Monetary Theory and Policy

Chapter 6: The Risk and Term Structure of Interest Rates

FIGURE 1 Long-Term Bond Yields, 1919–2008

Sources: Board of Governors of the Federal Reserve System, Banking and Monetary Statistics, 1941–1970; Federal Reserve: www.federalreserve.gov/releases/h15/data.htm.

Chapter 6 2 / 29

Risk Structure of Interest Rates

- Bonds with the same maturity have different interest rates due to:
 - Default risk
 - Liquidity
 - Tax considerations

Chapter 6 3 / 29

Risk Structure of Interest Rates

- Default risk: probability that the issuer of the bond is unable or unwilling to make interest payments or pay off the face value
 - U.S. Treasury bonds are considered default free (government can raise taxes).
 - Risk premium: the spread between the interest rates on bonds with default risk and the interest rates on (same maturity)

 Treasury bonds

Chapter 6 4 / 29

FIGURE 2 Response to an Increase in Default Risk on Corporate Bonds

Chapter 6 5 / 29

Table 1 Bond Ratings by Moody's, Standard and Poor's, and Fitch

Rating			
Moody's	S&P	Fitch	Definitions
Aaa	AAA	AAA	Prime Maximum Safety
Aal	AA-	AA-	High Grade High Quality
Aa2	AA	AA	
Aa3	AA-	AA-	
A1	A+	A+	Upper Medium Grade
A2	A	A	
A3	A-	A-	
Baa l	BBB+	BBB+	Lower Medium Grade
Baa2	BBB	BBB	
Baa3	BBB-	BBB-	
Ba1	BB+	BB+	Non Investment Grade
Ba2	BB	BB	Speculative
Ва3	BB-	BB-	· ·
B1	B-	B-	Highly Speculative
B2	В	В	0 , 1
В3	B-	B-	
Caa1	CCC+	CCC	Substantial Risk
Caa2	CCC	_	In Poor Standing
Caa3	CCC-	_	<u> </u>
Ca	_	_	Extremely Speculative
С	_	_	May be in Default
	_	DDD	Default
_ _ _	_	DD	_
_	D	D	

Chapter 6 6 / 29

Risk Structure of Interest Rates

- Liquidity: the relative ease with which an asset can be converted into cash
 - Cost of selling a bond
 - Number of buyers/sellers in a bond market
- Income tax considerations
 - Interest payments on municipal bonds are exempt from federal income taxes.

Chapter 6 7 / 29

FIGURE 3 Interest Rates on Municipal and Treasury Bonds

Price of Bonds, P

Quantity of Municipal Bonds

(a) Market for municipal bonds

Quantity of Treasury Bonds

(b) Market for Treasury bonds

Chapter 6 8 / 29

Term Structure of Interest Rates

 Bonds with identical risk, liquidity, and tax characteristics may have different interest rates because the time remaining to maturity is different

Chapter 6 9 / 29

Term Structure of Interest Rates

- Yield curve: a plot of the yield on bonds with differing terms to maturity but the same risk, liquidity and tax considerations
 - Upward-sloping: long-term rates are above short-term rates
 - Flat: short- and long-term rates are the same
 - Inverted: long-term rates are below short-term rates

Chapter 6 10/29

Facts Theory of the Term Structure of Interest Rates Must Explain

- 1. Interest rates on bonds of different maturities move together over time
- 2. When short-term interest rates are low, yield curves are more likely to have an upward slope; when short-term rates are high, yield curves are more likely to slope downward and be inverted
- 3. Yield curves almost always slope upward

Chapter 6 11/29

Three Theories to Explain the Three Facts

- Expectations theory explains the first two facts but not the third
- 2. Segmented markets theory explains fact three but not the first two
- Liquidity premium theory combines the two theories to explain all three facts

Chapter 6 12/29

FIGURE 4 Movements over Time of Interest Rates on U.S. Government Bonds with Different Maturities

Sources: Federal Reserve: www.federalreserve.gov/releases/h15/data.htm.

Chapter 6 13/29

Expectations Theory

- The interest rate on a long-term bond will equal an average of the short-term interest rates that people expect to occur over the life of the long-term bond
- Buyers of bonds do not prefer bonds of one maturity over another; they will not hold any quantity of a bond if its expected return is less than that of another bond with a different maturity
- Bond holders consider bonds with different maturities to be perfect substitutes

Chapter 6 14/29

Expectations Theory: Example

- Let the current rate on one-year bond be 6%.
- You expect the interest rate on a one-year bond to be 8% next year.
- Then the expected return for buying two one-year bonds averages (6% + 8%)/2 = 7%.
- The interest rate on a two-year bond must be 7% for you to be willing to purchase it.

