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Abstract. In this mini-course, we will discuss (i) basic theories of automorphic forms,
including modular forms, Maass forms and Eisenstein series; (ii) Hecke L-functions, Hecke
operators, and the first moment of Fourier coefficients/Hecke eigenvalues; (iii) The Rankin-
Selberg method and estimates of the second moment of Fourier coefficients; (iv) the sup
norm problem of automorphic forms in the spectral aspect. We will focus on the analytic
and arithmetic aspects of the theory of automorphic forms.
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0. Introduction

Automorphic forms are present in almost every area of modern number theory. They also
appear in other areas of mathematics and in physics.

The concept of an automorphic function is a natural generalization of a periodic function.
Let X be a locally compact space acted on discontinuously by a group Γ. Then a function
f : X → C is automorphic with respect to Γ if

f(γx) = f(x) for all γ ∈ Γ.

In other words, f lives on the quotient space Γ\X (the space of orbits).

Example 0.1. Take X = R and Γ = Z, so Z\R is the circle. A function f : R → C is
periodic of period 1 if f(x+n) = f(x) for all x ∈ R and n ∈ Z. We have the theory of Fourier
series. For f : R→ C a Schwartz function, we have (the Poisson summation formula)∑

n∈Z

f(n) =
∑
n∈Z

f̂(n),

where f̂(y) =
∫
R f(x)e(−xy)dx is the Fourier transform of f . Here e(z) = e2πiz.

Example 0.2. Take X = Rm and Γ = Zm, so Tm = Zm\Rm is the m-dimensional torus.

There are many interesting applications of the theory of automorphic forms, such as

• equidistribution of integral points on ellipsoids,
• equidistribution of quadratic roots,
• primes represented by x2 + y4, and so on.

Unfortunately, we won’t have time to discuss those applications in this mini-course.

1. Modular forms

1.1. The hyperbolic space. As a model of the hyperbolic plane we will use the upper half
of the plane C of complex numbers:

H = {z = x+ iy : x ∈ R, y ∈ R+}.
H is a riemannian manifold with the metric derived from the Poincare differential,

ds2 = y−2(dx2 + dy2). (1.1)

The distance function on H is given by

ρ(z, w) = min
L

∫ 1

0

(x′(t)2 + y′(t)2)1/2y(t)−1dt

where L = {(x(t), y(t)) : t ∈ [0, 1]} ranges over smooth curves in H joining z and w. More
explicitly we have

ρ(z, w) = log
|z − w̄|+ |z − w|
|z − w̄| − |z − w|

. (1.2)

We have

cosh ρ(z, w) = 1 + 2u(z, w), (1.3)

where

u(z, w) =
|z − w|2

4 Im z Imw
. (1.4)
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This function (a point-pair invariant) is more practical than the true distance function
ρ(z, w).

To describe the geometry of H we shall use well-known properties of the Möbius transfor-
mations

gz =
az + b

cz + d
, a, b, c, d ∈ R, ad− bc = 1. (1.5)

Observe that a Möbius transformation g determines the matrix

(
a b
c d

)
up to sign. In

particular, both matrices I =

(
1

1

)
and−I =

(
−1

−1

)
give the identity transformation.

We shall always take this distinction into account, but often without mention.
Throughout we denote G = SL2(R), the group of real matrices of determinant 1. The

group PSL2(R) = G/(±I) of all Möbius transformations acts on the whole compactified

complex plane Ĉ = C ∪ {∞} (the Riemann sphere) as conformal mappings. A Möbius
transformation g maps a euclidean circle onto a circle subject to the convention that the
euclidean lines in Ĉ are also circles. Of course, the centers may not be preserved, since g is

not a euclidean isometry, save for g = ±
(

1 ∗
1

)
, which represents a translation.

Figure 1. Geodesics in H.

The riemannian measure derived from the Poincaré differential ds = y−1|dz| on H is
expressed in terms of the Lebesgue measure simply by

dµz = y−2dxdy. (1.6)

Note that
d

dz
gz =

a(cz + d)− (az + b)c

(cz + d)2
=

1

(cz + d)2
,

and

Im gz =
Im z

|cz + d|2
.

Hence we have
(Im gz)−1|dgz| = (Im z)−1|dz|,

which shows that the differential ds on H is invariant under the group G.
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Exercise 1.1. Show directly that the above measure is G-invariant.

Theorem 1.2. The hyperbolic lines (geodesics in H) are represented by the euclidean semi-
circles and half-lines orthogonal to R.

1.2. The modular group and the fundamental domain. The group SL2(Z) is the first
discrete subgroup of SL2(R) which interests arithmeticians.

Definition 1.3. The group Γ = SL2(Z) is called the modular group.

Remark 1.4. Many authors may define Γ as the image of SL2(Z) in PSL2(R), i.e. Γ =
PSL2(Z) = SL2(Z)/{±I}.

Theorem 1.5. The modular group is generated by two matrices

T =

(
1 1

1

)
, S =

(
−1

1

)
. (1.7)

Proof. The action of S on H (the inversion) is involutary, more precisely S2 = −I. We have

S

(
a b
c d

)
=

(
−c −d
a b

)
,

so S acts by interchanging the rows up to the sign. The matrix T n =

(
1 n

1

)
acts by

translation,

T n
(
a b
c d

)
=

(
a+ cn b+ dn
c d

)
.

If c 6= 0 this has an effect of reducing the left upper entry to 0 ≤ a < |c| by a suitable choice
of n ∈ Z. Applying both operations repeatedly, we end up with a matrix having c = 0,

which must be of type ±
(

1 m
1

)
. Then applying T−m we arrive at ±I. �

Remark 1.6. The procedure described in the proof of Theorem 1.5 follows the steps of the
continued fraction expansion of a/c.

Theorem 1.7. The set

D =

{
z = x+ iy : |x| < 1

2
, |z| > 1

}
(1.8)

is a fundamental domain for the modular group Γ = SL2(Z), i.e. it has the following
properties:

- D is a domain in H,
- every orbit of Γ has a point in D or on the boundary ∂D,
- distinct points in D are not in the same orbit of Γ.

Proof. For any given z ∈ H andB > 0. We consider the set Σ = {Im γz : γ ∈ Γ, |cz+d| ≤ B}.
Since |cz+d|2 = (cx+d)2+(cy)2, we have |cy| ≤ B and hence |c| ≤ B/y. Note that |cx+d| ≤
B, hence we have |d| ≤ B+|cx| ≤ B+B|x|/y. Thus we get #Σ ≤ (2B/y+1)(B+B|x|/y+1),
i.e., Σ is a finite set. So each orbit Γz has a point with largest height (the imaginary part).
Such a point, say z, has the property that

|cz + d| ≥ 1 for all γ =

(
∗ ∗
c d

)
∈ Γ.
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This maximal property is preserved by translations (which are represented by matrices with
c = 0), so we can choose a maximal point of the orbit in the strip |x| ≤ 1

2
. We shall show

that the domain

D′ =

{
z ∈ H : |x| < 1

2
, |cz + d| > 1 for all c, d with c 6= 0

}
coincides with D. Indeed, D′ ⊂ D by choosing c = 1, d = 0. Conversely, if z ∈ D and c 6= 0
then

|cz + d|2 = c2|z|2 + 2cdx+ d2 > c2 − |cd|+ d2 ≥ 1,

so D ⊂ D′. From the construction of D′ it follows that distinct points of D′ are not equivalent
and the closure D̄′ = D′∪∂D′ contains points of every orbit. Thus D = D′ is a fundamental
domain. �

Figure 2. The fundamental domain D (shaded) and it’s translates.

LetD be the standard fundamental polygon (1.8). We shall show that the equivalent points
of the boundary ∂D are exactly those pairs of points which interchange upon reflection in
the line x = 0, and they are identified by the transformations T and S. Indeed, if both z
and γz are on ∂D then

1 = |cz + d|2 = (cx+ d)2 + c2y2 ≥ c2 − |cd|+ d2 ≥ 1;

hence either c = 0, d = ±1 or c = ±1, d = 0, giving T or S respectively. Observe that D has
a parabolic vertex at ∞, an elliptic vertex at i of order m(i) = 2, and two equivalent elliptic

vertices at ρ = −1+i
√

3
2

and ρ′ = 1+i
√

3
2

of order m(ρ) = m(ρ′) = 3.

1.3. Modular functions.

Definition 1.8. A function f : H→ C is called a weakly modular function of weight k
if f is meromorphic on the half plane H and satisfies the transformation rule

f(γz) = (cz + d)kf(z) for all γ =

(
a b
c d

)
∈ Γ. (1.9)

Remark 1.9. (1) k must be even. If k is odd, then take γ = −I we have

f

((
−1

−1

)
z

)
= (−1)kf(z) = −f(z),

hence f(z) vanishes identically. Hence from now on, we will assume that k is even.
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(2) If f1, f2 are weakly modular functions of weight k1, k2 respectively, then f1f2 is a
weakly modular function of weight k1 + k2.

Let γ =

(
a b
c d

)
∈ Γ. We have d(γz)/dz = (cz + d)−2. The relation (1.9) can then be

written:

f(γz)

f(z)
=

(
d(γz)

dz

)− k
2

or

f(γz)d(gz)k/2 = f(z)dzk/2.

It means that the “differential form of weight k/2” f(z)dzk/2 is invariant under Γ. Since Γ is
generated by the elements S and T , it suffices to check the invariance by S and by T . This
gives:

Theorem 1.10. Let f be meromorphic on H. The function f is a weakly modular function
of weight k if and only if it satisfies the two relations:

f(z + 1) = f(z), (1.10)

f(−1/z) = zkf(z). (1.11)

Proof. Let j(γ, z) = cz + d, where γ =

(
a b
c d

)
∈ Γ. One can check

j(γγ′, z) = j(γ, γ′z)j(γ′, z), for any γ, γ′ ∈ Γ.

Together with Theorem 1.5, we complete the proof. �

Suppose the relation (1.10) is verified. We can then express f as a function of q = e2πiz,

function which we will denote by f̃ ; it is meromorphic in the disk |q| < 1 with the origin

removed. If f̃ extends to a meromorphic (resp. holomorphic) function at the origin, we say,
by abuse of language, that f is meromorphic (resp. holomorphic) at infinity. This

means that f̃ admits a Laurent expansion in a neighborhood of the origin

f̃(q) =
+∞∑

n=−∞

af (n)qn

where the an are zero for n small enough (resp. for n < 0).

