Monetary Theory and Policy Chapter 4: The Meaning of Interest Rates

Present Value

 A dollar paid to you one year from now is less valuable than a dollar paid to you today

• Why?

• A dollar deposited today can earn interest and become $\$ 1 \times (1 + i)$ one year from today.

Discounting the Future

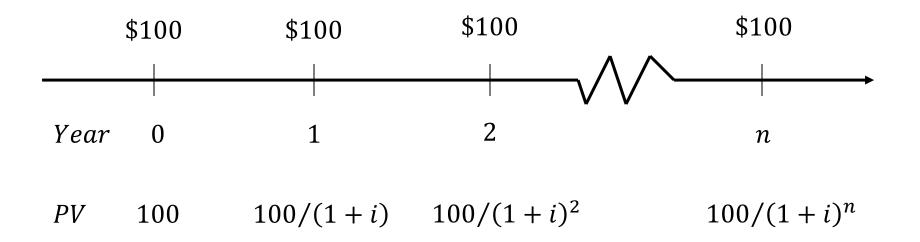
• Let *i* = .10

In one year

\$100 × (1+0.10) = \$110

In two years $$110 \times (1 + 0.10) = $121 \text{ or } 100 \times (1 + 0.10)^2$ In three years $$121 \times (1 + 0.10) = $133 \text{ or } 100 \times (1 + 0.10)^3$ In *n* years

 $(1 + i)^n$


Simple Present Value

PV = present value FV = future value i = the interest rate $PV = \frac{FV}{(1+i)^n}$

Cannot directly compare payments scheduled in different

points in the time line

Four Types of Credit Market Instruments

- Simple Loan
- Fixed Payment Loan
- Coupon Bond
- Discount Bond (zero-coupon bond)

Yield to Maturity

 The interest rate that equates the present value of cash flow payments received from a debt instrument with its value today

Simple Loan

 lender provides borrower a certain amount of funds which has to be repaid to the lender at maturity date along an additional payment for the interest

PV = amount borrowed

FV = cash flow in one year = principal+interest n = number of years

$$\mathsf{PV} = \frac{\mathsf{FV}}{\left(1+i\right)^n}$$

Simple Loan

• For simple loans, the simple interest rate equals the yield to maturity

 $(1+i) = \frac{\$110}{\$100}$ i = 0.10 = 10%

Fixed Payment Loan

 The same cash flow payment every period throughout the life of the loan

> LV = loan value FP = fixed yearly payment n = number of years until maturity LV = $\frac{FP}{1+i} + \frac{FP}{(1+i)^2} + \frac{FP}{(1+i)^3} + \dots + \frac{FP}{(1+i)^n}$

Fixed Payment Loan

Mortgage: housing or consumption of durable goods

LV = loan value of a house = \$3,000,000
FP = fixed annual payment = \$150,000

$$n =$$
 number of years until maturity = 25
\$3,000,000 = $\frac{$150,000}{1+i} + \frac{$150,000}{(1+i)^2} + \frac{$150,000}{(1+i)^3} + \dots$
 $+ \frac{$150,000}{(1+i)^{25}}$

Coupon Bond

Using the same strategy used for the fixed-payment loan

P = price of coupon bond C = yearly coupon payment F = face value of the bond n = years to maturity date $P = \frac{C}{1+i} + \frac{C}{(1+i)^2} + \frac{C}{(1+i)^3} + \dots + \frac{C}{(1+i)^n} + \frac{F}{(1+i)^n}$ **Table 1** Yields to Maturity on a 10%-Coupon-Rate Bond Maturing in Ten Years (Face Value = \$1,000)

TABLE 1	Yields to Maturity on a 10%-Coupon-Rate Bond Maturing in Ten Years (Face Value = \$1,000)		
Price of Bond (\$)		Yield to Maturity (%)	
1,2	00	7.13	
1,1	00	8.48	
1,000		10.00	
9	00	11.75	
8	00	13.81	

 When the coupon bond is priced at its face value, the yield to maturity equals the coupon rate

- The price of a coupon bond and the yield to maturity are negatively related
- The yield to maturity is greater than the coupon rate when the bond price is below its face value

Consol or Perpetuity

 A bond with no maturity date that does not repay principal but pays fixed coupon payments forever

$$P = \frac{C}{1+i_c} + \frac{C}{(1+i_c)^2} + \frac{C}{(1+i_c)^3} + \dots = \frac{C}{1+i_c} / \left(1 - \frac{1}{1+i_c}\right)$$
$$P = C / i_c$$

 $P_c =$ price of the consol

C = yearly interest payment

 i_c = yield to maturity of the consol

$$i_c = C / P_c$$

 For coupon bonds, this equation gives the <u>current yield</u>, an easy to calculate approximation to the yield to maturity

Discount Bond

- Zero-Coupon Bond
- Bought at a price below its face value and the face value repaid at the maturity date.
- For any on year discount bond

