized. If ,\ is any strictly increas
ing continuous function on [0, oo ) such that ,\(0) = 0, for a subset A of a metric 
space X one can define 

00 00 
H>.,o (A) = inf {I >(diam Bj ) : A C U Bi , diam Bj < 8 } 

1 1 
and H>. (A) = lim8�o H>.,8 (A) . Thus Ha = H>. where ,\(t) = tP . Rogers [ 1 1 9] 
contains a systematic treatment of these generalized Hausdorff measures . 

§ 1 1 .3 :  The computation of the Hausdorff dimension of the Cantor sets C f3 goes 
back to Hausdorff [69] . The arguments presented here are due to Hutchinson [78] ; 
they can easily be extended to families of similitudes with different scaling factors, 
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that is, s == (Sl , . . .  ' Sm) where sj has scaling factor Tj < 1 .  Such a family always 
has a unique non empty compact invariant set X, and if it possesses a separating set, 
the Hausdorff dimension of X is the number p such that I:� r} == 1 .  See Hutchinson 
[78] or Falconer [39, §8 .3] . 

Self-similar sets are among the simplest examples of "fractals ." Falconer [39] is 
a good reference for the geometric measure theory of fractals ; see also Edgar [37] ,  
Falconer [40] , and Mandelbrot [96] for other aspects of the theory of fractals . 

Continuous curves of Hausdorff dimension > 1 can be constructed from non
differentiable functions. For example, if f : [a , b] ---+ 1R is Holder continuous of 
exponent a, 0 < a < 1 ,  the graph of f in JR2 can have Hausdorff dimension as large 
as 2 - a, and the range of a sample path of the n-dimensional Wiener process ( n > 2) 
almost surely has Hausdorff dimension 2. See Falconer [39, § §8 .2,7] . 

§ 1 1 .4: The theory of integration of differential forms can be found in a number of 
books such as Warner [ 1 57] and Loomis and Sternberg [95] ; the latter book also has 
a discussion of densities . 
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Index of Notation 

For the basic notation used throughout the book for sets, mappings, numbers , and 
metric and topological spaces, see Chapter 0. Notation used only in the section in 
which it is introduced is, for the most part, not listed here. 

Analysis on Euclidean space: X • y (dot product), 235 .  aa
' X

Q
' ad , I a I 

(multi-index notation), 236. 1rn (n-torus), 238. 

Functions and operations on functions : f± (positive and negative 
parts) , 46. sgn, 46. XE (characteristic function), 46. fx , fY (sections), 65. f, 
58. supp(f) (support) , 1 32, 284. AJ (distribution function) , 1 97. ryf (translation) , ......... 
238. f * g (convolution), 23_2, 285 . c/Jt (dilation) , 242. f, 9=" f (Fourier transform) , 
248, 249, 295 . (F, ¢) , 283. f (reflection), 283 . 

Integrals : The basic notation is developed in §2.2. J f(x) dx (Lebesgue inte
gral), 57, 70. JJ f dJ.L dv (iterated integral), 67 . J g dF (Stieltjes integral), 107 .  

Measures: fLF (Lebesgue-Stieltjes measure), 35 .  m, mn (Lebesgue measure) , 
37, 70. fL x v (product), 64. a (surface measure on sphere), 78 .  v± (positive and 
negative variations), 87. I v i (total variation), 87, 93 . fL j_ v (mutual singularity), 87. 
fL << v (absolute continuity), 88. f dfL, 89. dJ.L/dv (Radon-Nikodym derivative), 9 1 .  
supp(J.L) (support) , 2 1 5 .  fL x v (Radon product), 227. fL * v (convolution) , 270. 