Definition 1.11. A weakly modular function is called a modular function if it is mero-
morphic at infinity.

When f is holomorphic at infinity, we set f(∞) = f̃(0). This is the value of f at infinity.

Definition 1.12. A modular function which is holomorphic everywhere (including infinity)
is called a modular form; if such a function is zero at infinity, it is called a cusp form
(“Spitzenform” in German and “forme parabolique” in French).

A modular form of weight k is thus given by a series

f(z) =
∞∑
n=0

af (n)qn =
∞∑
n=0

af (n)e(nz) (1.12)
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which converges for |q| < 1 (i.e. for Im(z) > 0), and which verifies the identity

f(−1/z) = zkf(z).

It is a cusp form if af (0) = 0.

1.4. Eisenstein series and their Fourier expansion.

Definition 1.13. Let k ≥ 4 be even. The kth Eisenstein series is defined by

Gk(z) =
∑

(m,n)6=(0,0)

1

(mz + n)k
, z ∈ H. (1.13)

Theorem 1.14. Let k ≥ 4 be even.

(i) Gk(z) is absolute convergent in H and is uniformly absolute convergent in any compact
support;

(ii) Gk(z) is a modular form of weight k;
(iii) the Fourier expansion of Gk(z) is

Gk(z) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)e(nz), (1.14)

where ζ is the Riemann zeta-function, and σk−1(n) =
∑

d|n d
k−1.

Proof. (i) Let Dε = {z ∈ H : −1/ε ≤ x ≤ 1/ε, ε ≤ y ≤ 1/ε} for 0 < ε < 1. We just need
to prove that Gk(z) is uniformly absolute convergent in Dε for any given 0 < ε < 1. Let
z = x+ iy ∈ Dε, define

λz = min
(m,n)6=(0,0)

|mz + n|

and

Nz(t) = #{(m,n) ∈ Z2 \ {(0, 0)} : |mz + n| ≤ t}.
Then λz = min(m,n)6=(0,0) |mx + n + imy| ≥ min{1, ε} ≥ ε. If |mz + n| ≤ t, then by ε|m| ≤
y|m| ≤ |mx + n + imy| ≤ t we have |m| ≤ t/ε; and then by |n| − |mx| ≤ |mx + n| ≤
|mx+ n+ imy| ≤ t we have |n| ≤ t/ε2 + t ≤ 2

ε2
t. Hence we have Nz(t) ≤ 8

ε3
t2. So

|Gk(z)| ≤
∑

(m,n)6=(0,0)

1

|mz + n|k
=

∑
(m,n)6=(0,0)
|mz+n|≤1

1

|mz + n|k
+

∑
|mz+n|>1

1

|mz + n|k

≤ ε−k
8

ε3
+
∑
d≥1

∑
d<|mz+n|≤d+1

1

|mz + n|k

≤ 8ε−k−3 +
∑
d≥1

1

dk
(Nz(d+ 1)−Nz(d))

≤ 8ε−k−3 +
∑
d≥2

Nz(d)

(d− 1)k
−
∑
d≥1

Nz(d)

dk

�ε 1.

(ii) By Theorem 1.10, we just need to check that

Gk(z + 1) = Gk(z), and Gk(−1/z) = zkGk(z).
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(iii) We have

Gk(z) =
∑

(m,n)6=(0,0)

1

(mz + n)k
= 2ζ(k) + 2

∞∑
m=1

∞∑
n=−∞

1

(mz + n)k
.

By the Poisson summation formula we have

∞∑
n=−∞

1

(mz + n)k
=
∑
n∈Z

∫ ∞
−∞

1

(mz + v)k
e−2πinvdv.

Making a change of variable w = u+ iy = x+ v/m+ iy we have

∞∑
n=−∞

1

(mz + n)k
=
e(mnz)

mk

∑
n∈Z

∫ ∞
−∞

1

wk
e−2πimnwdu.

By Cauchy integral theorem we have (for k ≥ 4 and m, y > 0)∫ ∞+iy

−∞+iy

1

wk
e−2πimnwdw =

{
(−2πi)k(mn)k−1

(k−1)!
, if n ≥ 1,

0, otherwise.

So we get
∞∑

n=−∞

1

(mz + n)k
=

(−2πi)k

(k − 1)!

∑
n≥1

nk−1e(mnz)

and (k is even)

Gk(z) = 2ζ(k) + 2
(−2πi)k

(k − 1)!

∞∑
m=1

∑
n≥1

nk−1e(mnz)

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)e(nz),

as claimed.
Here is another proof of (iii): We begin by the well-known product representation for

the sine function (which is easy to establish by comparing zeros and applying Liouville’s
theorem)

sin(πz) = πz

∞∏
n=1

(
1− z

n

)(
1 +

z

n

)
.

Take the logarithmic derivative

π
cos(πz)

sin(πz)
=

1

z
+
∞∑
n=1

(
1

z − n
+

1

z + n

)
.

On the other hand, this is equal to

π
cos(πz)

sin(πz)
= π

eiπz+e−iπz

2
eiπz−e−iπz

2i

= πi
e(z) + 1

e(z)− 1
= πi+

2πi

e(z)− 1
= πi− 2πi

∞∑
d=0

e(dz).
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We differentiate these expansions k − 1 times, getting

−(2πi)k
∑
d≥1

dk−1e(dz) =
(−1)k−1(k − 1)!

zk
+
∞∑
n=1

(
(−1)k−1(k − 1)!

(z + n)k
+

(−1)k−1(k − 1)!

(z − n)k

)
= (−1)k−1(k − 1)!

∑
n∈Z

1

(z + n)k
,

that is ∑
n∈Z

1

(z + n)k
=

(−2πi)k

(k − 1)!

∑
d≥1

dk−1e(dz) (1.15)

for any k ≥ 2. Hence we derive the Fourier expansion of Gk(z) as follows

Gk(z) =
∑

(m,n)6=(0,0)

1

(mz + n)k
= 2ζ(k) + 2

∞∑
m=1

∞∑
n=−∞

1

(mz + n)k

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
m=1

∞∑
d=1

dk−1e(dmz),

and by collecting terms with dm = n we arrive at

Gk(z) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)e(nz).

This completes the proof. �

Exercise 1.15. For k ≥ 4 and y > 0, show that∫ ∞
−∞

1

wk
e−2πinwdw =

{
(−2πi)knk−1

(k−1)!
, if n ≥ 1,

0, otherwise.

Then we define the normalized Eisenstein series Ek(z) = Gk(z)/2ζ(k), which is

Ek(z) =
1

2

∑
m,n∈Z

(m,n)=1

1

(mz + n)k
. (1.16)

By Theorem 1.14 we have

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)e(nz),

where Bk are the Bernoulli numbers and we have

ζ(k) = −(2πi)k

2k!
Bk, (1.17)

for k ≥ 4 and k ∈ 2Z.
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1.5. The Ramanujan τ function. From the discriminant function we get a modular func-
tion of weight twelve:

∆(z) = g2(z)3 − 27g3(z)2

where g2(z) = 60G4(z) and g3(z) = 140G6(z).
Since

g2(z) =
(2π)4

12

[
1 + 240

∞∑
n=1

σ3(n)e(nz)

]
,

g3(z) =
(2π)6

216

[
1− 504

∞∑
n=1

σ5(n)e(nz)

]
,

we find that in the Fourier expansion of ∆(z) the constant terms cancel out, and

∆(z) = (2π)12

∞∑
n=1

τ(n)e(nz) (1.18)

where τ(n) = 1. The arithmetic function τ(n) is called the Ramanujan function. It
possesses fascinating properties.

The first few values of τ(n) are given in the following table.

n 1 2 3 4 5 6 7 8
τ(n) 1 -24 252 -1472 4830 -6048 -16744 84480

n 9 10 11 12 13 14 15 16
τ(n) -113643 -115920 534612 -370944 -577738 401856 1217160 987136

Table 1. Ramanujan τ function.

Theorem 1.16 (Mordell 1917). We have

τ(mn) = τ(m)τ(n) if (m,n) = 1,

τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1) for p prime, n ∈ N.

Theorem 1.17 (Deligne 1973). We have

|τ(n)| ≤ n11/2d(n),

where d(n) is the divisor function.

These was observed by Ramanujan in 1916, but did not prove.

Conjecture 1.18 (The Sato–Tate conjecture). For p prime τ(p)/p11/2 =: 2 cos θp with θp ∈
[0, π] is distributed like the trace of a random SU(2) matrix. That is, for 0 ≤ α < β ≤ π, we
have

lim
x→∞

#{p ≤ x : α < θp < β}
#{p ≤ x}

=
2

π

∫ β

α

(sin θ)2dθ.

This was proved by Barnet-Lamb, Geraghty, Harris, Taylor (2009).

Conjecture 1.19 (Lehmer’s conjecture (1947)). τ(n) 6= 0 for all n ≥ 1.

This is still open.
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1.6. The linear space of modular forms. Let k be an even number, f : H → C a
modular function of weight k and w ∈ H. Define mf (w) to be the order of f at w such that
hf (z) = (z − w)−mf (w)f(z) is analytic at z = w and hf (w) 6= 0. Moreover we define mf (∞)

as the order for q = 0 of the function f̃(q) associated to f .

Lemma 1.20. Let k be an even number, f : H → C a modular function of weight k and
f 6= 0. Then

(i) mf (z) = mf (γz), for any γ ∈ Γ and any z ∈ H;
(ii) mf (z) = 0 except for finitely many points in D.

Theorem 1.21. Let k be an even number, f : H → C a modular function of weight k and
f 6= 0. Then ∑

w∈Γ\H
w 6=i,ρ (mod) Γ

mf (w) +mf (∞) +
1

2
mf (i) +

1

3
mf (ρ) =

k

12
. (1.19)

Figure 3.

