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Abstract—The problem of random number generation from
an uncorrelated random source (of unknown probability distri-
bution) dates back to von Neumann’s 1951 work. Elias (1972)
generalized von Neumann’s scheme and showed how to achieve
optimal efficiency in unbiased random bits generation. Hence,
a natural question is what if the sources are correlated? Both
Elias and Samuelson proposed methods for generating unbiased
random bits in the case of correlated sources (of unknown prob-
ability distribution), specifically, they considered finite Markov
chains. However, their proposed methods are not efficient or have
implementation difficulties. Blum (1986) devised an algorithm for
efficiently generating random bits from degree-2 finite Markov
chains in expected linear time, however, his beautiful method is
still far from optimality on information-efficiency. In this paper,
we generalize Blum’s algorithm to arbitrary degree finite Markov
chains and combine it with Elias’s method for efficient generation
of unbiased bits. As a result, we provide the first known algorithm
that generates unbiased random bits from an arbitrary finite
Markov chain, operates in expected linear time and achieves the
information-theoretic upper bound on efficiency.

Index Terms—Markov chain, Random bits generation, Random
sequence.

I. INTRODUCTION

T HE problem of random number generation dates back to
von Neumann [9] who considered the problem of simu-

lating an unbiased coin by using a biased coin with unknown
probability. He observed that when one focuses on a pair of coin
tosses, the events and have the same probability ( is
for “head” and is for “tail”); hence, produces the output
symbol 0 and produces the output symbol 1. The other two
possible events, namely, and , are ignored, namely, they
do not produce any output symbols. More efficient algorithms
for generating random bits from a biased coin were proposed
by Hoeffding and Simons [7], Elias [4], Stout and Warren [17]
and Peres [12]. Elias [4] was the first to devise an optimal pro-
cedure in terms of the information efficiency, namely, the ex-
pected number of unbiased random bits generated per coin toss
is asymptotically equal to the entropy of the biased coin. In addi-
tion, Knuth and Yao [8] presented a simple procedure for gener-
ating sequences with arbitrary probability distributions from an
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unbiased coin (the probability of and is ). Han and Hoshi
[5] generalized this approach and considered the case where the
given coin has an arbitrary known bias.
In this paper, we study the problem of generating random bits

from an arbitrary and unknown finite Markov chain (the transi-
tion matrix is unknown). The input to our problem is a sequence
of symbols that represent a random trajectory through the states
of the Markov chain—given this input sequence our algorithm
generates an independent unbiased binary sequence called the
output sequence. This problem was first studied by Samuelson
[14]. His approach was to focus on a single state (ignoring the
other states) treat the transitions out of this state as the input
process, hence, reducing the problem of correlated sources to
the problem of a single “independent” random source; obvi-
ously, this method is not efficient. Elias [4] suggested to utilize
the sequences related to all states: Producing an “independent”
output sequence from the transitions out of every state and then
pasting (concatenating) the collection of output sequences to
generate a long output sequence. However, neither Samuelson
nor Elias proved that their methods work for arbitrary Markov
chains, namely, they did not prove that the transitions out of
each state are independent. In fact, Blum [2] probably realized
it, as he mentioned that: i) “Elias’s algorithm is excellent, but
certain difficulties arise in trying to use it (or the original von
Neumann scheme) to generate bits in expected linear time from
aMarkov chain,” and ii) “Elias has suggested a way to use all the
symbols produced by a Markov Chain (MC). His algorithm ap-
proaches the maximum possible efficiency for a one-state MC.
For a multistate MC, his algorithm produces arbitrarily long fi-
nite sequences. He does not, however, show how to paste these
finite sequences together to produce infinitely long independent
unbiased sequences.” Blum [2] derived a beautiful algorithm to
generate random bits from a degree-2 Markov chain in expected
linear time by utilizing the von Neumann scheme for gener-
ating random bits from biased coin flips.While his approach can
be extended to arbitrary out-degrees (the general Markov chain
model used in this paper), the information-efficiency is still far
from being optimal due to the low information-efficiency of the
von Neumann scheme.
In this paper, we generalize Blum’s algorithm to arbitrary de-