Norms and seminorms: l l f l l u  (uniform norm), 1 2 1 .  I I T I I  (operator norm), 
154. I I  f l i P (LP norm), 1 8 1 .  l l f l l oo (L00 norm), 1 84. [f]p (weak LP quasi-norm), 1 98. 
I I J.L I I (measure norm), 222. l l ¢ 1 1 cN,a ) (Schwartz space norm), 237 .  l l ! l l cs ) (Sobolev 
norm), 302. 
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Probability theory: E(X) (expectation) , 3 14. a2 (X) (variance), 3 14.  Pel> 
(image measure, di stribution), 3 1 4. v�2 (normal distribution), 325 . 

Sets : Fa , Fa8 ,  G8 , G8a ,  22. Ex , EY (sections), 65 . 

a - algebras: M ( £ )  (a-algebra generated by £),  22. 13x (Borel sets) , 22. 

®aEA Ma , M 0 N (products), 22. £, ,en (Lebesgue measurable sets), 37 , 70. 
'B� (Baire sets), 2 1 5 .  

Spaces of functions, measures, etc . : £+ , 49. L1 , 54, 1 8 1 .  Lfoc ' 96 . 
BV, 1 02. N BV, 1 03 .  C (X, Y), 1 1 9. B (X, JR) , 1 2 1 .  BC(X, JR) , 1 2 1 .  B(X) ,  1 2 1 .  
C(X) ,  1 2 1 .  BC(X),  12 1 .  Cc (X) , 1 32. Ca (X ) ,  1 32. L( X, � ) ,  1 54. X* , 1 57 .  £2, 
1 72, 1 8 1 .  l2 , 173, 1 8 1 .  LP, 1 8 1 ,  1 84. [P , 1 8 1 .  L00 , 1 84. weak LP, 1 98 .  M(X),  222. 
Ck , 235 .  000, 235. 0� , 235.  S, 237 . D', 282. £' , 29 1 .  CS' , 293 . H8 , 3 01 . H!oc , 
306. 



A 

Abel mean, 261 

Abel summation, 261 

Absolute continuity 

of a function, 105 

of a measure, 88 

Absolute convergence, 152 

Accumulation point, 114 
Adjoint, 1 60, 177 

A.e.,  26 
Alaoglu's theorem, 169 
Alexandroff compactification, 132 
Algebra 

Banach, 154 
of functions, 139 

of sets, 21 

Almost every( where), 26 

Almost sure(ly), 3 14 
Almost uniform convergence, 62 

Approximate identity, 245 

Arcwise connected set, 124 

Arzela-Ascoli theorem, 137 
A.s. ,  3 14 

Axiom 

of choice, 6 
of countability, 116 

of separation, 116 

Index 

B 

Baire category theorem, 161 
Baire classes, 83 
Baire set, 215 
Ball ,  13 
Banach algebra, 154 
Banach space, 152 
Banach-Tarski paradox, 20 
Base for a topology, 1 15 
Bessel 's inequality, 175 
Bijective mapping, 4 
Binomial distribution, 320 
Bochner integral , 179 
Bochner-Riesz means, 279 
Bolzano-Weierstrass property, 15 
Borel isomorphism, 83 
Borel measurable function, 44 
Borel measure 33 
Borel set, 22 
Borel a -algebra, 22 
Borel 's normal number theorem, 330 
Borel-Cantelli lemma, 321 
Boundary, 114 
Bounded linear map, 153 
Bounded set, 15 
Bounded variation, 102 
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c 
Cantor function, 39 
Cantor set, 38 
Cantor-Lebesgue function, 39 
Caratheodory 's theorem, 29 
Cartesian product, 3-4 
Cauchy net, 167 
Cauchy sequence, 14 

in measure, 6 1  
Cauchy-Riemann equation, 308 
Central limit theorem, 326 
Cesaro mean, 262 
Cesaro summation, 262 
Characteristic function, 46 

of a probability distribution, 3 14 
Chebyshev 's inequality, 193 
Chi-square distribution, 3 20 
Closed graph theorem, 163 
Closed linear map, 163 
Closed set, 13, 114 
Closure, 13, 114 
Closure operator, 1 1 9 
Cluster point, 1 18, 126 
Coarser topology, 114 
Cofinal net, 127 
Cofinite topology, 1 13 
Commutator subgroup, 346 
Compact set, 16, 128 
Compact space, 128 