LetMk(Γ) denote the linear space of modular forms of weight k and Sk(Γ) the the linear
space of cusp forms of weight k. Clearly modular forms of different weights are linearly
independent over C, so the space of all modular forms is the direct sum of the Mk(Γ),

M(Γ) =
⊕
k≥0

Mk(Γ). (1.20)

The whole space M(Γ) can also be considered as a graded algebra with respect to the
inclusions

Mk(Γ)M`(Γ) ⊂Mk+`(Γ).

We shall use the formula (1.19) to examine the structure of M(Γ) as an algebra over C.
Since f ∈M(Γ) is holomorphic, all terms of (1.19) are nonnegative.

Theorem 1.22. (i) Define

φ :

{
Mk−12(Γ) → Sk(Γ),

f 7→ ∆f,
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then φ is an isomorphism.
(ii) If k < 0 or k = 2, then Mk(Γ) = Sk(Γ) = {0}.

(iii) If k = 0, 4, 6, 8, 10, then Sk(Γ) = {0} and Mk(Γ) = 〈Gk〉.
(iv) If k ≥ 12, then

Mk(Γ) = Sk(Γ)⊕ CGk,

that is, for any f ∈Mk(Γ), there exist f0 ∈ Sk(Γ) and c ∈ C such that f = f0 + cGk.

Corollary 1.23. We have

dimMk(Γ) =

{
[k/12] , if k ≡ 2 (mod 12), k ≥ 0,
[k/12] + 1, if k 6≡ 2 (mod 12), k ≥ 0,

(1.21)

and

dimSk(Γ) =

{
[k/12]− 1, if k ≡ 2 (mod 12), k ≥ 0,
[k/12] , if k 6≡ 2 (mod 12), k ≥ 0.

(1.22)

Exercise 1.24. Let f, g ∈Mk(Γ), so that the first [ k
12

]+1 Fourier coefficients coincide (that

is f =
∑

n≥0 af (n)qn, g =
∑

n≥0 ag(n)qn, and af (n) = ag(n) for all 0 ≤ n ≤ [ k
12

]). Then
f = g.
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2. Bounds for Fourier coefficients, L-functions, and Hecke operators

2.1. Hecke’s bound for Fourier coefficients of cusp forms. A key quantity associated
to a modular form are its Fourier coefficients, that is the coefficients af (n) of its q-expansion

f(z) =
∑
n≥0

af (n)e(nz).

For instance, we computed the coefficients of the Eisenstein series Gk(z), which for n 6= 0
are divisor sums ckσk−1(n). In particular, they are at least of size nk−1. In fact, this is also
an upper bound, since for k − 1 > 1 we have

σk−1(n) =
∑
d|n

dk−1 � nk−1.

Exercise 2.1. Let σs(n) =
∑

d|n d
s (the sum over all divisors of n).

a) Show that σs is multiplicative:

σs(mn) = σs(m)σs(n) if (m,n) = 1.

b) Show that for s > 1, σs(n)� ns.

As we shall see, the coefficients of cusp forms are much smaller, and that is a key input
into the theory of modular forms. Those facts have important applications to the theory of
representatives by quadratic forms.

Before beginning this study, we need some preparations.

Lemma 2.2. Let f ∈ Sk be a cusp form. Then

a) f(x+ iy)�f e
−2πy decays exponentially as y → +∞.

b) F (z) = yk/2|f(z)| �f 1 for any z ∈ H.

Proof. a) Using the Fourier expansion f(z) =
∑

n≥1 af (n)e(nz), which has no constant term
when f is cuspidal. We see that f(z) = O(|q|) as q = e(z) → 0, which gives f(x + iy) �f

e−2πy as y → +∞.
b) Since f ∈ Sk, we have

F (γz) = (Im γz)k/2|f(γz)| =
(

Im z

|cz + d|2

)k/2
|cz + d|k|f(z)| = F (z).

So F is a Γ-invariant function. So

sup
z∈H

F (z) = sup
z∈D

F (z),

where D is the standard fundamental domain of Γ. By a) we have f(z)� e−2πy for y ≥
√

3
2

.

Hence for any z ∈ D, we have F (z) = yk/2|f(z)| �f 1. This proves Lemma 2.2. �

For f, g ∈ Sk, the expression ykf(z)g(z) is Γ-invariant. Therefore we can define the inner
product (due to H. Petersson)

〈f, g〉 =

∫
Γ\H

ykf(z)g(z)dµz.
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A cusp form f has exponential decay at cusp, so this inner product is absolutely convergent.
For f = g we set

‖f‖2 = 〈f, g〉 =

∫
Γ\H

yk|f(z)|2dµz <∞.

The linear space of cusp forms Sk equipped with the Petersson inner product is a finite
dimensional Hilbert space.

We can now present a bound for Fourier coefficients of cusp forms, due to Erich Hecke
(1930’s).

Theorem 2.3. If f is cuspidal (and not identically zero), its Fourier coefficients satisfy
|af (n)| ≤ Cnk/2 for some constant C independent of n.

Proof. Since f is a cusp form, there exists a constant C1 such that |yk/2f(z)| < C1 for all
z ∈ H. Now fixed y > 0, we have

af (n)e−2πny =

∫ 1

0

f(x+ iy)e−2πinxdx;

hence we get

|af (n)| < C1y
−k/2e2πny.

By taking y = 1/n, we obtain

|af (n)| < C1e
2πnk/2,

as required. �

This estimate, called the trivial estimate, is due to Hardy (1927) and (more simply) Hecke
(1937). Using the theory of Poincaré series and estimates of Kloosterman sums, one can

improve this esitmate. The correct estimate af (n)�f,ε n
k−1
2

+ε for any ε > 0, was conjectured
(for f = ∆) by Ramanujan (1916); this famous statement, the Ramanujan conjecture, we
finally proved around 1970 by Deligne using difficult techniques form algebraic geometry.

Corollary 2.4. Let f ∈ Mk be a modular of weight k > 2, not necessarily cuspidal. Then
the Fourier coefficients satisfy

af (n)�f n
k−1.

Proof. Writing f = aGk + g with g ∈ Sk cuspidal, we see that

af (n) = cσk−1(n) + ag(n).

By Theorem 2.3 we have ag(n)� nk/2. The bound σk−1(n)� nk−1 gives the result. �

2.2. Sums of Fourier coefficients. In this subsection, we consider some basic results on

the average size of ρf (n) = af (n)/n
k−1
2 . Note that we have Hecke’s bound ρf (n)�f n

1/2.

Theorem 2.5. Let f ∈ Sk. For any N ≥ 1 we have∑
n≤N

|ρf (n)|2 �f N. (2.1)
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Proof. Using the Fourier expansion f(z) =
∑

n≥1 ρf (n)n
k−1
2 e(nz), we have∫ 1

0

|f(z)|2dx =

∫ 1

0

∣∣∣∣∣∑
n≥1

ρf (n)n
k−1
2 e−2πnye(nx)

∣∣∣∣∣
2

dx

=
∑
n≥1

|ρf (n)|2nk−1e−4πny.

By Lemma 2.2 we have |f(z)| �f y
−k/2. Hence by taking y = 1/N , we have∑

n≤N

|ρf (n)|2nk−1 �
∑
n≥1

|ρf (n)|2nk−1e−4πn/N � Nk.

By the partial summation formula we get∑
n≤N

|ρf (n)|2 � N +

∫ N

1

(∑
n≤u

|ρf (n)|2nk−1
)
u−kdu� N.

This proves Theorem 2.2. �

Remark 2.6. This gives another proof of Hecke’s bound ρf (n)�f n
1/2.

Remark 2.7. The upper bound (2.1) is best possible, for one can prove by the Rankin–Selberg
method in the next lecture, the more precise asymptotic formula∑

n≤N

|ρf (n)|2 ∼ cfN,

as N →∞.

Theorem 2.8. Let f ∈ Sk. For any real α and N ≥ 1, we have∑
n≤N

ρf (n)e(nα)�f N
1/2 log 2N,

where the implied constant depends only on f (but not on α).

Proof. The Fourier coefficient are given by

af (n) =

∫ 1

0

f(z)e(−nz)dx.

Hence the sum of coefficients twisted by the additive character e(nα) is equal to∑
n≤N

af (n)e(nα) =
∑
n≤N

∫ 1

0

f(z)e(−n(z − α))dx =

∫ 1

0

f(z + α)
∑
n≤N

e(−nz)dx.

Note that ∑
n≤N

e(−nz) =
e(−Nz)− 1

1− e(z)
� e2πNy

|1− e(z)|
.

Recall that |f(z + α)| � y−k/2. Note that∫ 1

0

1

|1− e(z)|
dx� log(2 + y−1).

Indeed, this is obvious if y ≥ 1/10. If 0 < y < 1/10, then we have
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• |1− e(z)| ≥ 1− e−2πy � y for 0 ≤ x ≤ y; and
• |1− e(z)| > e−2πy sin(2πx)� x for y < x ≤ 1/2.

Hence ∫ 1

0

1

|1− e(z)|
dx = 2

∫ 1/2

0

1

|1− e(z)|
dx� 1 +

∫ 1/2

y

1

x
dx� log(2 + y−1).

Thus we obtain ∑
n≤N

af (n)e(nα)� y−k/2e2πNy log(2 + y−1),

where y is arbitrary positive number. For y = 1/N , we get∑
n≤N

af (n)e(nα)�f N
k/2 log 2N.

By the partial summation formula we get∑
n≤N

ρf (n)e(nα)�f N
1/2 log 2N +

∫ N

2

∣∣∣∑
n≤u

af (n)e(nα)
∣∣∣u− k+1

2 du

�f N
1/2 log 2N +

∫ N

2

u−
1
2 log u du�f N

1/2 log 2N,

as claimed. �

Remark 2.9. This upper bound is almost sharp. Note that∫ 1

0

∣∣∣∣∣∑
n≤N

ρf (n)e(nα)

∣∣∣∣∣
2

dα =
∑
n≤N

|ρf (n)|2 ∼ cfN,

as in Remark 2.7. One has cf 6= 0. Hence we have∑
n≤N

ρf (n)e(nα)�
√
N,

for some α ∈ [0, 1].

We shall state the following beautiful result without giving a proof.

Theorem 2.10. Let f ∈ Sk. For any N ≥ 1, we have∑
n≤N

ρf (n)�f N
1/3,

where the implied constant depends on f .