Chapter 6 15/29

Expectations Theory

For an investment of\$1

 i_t = today's interest rate on a one-period bond

 i_{t+1}^e = interest rate on a one-period bond expected for next period

 i_{2t} = today's interest rate on the two-period bond

Chapter 6 16/29

Expectations Theory (cont'd)

 Expected return over the two periods from investing \$1 in the two-period bond and holding it for the two periods.

$$(1+i_{2t})(1+i_{2t})-1=1+2i_{2t}+(i_{2t})^2-1$$
$$=2i_{2t}+(i_{2t})^2$$

• Since $(i_{2t})^2$ is very small, the expected return for holding the two-period bond for two periods is $2i_{2t}$

Chapter 6 17/29

Expectations Theory (cont'd)

If two one-period bonds are bought with the \$1 investment

$$(1+i_t)(1+i_{t+1}^e)-1=1+i_t+i_t^e+i_t(i_{t+1}^e)-1$$
$$=i_t+i_{t+1}^e+i_t(i_{t+1}^e)$$

• $i_t(i_{t+1}^e)$ is extremely small

simplifying we get $i_t + i_{t+1}^e$

Chapter 6 18/29

Expectations Theory (cont'd)

Both bonds will be held only if the expected returns are equal

$$2i_{2t} = i_t + i_{t+1}^e$$
$$i_{2t} = \frac{i_t + i_{t+1}^e}{2}$$

- The two-period rate must equal the average of the two one-period rates
- For bonds with longer maturities

$$i_{nt} = \frac{i_t + i_{t+1}^e + i_{t+2}^e + \dots + i_{t+(n-1)}^e}{n}$$

 The n-period interest rate equals the average of the oneperiod interest rates expected to occur over the n-period life of the bond

Chapter 6 19/29

Expectations Theory

- Explains why the term structure of interest rates changes at different times
- Explains why interest rates on bonds with different maturities move together over time (fact 1)
- Explains why yield curves tend to slope up when short-term rates are low and slope down when short-term rates are high (fact 2)
- Cannot explain why yield curves usually slope upward (fact 3)

Chapter 6 20/ 29

Segmented Markets Theory

- Bonds of different maturities are not substitutes at all
- The interest rate for each bond with a different maturity is determined by the demand for and supply of that bond
- Investors have preferences for bonds of one maturity over another
- If investors generally prefer bonds with shorter maturities that have less interest-rate risk, then this explains why yield curves usually slope upward (fact 3)

Chapter 6 21/29

Liquidity Premium & Preferred Habitat Theories

- The interest rate on a long-term bond will equal an average of short-term interest rates expected to occur over the life of the long-term bond plus a liquidity premium that responds to supply and demand conditions for that bond
- Bonds of different maturities are partial (not perfect) substitutes

Chapter 6 22/ 29

Liquidity Premium Theory

Liquidity Premium Theory

$$i_{nt} = \frac{i_t + i_{t+1}^e + i_{t+2}^e + \dots + i_{t+(n-1)}^e}{n} + I_{nt}$$

 Where I_{nt} is the liquidity premium for the n-period bond at time t

 I_{nt} is always positive

Rises with the term to maturity

Chapter 6 23/29

Preferred Habitat Theory

- Investors have a preference for bonds of one maturity over another
- They will be willing to buy bonds of different maturities only if they earn a somewhat higher expected return
- Investors are likely to prefer short-term bonds over longer-term bonds

Chapter 6 24/29

FIGURE 5 The Relationship Between the Liquidity Premium (Preferred Habitat) and Expectations Theory

Chapter 6 25/29

Liquidity Premium and Preferred Habitat Theories

- Interest rates on different maturity bonds move together over time; explained by the first term in the equation
- Yield curves tend to slope upward when short-term rates are low and to be inverted when short-term rates are high; explained by the liquidity premium term in the first case and by a low expected average in the second case
- Yield curves typically slope upward; explained by a larger liquidity premium as the term to maturity lengthens

Chapter 6 26/29

FIGURE 6 Yield Curves and the Market's Expectations of Future Short-Term Interest Rates According to the Liquidity Premium (Preferred Habitat) Theory

Chapter 6 27/ 29

FIGURE 7 Yield Curves for U.S. Government Bonds

Sources: Federal Reserve Bank of St. Louis; U.S. Financial Data, various issues; Wall Street Journal, various dates.

Chapter 6 28/ 29

Application: The Subprime Collapse and the Baa-Treasury Spread

Chapter 6 29/ 29