countably, 130 
locally, 13 1 
sequential ly, 130 

Compactification, 144 
one-point, 132 
Stone-Cech, 144 

Compactly supported function, 132 
Complement, 3 
Complete measure, 26 
Complete metric space, 14 
Complete orthonormal set, 175 
Complete topological vector space, 167 
Completely regular algebra, 146 
Completely regular space, 123 
Completion 

of a measure, 27 
of a normed vector space, 159 
of a a-algebra, 27 

Complex measure, 93 
Composition, 3 
Condensation of singularities, 165 
Conditional expectation, 93 
Conj ugate exponent, 183 
Connected component, 1 19 
Connected set, 118 
Constant-coefficient operator, 273 

Content, 72 
Continuity, 14, 1 19 

absolute, 88, 105 
Holder, 138 
Lipschitz, 108 
of linear maps on c�' 282 
of measures, 26 
uniform, 14, 238, 340 

Continuous measure, 106 
Continuum, 8 
Continuum hypothesis, 17 
Convergence 

absolute, 152 
almost uniform, 62 
in C� , 282 
in L 1 ,  54 
in measure, 6 1  
in probability, 314 
of a filter, 14 7 
of a net, 126 
of a sequence, 14, 1 16 
of a series, 152 

Convex function, 109 
Convolution 

of distributions, 285, 292 
of functions, 239 
of measures, 270 

Coordinate, 4 
Coordinate map, 4 
Countable additivity, 24 
Countable ordinals, 10 
Countable set, 7 
Countably compact space, 130 
Counting measure, 25 
Cover, 15 
Cube, 7 1, 143 

D 

Daniell integral,  81 
Decomposable measure, 92 
Decreasing function, 12 
Decreasing rearrangement, 199 
De Morgan's laws, 3 
Dense set, 13 , 1 14 
Density, 362 

of a set, 100 
Riemannian volume, 362 

Denumerable set, 7 
Derivative 

LP , 246 
of a distribution, 284 
Radon-Nikodym, 91 

Diameter, 15 
Diffeomorphism, 74 
Difference of sets, 3 
Differential operator, 273 



Dirac measure, 25 
Directed set, 125 
Dirichlet kernel, 264 
Dirichlet problem, 274 
Disconnected set, 118 
Discrete, 1 13 
Discrete measure, 106 
Discrete topology, 1 13 
Disjoint sets, 2 
Distribution function, 33, 197, 315 
Distribution, 282 

homogeneous, 289 
joint, 315 
of a random variable, 3 15 
periodic, 297 
tempered, 293 

Domain,  4 
Dominated convergence theorem, 54 
Dual space, 157 

E 

Egoroff's theorem, 62 
Elementary family, 23 
Elliptic differential operator, 307, 311 
El liptic regularity theorem, 307 
Embedding, 120 
Entropy, 325 
Equicontinuity, 137 
Equivalence class, 3 
Equivalence relation, 3 
Equivalent metric, 16 
Equivalent norm, 152 
Essential range, 187 
Essential supremum, 184 
Event, 3 14 
Eventual ly, 126 
Expectation, 3 14 

conditional , 93 
Extended integrable function, 86 
Extended real number system, 10 

F 
Fa and Fa8 sets, 22 
Fatou's lemma, 52 
Fejer kernel , 269 
Field of sets, 2 1  
Filter, 147 
Finer topology, 1 14 
Finite intersection property, 128 
Finite measure, 25 
Finite signed measure, 88 
Finitely additive measure, 25 
First category, 16 1 
First countable space, 1 16 
First uncountable ordinal, 10 
Fourier integral, 253 

Fourier inversion theorem, 251 
Fourier series , 248 
Fourier transform, 248-249 

of a measure, 272 
of a tempered distribution, 295 

Fourier-Stieltjes transform, 272 
Fractional integral ,  77 
Frequently, 126 
Frechet space, 167 
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Fubini 's theorem, 67-68, 229 
Fubini-Tonelli theorem, 67-68, 229 
Function, 3 
Fundamental theorem of calculus, 106 