This result shall be compared with the Gauss circle problem and Dirichlet divisor problem.

Exercise 2.11. Let d(n) be the divisor function. Show that∑
n≤N

d(n) = N logN + (2γ − 1)N +O(N1/3 logN),

where γ is Euler’s constant.
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2.3. Hecke L-functions. A connection between automorphic forms and L-functions can be
traced in the celebrated memoir of B. Riemann (1860) on the zeta-function

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

, Re(s) > 1.

The gamma function Γ(s) is defined as

Γ(s) =

∫ ∞
0

e−xxs
dx

x
, Re(s) > 0.

Riemann established the functional equation

ξ(s) := π−s/2Γ(s/2)ζ(s) = ξ(1− s).

Let f(z) =
∑∞

n=0 ρf (n)n
k−1
2 e(nz) be an element of Mk. Let

L(s, f) =
∞∑
n=1

ρf (n)

ns
.

This is known as the L-function of f . We need to know that this series is convergent for s
sufficiently large. For this, the following eestimate is sufficient.

Theorem 2.12. Let f ∈ Sk(Γ). The L-function L(s, f) has analytic continuation to all s
and satisfies a functional equation. In fact, if

Λ(s, f) = (2π)−sΓ

(
s+

k − 1

2

)
L(s, f)

then Λ(s, f) extends to an analytic function of s. It satisfies

Λ(s, f) = ikΛ(1− s, f).

Proof. Because f is cuspidal, f(iy)→ 0 very rapidly as y →∞. When γ = S =

(
−1

1

)
,

(1.9) implies that
f(iy) = i−ky−kf(i/y), (2.2)

so f(iy)→ 0 very rapidly as y → 0 also. Hence the integral

I(s) =

∫ ∞
0

f(iy)ys+
k−1
2

dy

y

is convergent for all s and clearly defines an analytic function of s. If Re(s) is large, we may
substitute the Fourier expansion for f . Noting that∫ ∞

0

e−2πnyys+
k−1
2

dy

y
= (2π)−s−

k−1
2 n−s−

k−1
2 Γ

(
s+

k − 1

2

)
,

we get

I(s) = (2π)−
k−1
2 Λ(s, f). (2.3)

Now by (2.2) and making a change of variable u = 1/y, we have

I(s) =

∫ ∞
0

i−ky−kf(i/y)ys+
k−1
2

dy

y
= i−k

∫ ∞
0

f(iu)u−s+
k+1
2

du

u
= ikI(1− s). (2.4)

Here we have used the fact ik = i−k as k being even. By (2.3) and (2.4) we get Λ(s, f) =
ikΛ(1− s, f). �
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2.4. Hecke operators. It was observed long ago that the Fourier coefficients of basic clas-
sical modular forms have remarkable arithmetical properties. A fascinating example is the
multiplicativity of the Ramanujan τ -function,

τ(m)τ(n) =
∑
d|(m,n)

d11τ
(mn
d2

)
. (2.5)

This formula was first established by E. Hecke (1936) by means of certain self-adjoint oper-
ators. The theory of Hecke operators explains numerous other identities. More important,
Hecke’s original ideas proved to be vital for developments of modern fields such as Galois
representations.

In a general setting the Hecke operators are averaging operators over a suitable finite
collection of double cosets with respect to a group: therefore a great deal of the Hecke theory
belongs to linear algebra. But when one considers the spectral analysis of these operators the
problems become more delicate, and complete results are known only for arithmetic groups.
In this chapter we shall present the theory of Hecke operators in the context of the modular
group. For economy of exposition we replace the double coset constructions with specific
representatives.

Throughout we assume that k is a fixed integer and Γ = SL2(Z) is the modular group. For

any A =

(
∗ ∗
c d

)
∈ GL+

2 (R) we introduce the function j(A, z) = cz + d. The slash operator

is defined on functions f : H→ C by

f|A(z) = (detA)k/2j(A, z)−kf(Az).

Since k is an integer, the slash operator is associative:

f|AB = (f|A)|B.

Let n be a positive integer. The nth Hecke operator Tn is defined as

Tnf(z) =
1√
n

∑
γ∈Γ\Γn

f|γ(z),

where

Γn =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = n

}
.

Lemma 2.13. The set

Sn =

{(
a b

d

)
: ad = m, 0 ≤ b < d

}
forms a complete set of right coset representatives of Γn modulo Γ, i.e. we have the disjoint
partition

Γn =
⋃
ρ∈Sn

Γρ.

Proof. Let ρ =

(
a ∗
c ∗

)
∈ Γn. Let γ = c/(a, c) and δ = −c/(a, c), we get γa + δc = 0 and

(γ, δ) = 1. So there exists τ =

(
∗ ∗
γ δ

)
∈ Γ which gives τρ =

(
∗ ∗
∗

)
. Changing the sign of
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τ if necessary, we get τρ =

(
a b

d

)
with ad = n and d > 0. Finally, multiplying on the left

by

(
1 u

1

)
with a suitable u ∈ Z, we can take 0 ≤ b < d. This proves that Γn ⊆

⋃
ρ∈Sn Γρ.

We now checke the cosets Γρ are disjoint as ρ ranges over Sn. If(
α β
γ δ

)(
a b

d

)
=

(
a′ b′

d′

)
,

we have γ = 0, α = δ = 1 and β = 0. This completes the proof of the lemma. �

By Lemma 2.13 we shall write Tn formally as

Tn = n−
k+1
2

∑
ad=n

ak
∑

b mod d

(
a b

d

)
. (2.6)

This expression means that for any function f : H→ C

(Tnf)(z) = n−
k+1
2

∑
ad=n

ak
∑

b mod d

f

(
az + b

d

)
.

Lemma 2.14. There exists a one-to-one correspondence between Sn×Γ and Γ×Sn, i.e. for
any ρ ∈ Sn and τ ∈ Γ there exist unique τ ′ ∈ Γ and ρ′ ∈ Sn such that

ρτ = τ ′ρ′.

For a fixed τ ∈ Γ, as ρ ranges over the whole set Sn, ρ′ does also.

Proof. Exercise. �

Theorem 2.15. The Hecke operator Tn maps a modular form to a modular form and a cusp
form to a cusp form:

Tn :Mk(Γ)→Mk(Γ),

Tn : Sk(Γ)→ Sk(Γ).

Proof. By the correspondence ρτ = τ ′ρ′ we get

(Tnf)|τ =
1√
n

∑
ρ∈Γ\Γn

f|ρτ =
1√
n

∑
ρ′∈Γ\Γn

f|ρ′ = Tnf,

since f|ρτ = f|τ ′ρ′ = f|ρ′ . This proves Tn :Mk(Γ)→Mk(Γ).

If f ∈ Sk(Γ), then f(∞) = 0. Since for ad = n, d > 0 and b ∈ Z, we have

(
a b

d

)
∞ =∞.

So Tnf(∞) = 0. Hence Tn : Sk(Γ)→ Sk(Γ). �

Theorem 2.16. For any m,n ≥ 1 we have

TmTn =
∑
d|(m,n)

Tmn/d2 .

Proof. By (2.6) we have

TmTn = (mn)−
k+1
2

∑
a1d1=m
a2d2=n

(a1a2)k
∑

b1 mod d1
b2 mod d2

(
a1 b1

d1

)(
a2 b2

d2

)
,
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and after multiplying we reduce the resulting matrix by δ = (a1, d2) to get

TmTn = (mn)−
k+1
2

∑
δ|(m,n)

(a1,d2)=1

δk
∑

a1d1=m/δ
a2d2=n/δ

(a1a2)k
∑

b1 mod d1
b2 mod d2δ

(
a1a2 a1b2 + b1d2

d1d2

)
.

Given a1, a2, d1, d2 as above, the upper-right entry b = a1b2 + b1d2 covers every class modulo
d1d2 exactly δ times when b1, b2 range over all classes modulo d1, d2δ respectively. Indeed, b
determines b2 ≡ bā1 (mod d2) and b1 ≡ (b− a1b2)/d2 (mod d1). Therefore we have

TmTn = (mn)−
k+1
2

∑
δ|(m,n)

(a1,d2)=1

δk+1
∑

a1d1=m/δ
a2d2=n/δ

(a1a2)k
∑

b mod d1d2

(
a1a2 b

d1d2

)
.

Take a = a1a2 and d = d1d2, so ad = mn/δ2. Conversely, given a factorization ad = mn/δ2,
there exist unique factorization a = a1a2, d = d1d2 with (a1, d2) = 1 a1d1 = m/δ and
a2d2 = n/δ; indeed a1 = m/(m, δd) and d2 = δd/(m, δd). Hence we can write

TmTn =
∑
δ|(m,n)

(mn
δ2

)− k+1
2

∑
ad=mn/δ2

ak
∑

b mod d

(
a b

d

)
which proves Theorem 2.16. �

Corollary 2.17. The Hecke operators commute:

TmTn = TnTm.

Theorem 2.18. The Hecke operator Tn acting on the space of cusp forms for the modular
group are self-adjoint, i.e.

〈Tnf, g〉 = 〈f, Tng〉, for all f, g ∈ Sk(Γ).

Proof. One proof of this result uses Poincaré series which we won’t introduce in these notes.
See Iwaniec [4, §6.4] for details. �

Theorem 2.19 (Hecke). In the space Sk(Γ) of cusp forms for the modular group there exists
an orthonormal basis Hk which consists of eigenfunctions of all the Hecke operators Tn.

Proof. See Iwaniec [4, §6.4]. �

2.4.1. Hecke eigenvalues vs. Fourier coefficients.

Proposition 2.20. Suppose f is given by the Fourier series

f(z) =
∞∑
m=0

ρf (m)m
k−1
2 e(mz),

which converges absolutely in H. Then Tnf is given by the series

(Tnf)(z) =
∞∑
m=0

ρn(m)m
k−1
2 e(mz),

whose coefficients are

ρn(m) =
∑
d|(m,n)

ρf

(mn
d2

)
.
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Proof. Applying (2.6) we get

(Tnf)(z) = n−
k+1
2

∑
ad=n

ak
∑

b mod d

∞∑
m=0

ρf (m)m
k−1
2 e

(
m
az + b

d

)

= n−
k+1
2

∑
ad=n

ak
∞∑
m=0

ρf (m)m
k−1
2 e
(
m
az

d

) ∑
b mod d

e

(
m
b

d

)

=
∑
ad=n

∞∑
`=0

ρf (d`)(a`)
k−1
2 e (a`z)

=
∞∑
m=0

∑
ad=n
a`=m

ρf (d`)

m
k−1
2 e(mz)

as claimed. �

Let f ∈ Hk be a Hecke eigenform, and

Tnf = λf (n)f for n ∈ N. (2.7)

Suppose f has the Fourier expansion

f(z) =
∞∑
m=1

ρf (m)m
k−1
2 e(mz).