gree finite Markov chains and combine it with existing methods
for efficient generation of unbiased bits from biased coins, such
as Elias’s method. As a result, we provide the first known algo-
rithm that generates unbiased random bits from arbitrary finite
Markov chains, operates in expected linear time and achieves
the information-theoretic upper bound on efficiency. Specif-
ically, we propose an algorithm (that we call Algorithm ),
that is a simple modification of Elias’s suggestion to generate
random bits, it operates on finite sequences and its efficiency
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can asymptotically reach the information-theoretic upper bound
for long input sequences. In addition, we propose a second
algorithm, called Algorithm , that is a combination of Blum’s
and Elias’s algorithms, it generates infinitely long sequences
of random bits in expected linear time. One of our key ideas
for generating random bits is that we explore equal-probability
sequences of the same length. Hence, a natural question is:
Can we improve the efficiency by utilizing as many as possible
equal-probability sequences? We provide a positive answer to
this question and describe Algorithm , that is the first known
polynomial-time and optimal algorithm (it is optimal in terms
of information-efficiency for an arbitrary input length) for
random bit generation from finite Markov chains.
In this paper, we use the following notations:

the th element of

same as , the th element of

subsequence of from the th to th element

the concatenation of and e.g.,

is a permutation of e.g.,

is a permutation of and
namely the last element is fixed e.g.,

where is fixed

The remainder of this paper is organized as follows. Section II
reviews existing schemes for generating random bits from arbi-
trarily biased coins. Section III discusses the challenge in gen-
erating random bits from arbitrary finite Markov chains and
presents our main lemma—this lemma characterizes the exit se-
quences of Markov chains. Algorithm is presented and ana-
lyzed in Section IV, it is related to Elias’s ideas for generating
random bits from Markov chains. Algorithm is presented in
Section V, it is a generalization of Blum’s algorithm. An op-
timal algorithm, called Algorithm , is described in Section VI.
Finally, Section VII provides numerical evaluations of our algo-
rithms.

II. GENERATING RANDOM BITS FOR BIASED COINS

Consider a sequence of length generated by a biased n-face
coin

such that the probability to get is , and . While
we are given a sequence the probabilities that
are unknown, the question is: How can we efficiently generate
an independent and unbiased sequence of 0’s and 1’s from ?
The definition of efficiency for a generation algorithm is given
as follows. This definition will be used throughout this paper.

Definition 1: Let be a random sequence in
and let be

an algorithm generating random bits from . Then given ,
the efficiency (information-efficiency) of is defined as the

ratio between the expected length of the output sequence and
the length of the input sequence, i.e.

In this section, we describe three existing solutions for the
problem of random bit generation from biased coins.

A. The von Neumann Scheme

In 1951, von Neumann [9] considered this question for bi-
ased coins and described a simple procedure for generating an
independent unbiased binary sequence from the input
sequence . In his original procedure, the coin is
binary, however, it can be simply generalized for the case of an
-face coin: For an input sequence, we can divide it into pairs

and use the following mapping for each pair:

where denotes the empty sequence. As a result, by concate-
nating the outputs of all the pairs, we can get a binary sequence
which is independent and unbiased. The von Neumann scheme
is computationally (very) fast, however, its information-effi-
ciency is far from being optimal. For example, when the input
sequence is binary, the probability for a pair of input bits to
generate an output bit (not a ) is , hence the efficiency is

, which is at and less elsewhere.

B. The Elias Scheme

In 1972, Elias [4] proposed an optimal (in terms of efficiency)
algorithm as a generalization of the von Neumann scheme; for
the sake of completeness we describe it here.
Elias’s method is based on the following idea: The possible
input sequences of length can be partitioned into classes

such that all the sequences in the same class have the same
number of ’s for . Note that for every class, the
members of the class have the same probability to be generated.
For example, let and , we can divide the possible

input sequences into 5 classes

Now, our goal is to assign a string of bits (the output) to each
possible input sequence, such that any two output sequences
and with the same length (say ), have the same probability
to be generated, namely for some . The idea is
that for any given class we partition the members of the class to
sets of sizes that are a power of 2, for a set with members (for
some ) we assign binary strings of length . Note that when the
class size is odd we have to exclude one member of this class.
We now demonstrate the idea by continuing the example above.
Note that in the example above, we cannot assign any bits

to the sequence in , so if the input sequence is , the
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output sequence should be (denoting the empty sequence).
There are 4 sequences in and we assign the binary strings as
follows:

Similarly, for , there are 6 sequences that can be divided into
a set of 4 and a set of 2

In general, for a class with members that were not assigned
yet, assign possible output binary sequences of length to
distinct unassigned members, where . Repeat
the procedure above for the rest of the members that were not
assigned. Note that when a class has an odd number ofmembers,
there will be one and only one member assigned to .
Given an input sequence of length , using the method

above, the output sequence can be written as a function of ,
denoted by , called the Elias function. In [13], Ryabko
and Matchikina showed that the Elias function of an input se-
quence of length (that is generated by a biased coin with two
faces) is computable in time. We can
prove that their conclusion is valid in the general case of a coin
with faces for any .

C. The Peres Scheme

In 1992, Peres [12] demonstrated that iterating the original
von Neumann scheme on the discarded information can asymp-
totically achieve optimal efficiency. Let’s define the function re-
lated to the von Neumann scheme as .
Then the iterated procedures with are defined induc-
tively. Given input sequence , let
denote all the integers for which , then
is defined as

Note that on the right-hand side (RHS) of the equation above,
the first term corresponds to the random bits generated with the
von Neumann scheme, the second and third terms relate to the
symmetric information discarded by the von Neumann scheme.
For example, when the input sequence is , the
output sequence based on the von Neumann scheme is

But based on the Peres scheme, we have the output sequence

which is 001, longer than that generated by the von Neumann
Scheme.

Finally, we can define for sequences of odd length by

Surprisingly, this simple iterative procedure achieves the op-
timal efficiency asymptotically. The computational complexity
and memory requirements of this scheme are substantially
smaller than those of the Elias scheme. However, a drawback
of this scheme is that its generalization to the case of an -face
coin with is not obvious.

D. Properties of the Schemes

Let’s denote as a scheme
that generates independent unbiased sequences from any biased
coins (with unknown probabilities). Such can be the von Neu-
mann scheme, the Elias scheme, the Peres scheme or any other
scheme. Let be a sequence generated from an arbitrary bi-
ased coin, with length , then a property of is that for any

and with , we have

Namely, two output sequences of equal length have equal prob-
ability.
This leads to the following property for . It says that given

the number of ’s for all with , the number of
such sequences yielding a binary sequence equals the number
of such sequences yielding when and have the same
length. It further implies that given the condition of knowing the
number of ’s for all with , the output sequence of
is still independent and unbiased. This property is due to the

linear independence of probability functions of the sequences
with different numbers of the ’s.

Lemma 1: Let be the subset of
consisting of all sequences with appearances of for all

such that . Let
denote the set . Then for any
and with , we have

Proof: In , each sequence has appearances
of for all . Given a biased coin with faces
and a sequence in , the probability of generating this
sequence is

where is the probability to get with the biased coin.
Then the probability of generating is

And the probability of generating is
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Since generates unbiased random sequences, we have
. As a result

The set of polynomials

is linearly independent in the vector space of functions on
, so we can

conclude that .

III. SOME PROPERTIES OF MARKOV CHAINS

Our goal is to efficiently generate random bits from a
Markov chain with unknown transition probabilities. The
model we study is that a Markov chain generates the sequence
of states that it is visiting and this sequence of states is the
input sequence to our algorithm for generating random bits.
Specifically, we express an input sequence as
with , where indicate the
states of a Markov chain.
One idea is that for a given Markov chain, we can treat each

state, say , as a coin and consider the ’next states’ (the states the
chain has transitioned to after being at state ) as the results of a
coin toss. Namely, we can generate a collection of sequences

, called exit sequences,
where is the sequence of states following in , namely

For example, assume that the input sequence is

If we consider the states following we get as the set
of states in boldface:

Hence, the exit sequences are

Lemma 2 (Uniqueness): An input sequence can be
uniquely determined by and .

Proof: Given and , according to the work of Blum
in [2], can uniquely be constructed in the following
way: Initially, set the starting state as . Inductively, if
, then set as the first element in and remove the

first element of . Finally, we can uniquely generate the
sequence .

Fig. 1. An example of Markov chain with two states.