G 
G8 and G8a sets, 22 
Gamma distribution, 320 
Gamma function, 58 
Gauge, 82 
Gauss kernel,  260 
Gaussian distribution, 325 
Generalized Cantor set, .. 39 
Gibbs phenomenon, 268 
Gram-Schmidt process, 175 
Graph of a linear map, 162 

H 

H-interval, 33 
Haar measure, 341 
Hahn decomposition, 87 
Hahn decomposition theorem, 86 
Hahn-Banach theorem, 157- 158 
Hardy's inequalities, 196 
Hardy-Littlewood maximal function, 96 
Hausdorff dimension, 35 1 
Hausdorff maximal principle, 5 
Hausdorff measure, 350 
Hausdorff space, 117 
Hausdorff-Young inequality, 248 
Heat equation, 275 
Heine-Borel property, 15 
Heisenberg's inequality, 255 
Henstock-Kurzweil integral, 82 
Hermite function, 256 
Hermite operator, 256 
Hermite polynomial, 257 
Hilbert space, 172 
Hilbert's inequality, 196 
Homeomorphism, 1 19 
Homogeneous distribution, 289 
Hull of an ideal , 142 
Holder continuity, 1 38 
Holder's inequality, 182, 196 
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I 
Ideal in  an algebra, 142 
Identically distributed random variables, 3 15 
Iff, 1 
Image, 3 
Image measure, 3 14 
Increasing function, 12 
Independent events, 3 15 
Independent random variables, 315 
Indicator function , 46 
Indiscrete topology, 1 13 
Inequality 

Bessel 's, 175 
Chebyshev 's, 193 
Hardy's, 196 
Hausdorff-Young, 248 
Heisenberg's, 255 
Hilbert 's, 196 
Holder 's, 182, 196 
Jensen's,  109 
Kolmogorov's, 322 
Minkowski 's, 183, 194 
Schwarz, 172 
triangle, 15 1 
Wirtinger's, 254 
Young's, 240-241 

Infimum, 9- 10 
Initial segment, 9 
Injective mapping, 4 
Inner measure, 3 2 
Inner product, 171 
Inner regular measure, 212 
Integrable function, 53 

weakly, 179 
ex tended, 86 
locally, 95 

Integral 
Bochner, 179 
Daniel l, 8 1  
fractional , 77 
Henstock-Kurzweil , 82 
Lebesgue, 56 
Lebesgue-Stieltjes, 107 
of a complex function, 53 
of a nonnegative function , 50 
of a real function, 53 
of a simple function, 49 
Riemann, 57 

Interior, 13, 1 14 
Invariant set, 355 
Inverse, 4 
Inverse image, 3 
Invertible linear map, 154 
Isometry, 154 

Isomorphism 
Borel, 83 
linear, 154 
order, 5 
unitary, 176 

J 
Jensen 's inequality, 109 
Joint distribution, 3 15 
Jordan content, 72 
Jordan decomposition 

of a function, 103 
of a signed measure, 87 

Jordan decomposition theorem, 87 

K 
Kernel of a closed set, 142 
Kolmogorov 's inequality, 322 
Krein extension theorem, 16 1 

L 

LP derivative, 246 
LP norm, 18 1, 184 
LP space, 18 1, 184 

intrinsic, 363 
weak, 198 

Laplacian, 273 
Lattice of functions, 139 
Law of large numbers 

strong, 322-323 
weak, 32 1 

Law of the iterated logarithm, 336 
LCH space, 131 
Lebesgue decomposition, 9 1  
Lebesgue differentiation theorem, 98 
Lebesgue integral, 56 
Lebesgue measurable function, 44 
Lebesgue measurable set, 37, 70 
Lebesgue measure, 37, 70 
Lebesgue set, 97 
Lebesgue-Radon-Nikodym theorem, 90, 93 
Lebesgue-Stieltjes integral, 107 
Lebesgue-Stieltjes measure, 35 
Left continuous function, 12 
Left-invariant measure, 34 1 
Lemma 