Comparing the mth Fourier coefficients on the both sides of (2.7), together with Proposition
2.20, we get

λf (n)ρf (m) = ρn(m) =
∑
d|(m,n)

ρf

(mn
d2

)
.

For m = 1 this gives

ρf (n) = ρf (1)λf (n).

Hence ρf (1) 6= 0, as otherwise f would vanish identically. Therefore the Fourier coefficients
of a Hecke cusp form are proportional to the eigenvalues of the Hecke operators.

As an example, consider the space S12(Γ), which is one-dimensionally spanned by ∆(z);
therefore ∆(z) is automatically a simultaneous eigenfunction of all the Hecke operators,
namely

Tn∆(z) = τ(n)n−
11
2 ∆(z),

where τ(n) is the Ramanujan function. By Theorem 2.16 we prove (2.5).
We may adjust any Hecke eigenform by setting the constant ρf (1) = 1. Such a Hecke

eigenform will be called (Hecke) normalized. We see that Sk has a basis of normalized Hecke
eigenforms. We now show that the L-function of a Hecke eigenform has an Euler product.

Theorem 2.21. If f ∈ Hk is a normalized Hecke eigenform, then

L(s, f) =
∞∑
n=1

λf (n)

ns
=
∞∏
p=2

(
1− λf (p)p−s + p−2s

)−1
.
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Proof. It follows from the multiplicativity of the coefficients that

L(s, f) =
∞∏
p=2

(
∞∑
j=0

λf (p
j)

pjs

)
.

By the Hecke relation, for j ≥ 1 we have

λf (p
j+1)− λf (p)λf (pj) + λf (p

j−1) = 0.

Hence(
1− λf (p)p−s + p−2s

)( ∞∑
j=0

λf (p
j)

pjs

)

= 1 +
λf (p)

ps
− λf (p)

ps
+
∞∑
j=2

λf (p
j)− λf (p)λf (pj−1) + λf (p

j−2)

pjs
= 1.

Hence we obtain

L(s, f) =
∞∏
p=2

(
1− λf (p)p−s + p−2s

)−1
,

as claimed. �
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3. The Rankin–Selberg method and the second moment of Fourier
coefficients

The Rankin–Selberg method, which originated independently in the papers of Rankin
(1939) and Selberg (1940), seeks to represent an L-function as an integral of one or more
automorphic forms against an Eisenstein series, itself a type of automorphic form. The
Eisenstein series itself has a functional equation, and so if the L-function can be represented
as such an integral, it inherits this functional equation.

3.1. Eisenstein series. Let

Γ∞ =

{
±
(

1 m
1

)
: m ∈ Z

}
be the subgroup of Γ which fixes i∞.

Definition 3.1. Let z ∈ H and Re(s) > 1. The Eisenstein series is defined as

E(z, s) =
∑

γ∈Γ∞\Γ

Im(γz)s =
1

2

∑
c,d∈Z

(c,d)=1

ys

|cz + d|2s
. (3.1)

Let ∆ = −y2
(
∂2

∂x2
+ ∂2

∂y2

)
be the hyperbolic Laplacian.

Proposition 3.2. We have E(γz, s) = E(z, s) for all γ ∈ Γ and ∆E(z, s) = s(1−s)E(z, s).

Proposition 3.3. The Eisenstein series have the Fourier expansion

E(z, s) = ys + φ(s)y1−s +
2πs
√
y

Γ(s)ζ(2s)

∑
n∈Z\{0}

σ1−2s(|n|)|n|s−1/2Ks−1/2(2π|n|y)e(nx),

where

φ(s) =
ξ(2− 2s)

ξ(2s)
, ξ(s) = π−s/2Γ(s/2)ζ(s),

σs(n) =
∑
d|n

ds,

and

Ks(y) =
1

2

∫ ∞
0

exp

(
−1

2
y
(
u+

1

u

))
us−1du

the K-Bessel function.

Theorem 3.4. E(z, s) can be continued to meromorphic functions on C. The modified
Eisenstein series E∗(z, s) = ξ(2s)E(z, s) is regular except for simple poles at s = 0, 1 and
satisfies the functional equation

E∗(z, s) = E∗(z, 1− s).
We have

E(x+ iy, s)�s y
c as y →∞,

where c = max(Re(s), 1− Re(s)). Furthermore, the residue of the pole at s = 1 is given by

Ress=1E(z, s) =
3

π
, for all z ∈ H.

The proofs of those results can be found in Goldfeld [3, §3.1] for example.
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3.2. The Rankin–Selberg method. We are now ready to consider the Rankin–Selberg
method. Let φ be an automorphic function on H, that is, a smooth function satisfying
φ(γz) = φ(z) for γ ∈ Γ = SL2(Z) and z ∈ H. Let us suppose that

φ(x+ iy) = O(y−N) for all N > 0 as y →∞. (3.2)

Because φ(z + 1) = φ(z), we have a Fourier expansion

φ(z) =
∑
n∈Z

φn(y)e(nx), φn(y) =

∫ 1

0

φ(x+ iy)e(−nx)dx.

We naturally call φ0 the constant term in the Fourier expansion of φ. Let

φ̃0(s) =

∫ ∞
0

φ0(y)ys
dy

y
(3.3)

be the Mellin transform of φ0. With our assumption, φ is bounded on the fundamental
domain; hence φ0 is bounded as a function of y and decays rapidly as y → ∞. Hence the
integral in (3.3) is absolutely convergent if Re(s) > 0. For Re(s) > 1, we define

Λ(s;φ) = π−sΓ(s)ζ(2s)φ̃0(s− 1).

Proposition 3.5. With these hypotheses, we have

Λ(s;φ) = π−sΓ(s)ζ(2s)

∫
Γ\H

E(z, s)φ(z)
dxdy

y2
. (3.4)

Then Λ(s;φ) has meromorphic continuation to all s, with at most simple poles at s = 1 and
s = 0. We have

Ress=1 Λ(s;φ) =
1

2

∫
Γ\H

φ(z)
dxdy

y2
.

It satisfies the functional equation Λ(s;φ) = Λ(1− s;φ).

This statement, with its characteristic “unfolding” proof, contains the essence of the
Rankin–Selberg method.

Proof. Assume Re(s) > 1. By (3.1) we have∫
Γ\H

E(z, s)φ(z)
dxdy

y2
=

∫
Γ\H

∑
γ∈Γ∞\Γ

Im(γz)sφ(γz)dµ(γz)

=

∫
Γ∞\H

ysφ(z)
dxdy

y2
.

We may take the integration over any fundamental domain for Γ∞. We choose the funda-
mental domain defined by 0 < x < 1, y > 0. So we get∫

Γ\H
E(z, s)φ(z)

dxdy

y2
=

∫ ∞
0

ys−1

∫ 1

0

φ(z)dx
dy

y
= φ̃0(s− 1).

This proves (3.4).
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By Theorem 3.4 and the assumption (3.2) we know that Λ(s;φ) has meromorphic contin-
uation to all s, with at most simple poles at s = 1 and s = 0, and

Ress=1 Λ(s;φ) = Ress=1 π
−sΓ(s)ζ(2s)

∫
Γ\H

E(z, s)φ(z)
dxdy

y2

= π−1π
2

6

∫
Γ\H

Ress=1E(z, s)φ(z)
dxdy

y2
=

1

2

∫
Γ\H

φ(z)
dxdy

y2
.

This completes the proof of Proposition 3.5. �

The original application of the Rankin–Selberg method was the result that if f(z) =∑
n≥1 af (n)e(nz) and g(z) =

∑
n≥1 ag(n)e(nz) are cusp forms of weight k, then the Dirichlet

series
∑

n≥1 af (n)ag(n)n−s has analytic continuation and functional equation. This was
discovered independently by Rankin (1939) and Selberg (1940).

We apply Proposition 3.5 with φ(z) = ykf(z)g(z), where f, g ∈ Sk. Clearly φ satisfies the
assumption (3.2); φ is automorphic with respect to Γ. Indeed

φ(γz) = Im(γz)kf(γz)g(γz) = yk|cz + d|−2k(cz + d)kf(z)(cz + d)kg(z) = φ(z).

We have

φ0(y) =

∫ 1

0

ykf(z)g(z)dx

= yk
∑
m≥1

ρf (m)m
k−1
2 e−2πmy

∑
n≥1

ρg(n)n
k−1
2 e−2πny

∫ 1

0

e((m− n)x)dx.

Since
∫ 1

0
e((m− n)x)dx = o unless m = n, we get

φ0(y) =
∑
n≥1

ρf (n)ρg(n)nk−1e−4πnyyk.

Note that∫ ∞
0

e−4πnyyk+s−1 dy

y
= (4πn)−k−s+1

∫ ∞
0

e−uus+k−1 du

u
= (4πn)−k−s+1Γ(s+ k − 1).

Hence we obtain

φ̃0(s− 1) =
∑
n≥1

ρf (n)ρg(n)nk−1

∫ ∞
0

e−4πnyyk+s−1 dy

y

= (4π)−k−s+1Γ(s+ k − 1)
∑
n≥1

ρf (n)ρg(n)n−s.

Thus

Λ(s;φ) = π−sΓ(s)ζ(2s)(4π)−k−s+1Γ(s+ k − 1)
∑
n≥1

ρf (n)ρg(n)n−s

= (4π)−k+1(2π)−2sΓ(s)Γ(s+ k − 1)ζ(2s)
∑
n≥1

ρf (n)ρg(n)n−s.

Now we define
L(s, f × ḡ) = ζ(2s)

∑
n≥1

ρf (n)ρg(n)n−s,
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Λ(s, f × ḡ) = (2π)−2sΓ(s)Γ(s+ k − 1)L(s, f × ḡ).