F = Face value of the discount bond

P = current price of the discount bond

$$P = \frac{F}{1+i}$$
$$i = \frac{F - P}{P}$$

Rate of Return

 The payments to the owner plus the change in value expressed as a fraction of the purchase price

$$\mathsf{RET} = \frac{\mathsf{C}}{\mathsf{P}_t} + \frac{\mathsf{P}_{t+1} - \mathsf{P}_t}{\mathsf{P}_t}$$

Note

RET = return from holding the bond from time t to time t + 1 P_t = price of bond at time t P_{t+1} = price of the bond at time t + 1 C = coupon payment $\frac{C}{P_t}$ = current yield = i_c $\frac{P_{t+1} - P_t}{P_t}$ = rate of capital gain = g

Rate of Return and Interest Rates

- The return equals the yield to maturity only if the holding period equals the time to maturity
- A rise in interest rates is associated with a fall in bond prices, resulting in a capital loss if time to maturity is longer than the holding period
- The more distant a bond's maturity, the greater the size of the percentage price change associated with an interest-rate change

Rate of Return and Interest Rates (cont'd)

- The more distant a bond's maturity, the lower the rate of return occurs as a result of an increase in the interest rate
- Even if a bond has a substantial initial interest rate, its return can be negative if interest rates rise

Table 2 One-Year Returns on Different-Maturity 10%-Coupon-Rate Bonds When Interest Rates Rise from 10% to 20%

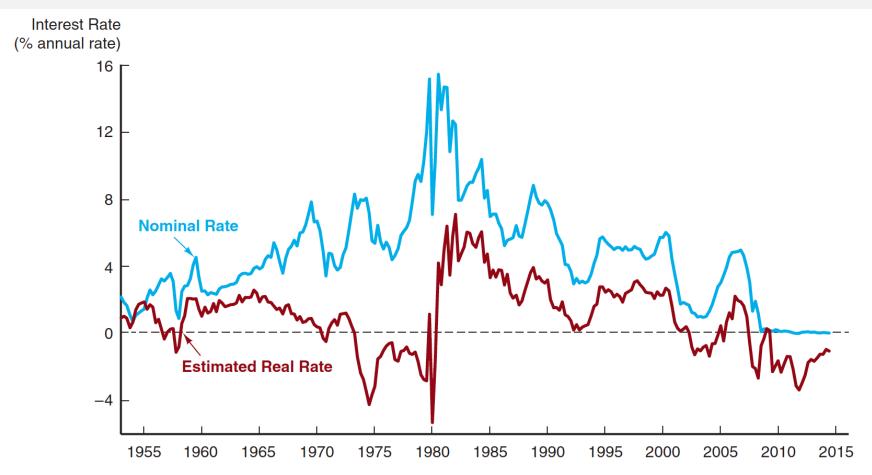
Years to Maturity When Bond Is Purchased	(2) Initial Current Yield (%)	(3) Initial Price (\$)	(4) Price Next Year* (\$)	(5) Rate of Capital Gain (%)	(6) Rate of Return (2 + 5) (%)
30	10	1,000	503	-49.7	-39.7
20	10	1,000	516	-48.4	-38.4
10	10	1,000	597	-40.3	-30.3
5	10	1,000	741	-25.9	-15.9
2	10	1,000	917	-8.3	+1.7
1	10	1,000	1,000	0.0	+10.0

Interest-Rate Risk

- Prices and returns for long-term bonds are more volatile than those for shorter-term bonds
- There is no interest-rate risk for any bond whose time to maturity matches the holding period

Real and Nominal Interest Rates

- Nominal interest rate makes no allowance for inflation
- Real interest rate is adjusted for changes in price level so it more accurately reflects the cost of borrowing
- Ex ante real interest rate is adjusted for expected changes in the price level
- Ex post real interest rate is adjusted for actual changes in the price level


Fisher Equation

Fisher equation

$$i = i_r + \pi^e$$

 $i =$ nominal interest rate
 $i_r =$ real interest rate
 $\pi^e =$ expected inflation rate

- When the real interest rate is low, there are greater incentives to borrow and fewer incentives to lend.
- The real interest rate is a better indicator of the incentives to borrow and lend

FIGURE 1 Real and Nominal Interest Rates (Three-Month Treasury Bill), 1953–2014

Sources: Nominal rates from Federal Reserve Bank of St. Louis FRED database: http://research.stlouisfed.org/fred2/. The real rate is constructed using the procedure outlined in Frederic S. Mishkin, "The Real Interest Rate: An Empirical Investigation," Carnegie-Rochester Conference Series on Public Policy 15 (1981): 151–200. This procedure involves estimating expected inflation as a function of past interest rates, inflation, and time trends, and then subtracting the expected inflation measure from the nominal interest rate.

	Chapter 4	23 / 23
--	-----------	---------