Lemma 3 (Equal-Probability): Two input sequences
and with have the same

probability to be generated if for all .
Proof: Note that the probability of generating is

and the probability of generating is

By permutating the terms in the expression above, it is not hard
to get that if and for
all . Basically, the exit sequences describe the edges
that are used in the trajectory in the Markov chain. The edges in
the trajectories that correspond to and are identical, hence

.

In [14], Samuelson considered a two-state Markov chain,
and he pointed out that it may generate unbiased random bits
by applying the von Neumann scheme to the exit sequence of
state . Later, in [4], in order to increase the efficiency, Elias
has suggested a scheme that uses all the symbols produced
by a Markov chain. His main idea was to create the final
output sequence by concatenating the output sequences that
correspond to . However, neither Samuelson
nor Elias proved that their methods produce random output
sequences that are independent and unbiased. In fact, their
proposed methods are not correct for some cases. To demon-
strate it we consider: 1) as the final output. 2)

as the final output. For example,
consider the two-state Markov chain in which
and , as shown in Fig. 1.
Assume that an input sequence of length is gener-

ated from this Markov chain and the starting state is , then
the probabilities of the possible input sequences and their cor-
responding output sequences are given in Table I. In the table
we can see that the probabilities to produce 0 or 1 are different
for some and in both methods, presented in columns 3 and
4, respectively.
The problem of generating random bits from an arbitrary

Markov chain is challenging, as Blum said in [2]: “Elias’s algo-
rithm is excellent, but certain difficulties arise in trying to use
it (or the original von Neumann scheme) to generate random
bits in expected linear time from a Markov chain”. It seems that
the exit sequence of a state is independent since each exit of
the state will not affect the other exits. However, this is not al-
ways true when the length of the input sequence is given, say .
Let’s still consider the example of the two-state Markov chain
in Fig. 1. Assume the starting state of this Markov chain is ,
if , then with nonzero probability we have

whose length is . But it is impossible to have
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TABLE I
PROBABILITIES OF EXIT SEQUENCES—AN EXAMPLE THAT SIMPLE CONCATENATION DOES NOT WORK

of length . That means is not an independent se-
quence. The main reason is that although each exit of a state will
not affect the other exits, it will affect the length of the exit se-
quence. In fact, is an independent sequence if the length
of is given, instead of giving the length of .
In this paper, we consider this problem from another perspec-

tive. According to Lemma 3, we know that permutating the exit
sequences does not change the probability of a sequence, how-
ever, the permuted sequence has to correspond to a trajectory
in the Markov chain. The reason for this contingency is that in
some cases the permuted sequence does not correspond to a tra-
jectory: Consider the following example:

and

If we permute the last exit sequence to , we cannot
get a new sequence such that its starting state is and its exit
sequences are

This can be verified by attempting to construct the sequence
using Blum’s method (which is given in the proof of Lemma
2). Notice that if we permute the first exit sequence
into , we can find such a new sequence, which is

This observation motivated us to study the characterization of
exit sequences that are feasible in Markov chains (or finite state
machines).

Definition 2 (Feasibility): Given a Markov chain, a starting
state and a collection of sequences , we
say that is feasible if and only if there exists a sequence
that corresponds to a trajectory in the Markov chain such that

and .
Based on the definition of feasibility, we present the main

technical lemma of the paper. Repeating the notation from the
beginning of the paper, we say that a sequence is a tail-fixed
permutation of , denoted as , if and only if: 1) is a
permutation of , and 2) and have the same last element,
namely, .

Lemma 4 (Main Lemma: Feasibility and Equivalence of Exit
Sequences): Given a starting state and two collections of
sequences and

such that (tail-fixed permutation) for all .
Then is feasible if and only if is feasible.
The proof of this main lemma will be given in Appendix.

According to the main lemma, we have the following equivalent
statement.
Lemma 5 (Feasible Permutations of Exit Sequences): Given

an input sequence with that pro-
duced from a Markov chain. Assume that is
an aribitrary collection of exit sequences that corresponds to the
exit sequences of as follows:
1) is a permutation of , for .
2) is a tail-fixed permutation of , for .
Then there exists a feasible sequence such
that and . For this , we
have .

One might reason that Lemma 5 is stronger than the main
lemma (Lemma 4). However, we will show that these two
lemmas are equivalent. It is obvious that if the statement in
Lemma 5 is true, then the main lemma is also true. Now we
show that if the main lemma is true then the statement in
Lemma 5 is also true.