Note that

Λ(s, f × ḡ) = (4π)k−1Λ(s;φ). (3.5)

Theorem 3.6. Let f, g ∈ Sk. Then Λ(s, f × ḡ), originally defined for Re(s) sufficiently
large, has meromorphic continuation to all s, with holomorphic except for at most simple
poles at s = 0 and s = 1. It satisfies a functional equation

Λ(s, f × ḡ) = Λ(1− s, f × ḡ).

We have

Ress=1 Λ(s, f × ḡ) =
1

2
(4π)k−1〈f, g〉.

Proof. This is a simple consequence of (3.5) and Proposition 3.5. �

3.3. The second moment of Fourier coefficients. In this section we will prove the
following asymptotic formula for the second moment of Fourier coefficients.

Theorem 3.7. We have ∑
n≤X

|ρf (n)|2 = CfX +O(X3/5+ε),

for any ε > 0.

Lemma 3.8 (Stirling’s formula). For fixed σ ∈ R and real t ≥ 10, we have

Γ(σ + it) = e−
π
2
|t||t|σ−

1
2 exp

(
it log

|t|
e

)
(2π)1/2iσ−1/2

{
1 +O

(
1

t

)}
.

Lemma 3.9. We have

L(−ε+ it, f × ḡ) =

(
i|t|
2π

)2+4ε

exp

(
−4it log

|t|
2πe

)
L(1 + ε− it, f × ḡ)

{
1 +O

(
1

t

)}
.

Proof. This follows from Theorem 3.6 and Stirling’s formula. �

To prove Theorem 3.7, we consider the average of λf×f̄ (n) =
∑

n=`2m |ρf (m)|2.

Theorem 3.10. We have ∑
n≤X

λf×f̄ (n) = cfX +O(X3/5+ε),

for any ε > 0.

Proof. We first approximate
∑

n≤X λf×f̄ (n) by a smooth sum. Let

Y = Xδ, for some δ ∈ (1/2, 1).

LetW be a smooth function with support supp(W ) ∈ [1/2−Y/X, 1+Y/X] such thatW (u) =
1, u ∈ [1/2, 1] and W (u) ∈ [0, 1], u ∈ [1/2 − Y/X, 1/2] ∪ [1, 1 + Y/X], and W (m)(u) �m
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(X/Y )m for all m ≥ 1. Therefore we have the approximating formula∑
X/2<n≤X

λf×f̄ (n) =
∑

X/2−Y <n<X+Y

λf×f̄ (n)W
( n
X

)

+O

( ∑
X/2−Y <n<X/2

|λf×f̄ (n)|+
∑

X<n<X+Y

|λf×f̄ (n)|
)

=
∑
n≥1

λf×f̄ (n)W
( n
X

)
+O

(
Y 1+ε

)
(3.6)

where we have used Deligne’s bound λf×f̄ (n) �
∑

`2m=nm
ε � nε when f is holomorphic

for the error terms.
Next we only need to show∑

n≥1

λf×f̄ (n)W
( n
X

)
= Ress=1 L(s, f × f̄)W̃ (1)X +O

(
X3/5+ε

)
(3.7)

where W̃ (s) =
∫∞

0
W (x)xs−1dx is the Mellin transform of W . By breaking the sum into

dyadic intervals and by inserting (3.7) into (3.6), we get∑
n≤X

λf×f̄ (n) = 2 Ress=1 L(s, f × f̄)W̃ (1)X +O
(
X3/5+ε

)
.

Then Theorem 3.10 follows immediately from the estimate W̃ (1) = 1/2 +O(Y/X).

Now we estimate the sum
∑

n≥1 λf×f̄ (n)W
(
n
X

)
in (3.7). By the inverse Mellin transform

W (u) =
1

2πi

∫
(2)

W̃ (s)u−sds,

we get ∑
n≥1

λf×f̄ (n)W
( n
X

)
=

1

2πi

∫
(2)

W̃ (s)L(s, f × f̄)Xsds.

We then move the integration to the parallel segment with Re s = σ = −ε. We pass the pole
at s = 1 with residue Ress=1 L(s, f × f̄). Hence we obtain∑
n≥1

λf×f̄ (n)W
( n
X

)
= Ress=1 L(s, f × f̄)W̃ (1)X +

1

2πi

∫
(−ε)

W̃ (s)L(s, f × f̄)Xsds. (3.8)

We denote by I(X) the second term with integration on the right hand side of (3.8). Inserting
a dyadic smooth partition of unity to the t-integral, we get

I(X) =
∑

T dyadic

I(X,T ) (3.9)

where

I(X,T ) :=
X−ε

2π

∫
R
X itW̃ (−ε+ it)L(−ε+ it, f × f̄)V

( t
T

)
dt
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for some fixed V with compact support. For W̃ (s), by integration by parts, we have the
estimate for any m ≥ 1

W̃ (s) =
(−1)m

s(s+ 1) · · · (s+m− 1)

∫ ∞
0

W (m)(u)us+m−1du�m
1

|s|m
(X
Y

)m−1

, (3.10)

since supp(W (m)) ∈ [1/2−Y/X, 1/2]∪ [1, 1+Y/X]. This estimate allows us to truncate the
t-integral of I(X,T ) at t� X1+ε/Y . In addition, by the upper bounds L(−ε+ it, f × f̄)�
(1 + |t|)2+ε that follows from Lemma 3.9 and the Phragmén–Lindelöf principle and by (3.10)
with m = 1, we deduce that

I(X,T )� XεT 2+ε � Y

if T � Y 1/2−ε. Therefore, by the above arguments, we may impose a constraint Y 1/2−ε �
T � X1+ε/Y in (3.9) with an admissible error term. We only consider positive T ’s, since
negative T ’s can be handled similarly. Next, for I(X,T ), by the first equality in (3.10) with
m = 1, we get

I(X,T ) = −X
−ε

2π

∫ 3

1/3

W ′(u)u−ε
∫
R

(Xu)it

−ε+ it
L(−ε+ it, f × f̄)V

( t
T

)
dt du

� X−ε

T
sup

u∈[1/3, 3]

∣∣∣∣ ∫
R
(Xu)itL(−ε+ it, f × f̄)V

( t
T

)
dt

∣∣∣∣.
(3.11)

Hence, in the following, we only need to consider J(X,T ) which is defined by

J(X,T ) :=

∫
R
X itL(−ε+ it, f × f̄)V

( t
T

)
dt. (3.12)

The trivial bound for J(X,T ) is O(T 3+ε). To get a better estimate for J(X,T ), we shall
apply functional equation for L(−ε + it, f × f̄) to change the variable s = −ε + it into
1− s = 1 + ε− it.

By inserting the functional equation (Lemma 3.9) into (3.12), it follows that

J(X,T ) =

∫
R
X it

(
i|t|
2π

)2+4ε

exp

(
−4it log

|t|
2πe

)
L(1 + ε− it, f × f̄)V

( t
T

)
dt

+O
( 1

T
· T 2+ε · T

)
� T 2+ε

∣∣∣∣ ∫
R

∑
n≥1

λf×f̄ (n)

n1+ε−it X
it
( t

2πe

)−4it

V1

( t
T

)
dt

∣∣∣∣+ T 2+ε,

for some smooth compactly supported function V1.
Changing the order of the integral of summation above, and making a change of variable

t = Tξ, we get

J(X,T )� T 3+ε

∣∣∣∣∑
n≥1

λf×f̄ (n)

n1+ε

∫
R
V1(ξ)eih(ξ)dξ

∣∣∣∣+ T 2+ε,

where

h(ξ) := Tξ log
( nX

( Tξ
2πe

)4

)
and h′(ξ) = 4T log

2π(nX)1/4

Tξ
.
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If the n’s above are such that 2π(nX)1/4/T /∈ supp(V1), then it is not difficult to see that
h′(ξ) � T ε which would imply that the integral over ξ is O(T−2021) upon using repeat-
ed integration by parts. Now for the above integral over ξ, we consider the case where
2π(nX)1/4/T ∈ supp(V1). By the second derivative test with

h′(ξ0) = 0, ξ0 =
2π(nX)1/4

T
, h(ξ0) = 4Tξ0, h′′(ξ0) = −4T

ξ0

� T,

we get ∫
R
V1(ξ)eiT ξ log(nX( Tξ

2πe
)−4)dξ � 1√

T
,

and hence

J(X,T )� T 5/2+ε

∣∣∣∣ ∑
n�T 4/X

λf×f̄ (n)

n1+ε

∣∣∣∣+ T 2+ε

�T 5/2+ε.

(3.13)

Hence I(X,T )� T 3/2+ε � X3/2+ε/Y 3/2. Taking Y = X3/5, we get I(X,T )� X3/5+ε. This
completes the proof. �

Proof of Theorem 3.7. Since λf×f̄ (n) =
∑

n=`2m |ρf (m)|2, we have

|ρf (n)|2 =
∑
`2m=n

µ(`)λf×f̄ (m).

Hence we obtain ∑
n≤X

|ρf (n)|2 =
∑∑
`2m≤X

µ(`)λf×f̄ (m)

=
∑

`≤X1/2

µ(`)

(
cf
X

`2
+O(X3/5+o(1)`−6/5)

)
=

cf
ζ(2)

X +O(X3/5+o(1)),

as claimed. �
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4. The sup-norm problem of Maass forms

The eigenfunctions of the Laplace operator on a Riemannian manifold are of great interest
for theoretical physicists working in quantum mechanics. The square-integrable eigenstates
are particularly meaningful. How do they behave on high energy levels – that is, in the limit
with respect to the eigenvalues? Do they concentrate onto specific submanifolds, or sets
such as closed geodesics when being on distinguished energy levels, and if so, what is the
distribution law for these levels? For physicists, if the individual eigenfunctions behave like
random waves, this is a manifestation of quantum chaos.

A simpler question, yet not easy to answer, is how large the eigenfunctions can possibly
be in terms of the spectrum. The case of the torus Z2\R2 shows that all eigenfunctions of
the standard basis are uniformly bounded. But this is not true on other manifolds such as
the sphere S2, on which the eigenfunctions given by the Legendre polynomials (spherical
harmonics) take relatively large values at special points. However, this phenomenon seems
to be much weaker if the manifold is negatively curved, such as the quotient space Γ\H of
the hyperbolic plane modulo a finite volume group.