Borel-Cantelli,  32 1 
Fatou's, 52 
monotone class, 66 
Riemann-Lebesgue, 249 
three lines, 200 
Urysohn 's, 122, 13 1, 245 
Weyl's,  308 
Zorn's, 5 

Limit inferior, 2, 1 1  
Limit of a net, 126 



Limit superior, 2, 1 1  
Linear functional, 157 

positive, 2 1 1  
Linear ordering, 5 
Liouville's theorem, 300 
Lipschitz continuity, 108 
Localized Sobolev space, 306 
Locally compact group, 34 1 
Locally compact space, 13 1 
Locally convex space, 165 
Locally finite cover, 135 
Local ly integrable function, 95 
Locally measurable set, 28 
Locally null set, 192 
Lower bound, 5 
Lower semicontinuous function, 2 18 
LSC function, 2 18 
Lusin's theorem, 64, 2 17 

M 

Map, 3 
Mapping,_ 3 
Marcinkiewicz interpolation theorem, 202 
Maximal element, 5 
Maximal function, 96, 246 
Maximal theorem, 96 
Meager set, 16 1 
Mean ergodic theorem, 178 
Mean, 3 14-3 15 
Measurable function, 44 
Measurable mapping, 43 
Measurable set, 25 

Lebesgue, 37, 70 
locally, 28 
with respect to an outer measure, 29 

Measurable space, 25 
Measure, 24 

Borel , 33 
complete, 26 
complex, 93 
continuous, 106 
counting, 25 
decomposable, 92 
dicrete, 106 
Dirac, 25 
finitely additive, 25 
Hausdorff, 350 
inner, 32 
inner regular, 2 12 
Lebesgue, 37 , 70 
Lebesgue-Stieltjes,  35 
outer, 28 
outer regular, 2 12 
positive, 85 
Radon, 2 12 
regular, 99, 2 12 

semifinite, 25 
a-finite, 25 
signed, 85 
singular, 87 
smooth, 361 

Measure space, 25 
Metric, 13 
Metric outer measure, 349 
Metric space, 13 
Minimal element, 5 
Minkowski 's inequality, 183 

for integrals, 194 
Modular function, 346 
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Moment convergence theorem, 320 
Monotone class, 65 
Monotone class lemma, 66 
Monotone convergence theorem, 50 
Monotone function, 12 
Monotonicity of measures, 25 
Multi-index, 236 
Mutually singular measures, 87 

N 
Negative part of a function, 46 
Negative set, 86 
Negative variation 

of a function, 103 
of a signed measure, 87 

Neighborhood, 1 14 
Neighborhood base, 1 14 
Net, 125 
Norm, 152 

LP, 18 1, 184 
operator, 154 
product, 153 
quotient, 153 
uniform, 12 1 

Norm topology, 152 
Normal distribution, 325 
Normal number, 330 
Normal space, 1 17 
Normed linear space, 152 
Normed vector space, 152 
Nowhere dense set, 13, 114 
Null set, 26, 86 

locally, 192 

0 
One-point compactification, 132 
Open map, 162 
Open mapping theorem, 162 
Open set, 12-13, 1 14 
Operator norm, 154 
Order isomorphism, 5 
Order topology, 1 18 
Ordinal, 10 
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Orientable manifold, 362 
Orientation, 362 
Orthogonal projection, 177 
Orthogonal set, 173 
Orthonormal basis, 176 
Orthonormal set, 175 
Outer measure, 28 

metric, 349 
Outer regular measure, 2 12 

p 
Paracompact space, 135 
Parallelogram law, 173 
Parametrization, 352 
Parseval 's identity, 175 
Partial ordering, 4 
Partition 