Proof: Given , let’s add one more
symbol to the end of ( is different from all the
states in ), then we can get a new sequence ,
whose exit sequences are

According to the main lemma, we know that there exists an-
other sequence such that its exit sequences
are

and . Definitely, the last symbol of this sequence is
, i.e., . As a result, we have .

Now, by removing the last element from ,
we can get a new sequence such that its exit
sequences are

and . We also have .
This completes the proof.

We demonstrate the result above by considering the example
at the beginning of this section. Let
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with and its exit sequences are given by

After permutating all the exit sequences (for , we keep the
last element of the th sequence fixed), we get a new group of
exit sequences

Based on these new exit sequences, we can generate a new input
sequence

This accords with the statements above.

IV. ALGORITHM A: MODIFICATION OF ELIAS’S SUGGESTION

Elias suggested to generate random bits from an arbitrary
Markov chain by concatenating the outputs of different exit se-
quences. In the above section, we showed that direct concatena-
tion cannot always work. This motivates us to derive Algorithm
, which is a simple modification of Elias’s suggestion and is
able to generate random bits from any Markov chain efficiently.

Algorithm A

Input: A sequence produced by a Markov
chain, where .

Output: A sequence of and .

Main Function:

Suppose .

for do

if then

Output .

else

Output .

end if

end for

Comment: (1) can be any scheme that generates
random bits from biased coins. For example, we can use
the Elias function. (2) When , we can also output

for simplicity, but the efficiency may be
reduced a little.
The only difference between Algorithm and direct concate-

nation is that: Algorithm ignores the last symbols of some exit
sequences. Let’s go back to the example of a two-state Markov
chain with and in Fig. 1, which
demonstrates that direct concatenation does not always work
well. Here, still assuming that an input sequence with length

is generated from this Markov chain with starting state
, then the probability of each possible input sequence and

its corresponding output sequence (based on Algorithm ) are
given by

We can see that when the input sequence length , a
bit 0 and a bit 1 have the same probability of being generated
and no longer sequences are generated. In this case, the output
sequence is independent and unbiased.
In order to prove that all the sequences generated by Algo-

rithm are independent and unbiased, we need to show that for
any sequences and of the same length, they have the same
probability of being generated.

Theorem 6 (Algorithm A): Let the sequence generated by a
Markov chain be used as input to Algorithm , then the output
of Algorithm is an independent unbiased sequence.

Proof: Let’s first divide all the possible sequences in
into classes, and use to denote the set of

the classes. Two sequences and are in the same class if
and only if
1) and for some .
2) If , .
3) If , .
Let’s use to denote Algorithm . For , let

be the set of sequences of length such that .
We show that for any , whenever

. If is empty, this conclusion is trivial. In the fol-
lowing, we only consider the case that is not empty.
Now, given a class , if let’s define as the set con-

sisting of all the permutations of for , and if
let’s define as the set consisting of all the permutations of

for . For all and ,
we continue to define

which is the subset of consisting of all sequences yielding .
Based on Lemma 1, we know that when-
ever . This implies that is a function of ,
which can be written as .
For any partition of , namely such that

, we have the following conclusion:
, we can always find

a sequence such that for
and for all . This conclusion is
immediate from Lemma 5. As a result, we have
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Let be a group of nonnegative integers partitioning
, then the formula above can be rewritten as

Similarly, we also have

which tells us that if .
Note that all the sequences in the same class have the same

probability of being generated. So when , the proba-
bility of generating is

which implies that output sequence is independent and unbi-
ased.

Theorem 7 (Efficiency): Let be a sequence of length
generated by a Markov chain, which is used as input to Algo-
rithm . Let in Algorithm be Elias’s function. Suppose the
length of its output sequence is , then the limiting efficiency

as realizes the upper bound .
Proof: Here, the upper bound is provided by Elias

[4]. We can use the same argument in Elias’s paper [4] to prove
this theorem.
For all , let denote the next state following
in the Markov chain. Then is a random variable on

with distribution , where
with , is the transition probability from state
to state . The entropy of is denoted as . Let

denote the stationary distribution of the
Markov chain, then we have [3]

When , there exists an which , such that with
probability , for all .
Using Algorithm A, with probability , the length of
the output sequence is bounded below by

where is the efficiency of the when the input is or
. According to Theorem 2 in Elias’s paper [4],

we know that as , . So with proba-
bility , the length of the output sequence is bounded
from below by

Then we have

At the same time, is upper bounded by . So we can
get

which completes the proof.