More precisely, we consider the torus Z2\R2. The Laplace operator on Z2\R2 is ∆ =
−(∂2

x + ∂2
y). By the Fourier theory we know that ψm,n(x, y) = e(mx + ny) with m,n ∈ Z

form a standard basis of L2(Z2\R2). Here e(z) = e2πiz. The function ψm,n is an eigenfunction
of ∆ with eigenvalue 4π2(m2 + n2). Clearly we have ‖ψm,n‖∞ = 1.

Berry [1] suggested that eigenfunctions for chaotic systems are modeled by random waves.
In particular, one would like to compare the sup-norm ‖φ‖∞ of an L2-normalized eigen-
function φ with the corresponding quantity for random waves, which grows very slowly, as√

log λφ, if λφ is the corresponding eigenvalue (see Salem–Zygmund [8, Ch. IV]). The bound

‖φ‖∞ � λ
1/4
φ is valid on any compact Riemannian surface (see Seeger–Sogge [10]), which is

sharp for standard 2-sphere. However, this bound is not optimal for most surfaces. Espe-
cially, Sarnak [9] conjectured that, for compact surfaces of negative curvature, ‖φ‖∞ � λεφ
for all ε > 0.

In this lecture note, we will mainly follow Iwaniec [5, Ch. 13] to see how to break the
standard upper bound for Maass cusp forms on the modular group.

4.1. Maass cusp forms. We shall study the vector space L2(Γ\H) (defined over C) which
is the completion of the subspace consisting of all smooth functions f : Γ\H→ C satisfying
the L2 condition ∫

Γ\H
|f(z)|2 dxdy

y2
<∞.

The space L2(Γ\H) is actually a Hilbert space with inner product given by

〈f, g〉 :=

∫
Γ\H

f(z)g(z)
dxdy

y2

for all f, g ∈ L2(Γ\H). This inner product was first introduced by Petersson.
On the hyperbolic plane H the Laplace operator derived from the differential ds2 =

y−2(dx2 + dy2) is given by

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
. (4.1)

Definition 4.1. Let λ ∈ C. A Maass cusp form for Γ with eigenvalue λ is a non-zero
function f ∈ L2(Γ\H) which satisfies
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i) f(γz) = f(z), for all γ ∈ Γ and z ∈ H,
ii) ∆f = λf ,

iii)
∫ 1

0
f(z)dx = 0.

Since ∆ is self-adjoint, so we have λ ≥ 0. We write λ = 1/4 + t2f , where tf ∈ [0,∞)∪ {iv :
v ∈ [0, 1/2]} is called the spectral parameter of f . Let f be a Maass cusp form with the
spectral parameter tf for Γ. Note that we have f(z + 1) = f(z). Then we have the Fouier–
Whittaker expansion

f(z) = ρf (1)
∑
n6=0

λf (n)
√

2πyKitf (2π|n|y)e(nx).

Here {λf (n)} are called the Fourier–Whittaker coefficients of f , normalized so that λf (1) = 1.
We have the famous Ramanujan–Petersson conjecture for Maass forms: |λf (n)| � d(n),
where d(n) =

∑
d|n 1 denotes the number of divisors of n. We at least have the following

bounds: λf (n) � |n|1/2. We also have the Selberg eigenvalue conjecture: λ1 ≥ 1/4, or
equivalently, tf ∈ [0,∞) if f is not a constant. This is known for the modular group
SL(2,Z), but not known in general (for congruence subgroups). Let Vλ be subspace of all
f ∈ L2(Γ\H) which are Maass forms of eigenvalue λ. Maass proved the for any λ > 0 the
space Vλ is finite dimensional.

4.2. Spectral decomposition. Our main goal of this section is the Selberg spectral de-
composition for SL(2,Z) which states that

L2(Γ\H) = C⊕ L2
cusp(Γ\H)⊕ L2

cont(Γ\H),

where C is the one-dimensional space of constant functions, L2
cusp(Γ\H) represents the Hilbert

space of square integrable functions on H whose constant term is zero, and L2
cont(Γ\H) rep-

resents all square integrable functions on H which are representable as integrals of the Eisen-
stein series. The reason for the terminology L2

cusp, L
2
cont is because the classical definition of

cusp form, introduced by Hecke, requires that the constant term in the Fourier expansion
around any cusp (a real number equivalent to i∞ under the discrete group) be zero, and also
because the Eisenstein series is in the continuous spectrum of the Laplace operator. The
latter means that ∆E(z, s) = s(1− s)E(z, s), or that s(1− s) is an eigenvalue of ∆ for any
complex number s. Let uj(z), (j = 1, 2, . . .) be an orthonormal basis of Maass forms for Γ.

We shall also adopt the convention that u0(z) =
√

3
π

is the constant function of norm 1.

The Selberg spectral decomposition is given in the following theorem.

Theorem 4.2 (Selberg spectral decomposition). Let f ∈ L2(Γ\H). Then we have

f(z) =
∑
j≥0

〈f, uj〉uj(z) +
1

4π

∫
R
〈f, E(·, 1/2 + it)〉E(z, 1/2 + it)dt.

We also have the following Weyl’s law due to Selberg which shows the existence of Maass
cusp forms.

Theorem 4.3 (Selberg Weyl’s law). Let N(T ) := #{j : |tj| ≤ T}. Then we have

N(T ) =
|D|
4π

T 2 +O(T log T ).



32 BINGRONG HUANG

4.3. Automorphic kernel and pre-trace formula. A function k(z, w) with this property

k(gz, gw) = k(z, w), for all g ∈ G.
is called point-pair invariant ; it depends solely on the hyperbolic distance between the points.
Consequently, we can set

k(z, w) = k(u(z, w)),

where k(u) is a function in one variable u > 0 and u(z, w) is given by (1.4). The automorphic
kernel K(z, w) is defined by

K(z, w) =
∑
γ∈Γ

k(z, γw).

The Selberg/Harish-Chandra transform in the following three steps:

q(v) =

∫ +∞

v

k(u)(u− v)−1/2du,

g(r) = 2q

((
sinh

r

2

)2
)
, (4.2)

h(t) =

∫ +∞

−∞
eirtg(r)dr.

It is simpler to express the sufficient conditions in terms of h(t) rather than k(u). These
conditions are:

h(t) is even,

h(t) is holomorphic in the strip | Im t| < 1

2
+ ε, (4.3)

h(t)� (|t|+ 1)−2−ε in the strip.

For any h having the above properties, one finds the inverse of the Selberg/ Harish-Chandra
transform in the following three steps:

g(r) =
1

2π

∫ +∞

−∞
eirth(t)dt,

q(v) =
1

2
g
(

2 log(
√
v + 1 +

√
v)
)
, (4.4)

k(u) = − 1

π

∫ +∞

u

(v − u)−1/2dq(v).

The projection of K(z, w) on the eigenfunctions are as follows:

〈K(·, w), uj〉 = h(tj)uj(w),

〈K(·, w), E(·, 1/2 + it)〉 = h(t)E(w, 1/2 + it).

Theorem 4.4 (The pre-trace formula). Let K(z, w) be an automorphic kernel given by
a point-pair invariant k(z, w) = k(u(z, w)) whose Selberg/Harish-Chandra transform h(t)
satisfies the conditions (4.3). Then it has the spectral expansion

K(z, w) =
∑
j≥0

h(tj)uj(z)uj(w) +
1

4π

∫
R
h(t)E(z, 1/2 + it)E(w, 1/2 + it)dt, (4.5)

which converges absolutely and uniformly on compacta.
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4.4. The sup-norm problem. In this section, we will prove the following theorem.

Theorem 4.5. We have
|uj(z)| � λ

1/4
j .

Here the implied constant may depend on z.

To prove this theorem we will need bounds for weight functions and lattice points counting.

Lemma 4.6. Let T ≥ 10 and

h(t) = 4π2 cosh(πt/2) cosh(πT/2)

cosh πt+ cosh πT
. (4.6)

Then we have h(t) > 0 everywhere and h(t) � 1 if t = T + O(1). The Fourier transform of
h(t) is equal to

g(x) = 2π
cosxT

coshx
.

The Selberg/Harish-Chandra transform satisfies

k(0) = T +O(1), (4.7)

k(u)� T 1/2u−1/4(1 + u)−5/4. (4.8)

Lemma 4.7. For any X ≥ 2, we have

#{γ ∈ Γ : 4u(γz, z) + 2 ≤ X} � X,

where the implied constant depending on z.

We will not prove the above lemmas. See [7, Lemma 1.1 and Pages 317&318].

Proof of Theorem 4.5. We should prove this by restricting the spectral averaging to a short
interval. For this purpose we need the complete spectral decomposition of an automorphic
kernel

K(z, z) =
∑
γ∈Γ

k(u(z, γz)) =
∑
j≥0

h(tj)|uj(z)|2 +
1

4π

∫
R
h(t)|E(z, 1/2 + it)|2dt.

By Lemmas 4.6 and 4.7 we obtain

K(z, z) = νk(0) +
∑
γ∈Γ
γz 6=z

k(u(z, γz)) = νT +O(T 1/2),

where ν = #{γ ∈ Γ : γz = z} ∈ {1, 2, 3}. Thus we have∑
T<tj<T+1

|uj(z)|2 � T,

and hence
uj(z)� T 1/2,

as claimed. �

Remark 4.8. The above result is related to the local Weyl law. The same bound can be
established for eigenfunctions on any compact Riemann surface, which is sharp for standard
2-sphere. The implied constant must depend on z. Indeed, for some z with Im z = tj/2π +
o(1), we have

uj(z)� λ
1/12−ε
j .
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Remark 4.9. From the above proof, we find that it is possible to improve the bound in this
case, since the two upper bounds νT and O(T 1/2) are not the same. One may try to transfer
some mass from the “diagonal” terms (γz = z) to the “non-diagonal” terms (γz 6= z). We
will see that this can be done by the amplification method.

However, this bound is not optimal for most surfaces. We have the following conjecture.

Conjecture 4.10. We have
uj(z)� λεj ,

for any ε > 0 and z ∈ H.