of an interval, 56 
of unity, 134 
tagged, 82 

Periodic distribution, 297 
Periodic function, 238 
Plancherel theorem, 252 
Point mass, 25 
Pointwise bounded family, 137 
Poisson distribution, 320 
Poisson kernel, 260, 262 
Poisson summation formula, 254 
Polar coordinates, 78 
Polar decomposition, 46 
Positive definite function, 272 
Positive linear functional, 211 
Positive measure, 85 
Positive part of a function, 46 
Positive set, 86 
Positive variation 

of a function, 103 
of a signed measure, 87 

Pre-Hilbert space, 172 
Precompact set, 128 
Predecesor, 9 
Premeasure, 30 
Principal symbol , 306 
Probability measure, 3 13 
Product measure, 64 
Product metric, 13 
Product norm, 153 
Product a-algebra, 22  
Product topology, 120 
Projection, 4 

orthogonal, 177 
Proper map, 135 
Pythagorean theorem, 173 

Q 
Quotient norm, 153 

Quotient space, 153 
Quotient topology, 124 

R 
Radon measure, 212 

complex, 222 
Radon product, 227 
Radon-Nikodym derivative, 9 1  
Radon-Nikodym theorem, 9 1  
Random variable, 3 14 
Range, 4 
Real-analytic function, 263 
Rectangle, 64 
Refinement of a cover, 135 
Reflexive space, 159 
Regular measure, 99, 2 12 
Regular space, 1 17 
Relation, 3 
Relative topology, 1 14 
Rel lich's theorem, 305 
Residual set, 16 1 
Reverse inclusion, 125 
Riemann integrable function, 57 
Riemann integral, 57 
Riemann-Lebesgue lemma, 249 
Riemannian volume density, 362 
Riesz representation theorem, 212, 223 
Riesz-Thorin i nterpolation theorem, 200 
Right continuous function, 12 
Right-invariant measure, 34 1 
Ring of sets, 24 

s 
Sample mean, 325 
Sample space, 314 
Sample variance, 325 
Sampling theorem, 255 
Saturated measure, 28 
Saturation of a measure, 28 
Scalar product, 171 
Schroder-Bernstein theorem, 7 
Schwartz space, 236 
Schwarz inequality, 172 
Second category, 161 
Second countable space, 116 
Section of a set or function, 65 
Semifinite measure, 25 
Semifinite part, 27 
Seminorm, 151 
Separable space, 14, 1 16 
Separating set, 359 
Separation 

of points, 139 
of points and closed sets, 143 

Sequence, 4 
Sequentially compact space, 130 



Shannon's theorem, 324 
Shrink nicely, 98 
Sides of a rectangle, 70 
Sierpinski gasket, 356 
a-algebra, 2 1  

Borel, 22 
generated by a family of functions, 44 
generated by a family of sets, 22 
of countable or co-countable sets, 21 
product, 22 

a -compact space, 13 3 
a-field, 2 1  
a-finite measure, 25 
a-finite set, 25 
a-finite signed measure, 88 
a-ring, 24 
Signed measure, 85 
Similitude, 355 

Simple function, 46 
Singular measure, 87 
Slowly increasing function, 294 
Smooth measure, 36 1 
Snowflake curve, 356 
Sobolev embedding theorem, 303, 308 
Sobolev space, 301 

localized, 306 
Standard deviation, 3 14 
Standard normal distribution, 325 
Standard representation of a simple function, 46 
Stirling's formula, 327 
Stone-Cech compactification, 144 
Stone-Weierstrass theorem, 1 39, 1 4 1  

Strong law of large numbers, 322-323 
Strong operator topology, 169 
Strong type, 202 
Stronger topology, 1 14 
Subadditivity, 25 
Subbase for a topology, 1 14 
Sublinear functional , 157 
Sublinear map, 202 
Submanifold, 35 1 
Subnet, 126 
Subordination, 134 
Subsequence, 4 
Subspace of a vector space, 15 1 
Support 

of a distribution, 284 
of a function, 132 
of a measure, 2 15 

Supremum, 9-10 
Surjective mapping, 4 
Symbol, 273 

principal , 306 
Symmetric difference, 3 
Symmetric neighborhood, 339 

T 
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To , . . .  , T4 space, 1 16, 123 
Tagged partition, 82 
Tempered distribution, 293 
Tempered function, 293 
Theorem 