The first breakthrough of the sup-norm problem for hyperbolic surfaces was achieved
by Iwaniec–Sarnak [7], who improved the general bounds for certain arithmetic (compact)
hyperbolic surfaces.

Theorem 4.11. Let uj be a Hecke–Maass cusp form. Then we have

|uj(z)| �z λ
5/24+ε
j ,

for any ε > 0 and z ∈ H.

This has important applications to the subconvexity problem of L-functions and nodal
domains of Hecke–Maass cusp forms. We should not give a full proof of this interesting
result. To simplify, we consider only the special point z = i and will only give a weaker
bound. However we can still see the main ideas in the proof.

4.5. Amplification. Recall that the nth Hecke operators Tn (of weight 0) is defined as

Tnf(z) =
1√
n

∑
γ∈Γ\Γn

f(γz),

where

Γn =

{(
a b
c d

)
∈M2(Z) : ad− bc = n

}
.

We know that

Γ\Γn =

{(
a b
0 d

)
: ad = n, b mod d

}
.

We have
TmTn =

∑
d|(m,n)

Tmn
d2

= TnTm, Tn∆ = ∆Tn, T ∗n = Tn.

So we can take {uj} to be an orthonormal system of cusp forms for the modular group which
are eigenfunctions of all the Hecke operators. In this case, the nth Fourier coefficient λj(n)
is also the eigenvalue of the nth Hecke operator Tn.

Applying the Hecke operator to both sides of (4.5) we get

TnK(z, w) =
1√
n

∑
γ∈Γn

k(u(γz, w)) =
∑
j≥0

h(tj)λj(n)uj(z)uj(w) + cont.

Hence we have
1√
n
νnk(0) +

1√
n

∑
γ∈Γn
γz 6=z

k(u(γz, z)) =
∑
j≥0

h(tj)λj(n)|uj(z)|2 + cont. (4.9)
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where νn := #{γ ∈ Γn : γz = z}.
For z = i, we have

νn = r2(n) = 4
∑
d|n

χ−4(d)� nε.

Indeed, we have

νn = #

{(
a b
c d

)
∈M2(Z) : ad− bc = n, γi =

ai+ b

ci+ d
= i

}
= {a, b ∈ Z : a2 + b2 = n} = r2(n).

Lemma 4.12. For z = i and X ≥ 2 we have

#{γ ∈ Γn : 4u(γz, z) + 2 ≤ X} � (nX)1+ε.

Proof. Recall that

u(z, w) =
|z − w|2

4 Im z Imw
.

Since γi = ai+b
ci+d

= (ac+bd)+ni
c2+d2

for γ ∈ Γn, we have

4n u(γi, i) = 4n

(ac+bd)2+(ad−bc−c2−d2)2

(c2+d2)2

4 n
c2+d2

=
(ac+ bd)2 + (ad− bc)2 − 2n(c2 + d2) + (c2 + d2)2

c2 + d2

= a2 + b2 + c2 + d2 − 2n.

Hence

#{γ ∈ Γn : 4u(γz, z) + 2 ≤ X} = #{γ ∈ Γn : a2 + b2 + c2 + d2 ≤ Xn}.

For any fixed pair (b, c) we have at most (nX)ε choices of (a, d) since ad − bc = n. Since

|b| ≤
√
nX and |c| ≤

√
nX, we have the bound O((nX)1+ε) as claimed. �

Note that for any n ≥ 1 we have

4n u(γi, i) = a2 + b2 + c2 + d2 − 2n = (a− d)2 + (b+ c)2 ≥ 1,

if γ =

(
a b
c d

)
∈ Γn and γi 6= i.

From the above estimates we infer an estimate for the geometric side of Kn(z, z). Com-
bining this estimate with the spectral decomposition, we get the following proposition.

Proposition 4.13. For z = i and n ≥ 1 we have∑
j

h(tj)λj(n)|uj(z)|2 + cont. =
r2(n)√
n
T +O(T 1/2n3/4+ε), (4.10)

the implied constant depending only on ε > 0.

Proof. By (4.9) we have∑
j

h(tj)λj(n)|uj(z)|2 + cont. =
r2(n)√
n
T +

1√
n

∑
γ∈Γn
γz 6=z

k(u(γz, z)).
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By (4.8) and Lemma 4.12, for z = i we have

1√
n

∑
γ∈Γn

1
4n
≤u(γz,z)≤3

k(u(γz, z))� T 1/2n3/4+ε

and
1√
n

∑
γ∈Γn

u(γz,z)≥3

k(u(γz, z))� T 1/2

√
n

∑
γ∈Γn

u(γz,z)≥3

u(γz, z)−3/2.

By the partial summation formula and Lemma 4.12 we have∑
γ∈Γn

u(γz,z)≥3

u(γz, z)−3/2 =

∫ ∞
3

v−3/2d
∑
γ∈Γn

0<u(γz,z)≤v

1� n1+ε.

This completes the proof. �

Since 1 ≤ r2(n) ≤ 4τ(n)� nε, the above formula shows that as n gets large there exists a
considerable cancellation of spectral terms due to the variation in sign of the Hecke eigenvalue
λj(n). This variation is the key to improving the sup norm. Unfortunately, for the same
reason, we cannot drop all but one term to obtain directly a good bound for the individual
cusp form.

4.6. Constructing an amplifier. We shall overcome the lack of positivity on the spectral
side of (4.10) by means of an amplifier. Recall that we have the Hecke multiplication rule
for the eigenvalues

λj(m)λj(n) =
∑
d|(m,n)

λj

(mn
d2

)
.

We conclude the following proposition.

Proposition 4.14. For any complex sequence an we have∑
j

h(tj)

∣∣∣∣∣∑
n≤N

anλj(n)

∣∣∣∣∣
2

|uj(z)|2 � N ε(T‖a‖2
2 + T 1/2N3/2‖a‖2

1),

where ‖a‖1 =
∑

n≤N |an| and ‖a‖2 = (
∑

n≤N |an|2)1/2.

Proof. From (4.10) we have that∑
j

h(tj)

∣∣∣∣∣∑
n≤N

anλj(n)

∣∣∣∣∣
2

|uj(z)|2 + cont.

=
∑
m≤N

∑
n≤N

aman
∑
j

h(tj)λj(m)λj(n)|uj(z)|2 + cont.

=
∑
m≤N

∑
n≤N

aman
∑
d|(m,n)

∑
j

h(tj)λj

(mn
d2

)
|uj(z)|2 + cont.

=
∑
m≤N

∑
n≤N

aman√
mn

∑
d|(m,n)

r2

(mn
d2

)
d T +O

∑
m≤N

∑
n≤N

|aman|
∑
d|(m,n)

T 1/2
(mn
d2

)3/4+ε

 .
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The above error term can be bounded by

O
(
T 1/2N3/2+ε‖a‖2

1

)
.

For the sums in the first term we have∑
m≤N

∑
n≤N

aman√
mn

∑
d|(m,n)

r2

(mn
d2

)
d

� N ε
∑
m≤N

∑
n≤N

(m,n)=1

∑
`≤min(N/m,N/n)

|a`ma`n|√
mn

∑
d|`

d

`

� N ε
∑
m≤N

∑
n≤N

∑
`≤min(N/m,N/n)

(
|a`m|2

n
+
|a`n|2

m

)
� N ε‖a‖2

2.

This proves the proposition. �

On the left side the terms are non-negative, so we can drop all but one, getting

|Ljuj(z)|2 � N ε(tj‖a‖2
2 + t

1/2
j N3/2‖a‖2

1), (4.11)

where z = i and

Lj =
∑
n≤N

anλj(n).

Remark 4.15. If
∑

n≤N λj(n)2 � t−εj N , then we can take an = λj(n), getting

Lj � Nt−εj .

Note that we have (due to Iwaniec)

‖a‖2
2 =

∑
n≤N

λj(n)2 � Ntεj ,

and

‖a‖2
1 = (

∑
n≤N

|λj(n)|)2 � N2tεj .

We conclude that

|uj(z)|2 � (Ntj)
ε(tj/N + t

1/2
j N3/2).

The best choice is N = t
1/5
j , and we get

uj(z)� λ
1/5+ε
j , z = i.

Note that this is better than Theorem 4.11, however it is conditional.

Note that λj(p)
2−λj(p2) = 1. Without any conjecture we have still a good choice, namely

an =

 λj(p), if n = p ≤
√
N,

−1, if n = p2 ≤ N ,
0, othewise.

(4.12)
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By the prime number theorem, we have

Lj =
∑
p≤
√
N

(λj(p)
2 − λj(p2)) ∼

√
N

log
√
N
.

Note that
‖a‖2

2 =
∑
p≤
√
N

(λj(p)
2 + 1)� N1/2tεj ,

and

‖a‖2
1 =

∑
p≤
√
N

(|λj(p)|+ 1)

2

� Ntεj .

Hence by (4.11) we get

|uj(z)|2 � N ε(tj/
√
N + t

1/2
j N3/2).

The best choice is N = t
1/4
j , and we get

uj(z)� λ
7/32+ε
j , z = i.

Note that this is worse than Theorem 4.11. In any case, we obtain the following unconditional
result.

Theorem 4.16. For z = i we have

|uj(z)| � λ
7/32+ε
j

the implied constant depending only on ε > 0.

Remark 4.17. Using more refined estimates for #{γ ∈ Γn : u(γz, z) ≤ δ}, one can get a
bound with the exponent 5/24 in place of 7/32. Also the result holds true for any z ∈ H, so
it yields a bound for the L∞-norm:

‖uj‖∞ � λ
5/24+ε
j .

The same estimate has been established for the eigenfunctions with respect to the quaternion
group by Iwaniec–Sarnak.

Remark 4.18. For Eisenstein series and dihedral Maass forms, we can improve Iwaniec–
Sarnak’s bound (getting 3/16 instead of 5/24). In those cases we can prove the lower bound∑

n∼N |λf (n)|2 � Nt−εf where f is an Eisenstein series or a dihedral Maass form. The main
tool here is Korobov–Vinogradov type zero free region of L-functions.

Remark 4.19. There are many generalizations of this result, such as the level aspect estimates,
hybrid bounds, higher rank cases, and so on.
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