Alaoglu 's, 169 
ArzeUt-Ascoli ,  137 
Baire category, 16 1 
Caratheodory' s, 29 
central limit, 326 
closed graph, 163 
dominated convergence, 54 
Egoroff's, 62 
Fourier inversion, 25 1 
Fubini-Tonelli, 67-68, 229 
Hahn decomposition, 86 
Hahn-Banach, 157- 158 
Jordan decomposition, 87 
Krein extension, 16 1 
Lebesgue differentiation, 98 
Lebesgue-Radon-Nikodym, 90, 93 
Liouville's, 300 
Lusin's, 64, 2 17 
Marcinkiewicz interpolation, 202 
maximal , 96 
moment convergence, 320 
monotone convergence, 50 
open mapping, 162 
Plancherel, 252 
Pythagorean, 173 
Radon-Nikodym, 9 1  
Rellich 's, 305 
Riesz representation, 2 12, 223 
Riesz-Thorin interpolation, 200 
sampling, 255 
Schroder-Bernstein, 7 
Shannon's, 324 
Sobolev embedding, 303, 308 
Stone-Weierstrass, 139, 14 1 
Tietze extension, 122, 13 1 
Tychonoff 's, 136 
Urysohn metrization, 145 
Vitali convergence, 187 
Vitali covering, 1 10 
Weierstrass approximation, 14 1, 3 18 

Three lines lemma, 200 
Tietze extension theorem, 122, 13 1 
Tonell i 's  theorem, 67-68, 229 
Topological group, 339 
Topological space, 1 13 
Topological vector space, 165 
Topology, 113 

cofinite, 1 13 
generated by a family of sets, 1 14 



386 INDEX 

indiscrete, 1 1 3 
norm, 152 
of uniform convergence, 133 
of uniform convergence on compact sets, 133 
product, 120 
quotient, 124 
relative, 1 14 
strong operator, 169 
trivial, 1 13 
vague, 223 
weak operator, 169 
weak, 120, 168 
weak*,  1 69 
Zariski , 1 17 

Torus,  238 
Total ordering, 5 
Total variation 

of a complex measure, 93 
of a function, 102 
of a signed measure, 87 

Totally bounded set, 15 
Transfinite induction, 9 
Transpose, 160 
Triangle inequality, 15 1 
Trivial topology, 1 1 3  
Tychonoff space, 123 
Tychonoff's theorem, 136 

u 
Uniform boundedness principle, 163 
Uniform continuity, 238, 340 
Uniform integrabi lity, 92 
Uniform norm, 121 
Unimodular group, 346 
Unitary map, 176 
Upper bound, 5 
Upper semicontinuous function, 2 18 

U rysohn metrization theorem, 145 
Urysohn's lemma, 122, 13 1, 245 
USC function, 2 18 

v 
Vague topology, 223 
Vanish at infini ty, 132 
Variance, 3 14-3 15 
Vitali convergence theorem, 187 
Vitali covering theorem, 110 

w 
Wave equation, 275 
Weak convergence, 169 
Weak LP, 198 
Weak law of large numbers, 3 21 
Weak operator topology, 169 
Weak topology, 120, 168 
Weak type, 202 
Weak* topology, 169 
Weaker topology, 1 14 
Weierstrass approximation theorem, 14 1, 3 18 
Weierstrass kernel, 260 
Well ordering principle, 5 
Well ordering, 5 
Weyl 's lemma, 308 
Wiener process,  332 

abstract, 331 
Wirtinger's inequality, 254 

y 
Young's inequality, 240-24 1 

z 

Zariski topology, 117 
Zorn's lemma, 5 
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