Given an input sequence, it is efficient to generate indepen-
dent unbiased sequences using Algorithm . However, it has
some limitations: 1) The complete input sequence has to be
stored. 2) For a long input sequence it is computationally inten-
sive as it depends on the input length. 3) The method works for
finite-length sequences and does not lend itself to stream pro-
cessing. In order to address these limitations we propose two
variants of Algorithm .
In the first variant of Algorithm , instead of applying di-

rectly to for (or for
), we first split into several segments with lengths

then apply to all of the segments separately. It
can be proved that this variant of Algorithm A can generate in-
dependent unbiased sequences from an arbitrary Markov chain,
as long as do not depend on the order of elements in
each exit sequence. For example, we can split into two seg-
ments of lengths and , we can also split it into three
segments of lengths Generally, the shorter
each segment is, the faster we can obtain the final output. But
at the same time, we may have to sacrifice a little information
efficiency.
The second variant of Algorithm is based on the following

idea: for a given sequence from a Markov chain, we can split it
into some shorter sequences such that they are independent of
each other, therefore we can apply Algorithm to all of the se-
quences and then concatenate their output sequences together as
the final one. In order to do this, given a sequence ,
we can use as a special state to it. For example, in
practice, we can set a constant , if there exists a minimal in-
teger such that and , then we can split
into two sequences and (note that both
of the sequences have the element ). For the second sequence

, we can repeat the same procedure Iteratively, we
can split a sequence into several sequences such that they are
independent of each other. These sequences, with the exception
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of the last one, start and end with , and their lengths are usu-
ally slightly longer than .

V. ALGORITHM B: GENERALIZATION OF BLUM’S ALGORITHM

In [2], Blum proposed a beautiful algorithm to generate an
independent unbiased sequence of 0’s and 1’s from any Markov
chain by extending the von Neumann’s scheme. His algorithm
can deal with infinitely long sequences and uses only constant
space and expected linear time. The only drawback of his al-
gorithm is that its efficiency is still far from the information-
theoretic upper bound, due to the limitation (compared to the
Elias algorithm) of the von Neumann’s scheme. In this section,
we generalize Blum’s algorithm by replacing von Neumann’s
scheme with Elias’s. As a result, we get Algorithm : It main-
tains some good properties of Blum’s algorithm and its effi-
ciency approaches the information-theoretic upper bound.

Algorithm B

Input: A sequence (or a stream) produced by a
Markov chain, where .

Parameter: positive integer functions (window size)
with for all .

Output: A sequence (or a stream) of 0’s and 1’s.

Main Function:

(empty) for all .

for all .

: the index of current state, namely, .

while next input symbol is do

(Add to ).

if then

Output .

.

.

end if

.

end while

In the algorithm above, we apply function on to gen-
erate random bits if and only if the window for is completely
filled and the Markov chain is currently at state .
For example, we set for all and for all

and assume that the input sequence is

After reading the last second (8th) symbol , we have

Fig. 2. The simplified expressions for the exit sequences of .

In this case, so the window for is full, but we don’t
apply to because the current state of the Markov chain is
, not .
By reading the last (9th) symbol , we get

Since the current state of the Markov chain is and ,
we produce and reset as .
In the example above, treating as input to Algorithm ,

we get the output sequence . The algorithm does
not output until the Markov chain reaches
state again. Timing is crucial!
Note that Blum’s algorithm is a special case of Algorithm
by setting the window size functions for all

and . Namely, Algorithm is a
generalization of Blum’s algorithm, the key is that when we in-
crease the windows sizes, we can apply more efficient schemes
(compared to the von Neumann’s scheme) for . Assume a se-
quence of symbols with have been
read by the algorithm above, we want to show that for any ,
the output sequence is always independent and unbiased. Un-
fortunately, Blum’s proof for the case of cannot be
applied to our proposed scheme.
For all with , we can write

where with are the segments used to generate
outputs. For all , , we have

and

if

See Fig. 2 for simple illustration.

Theorem 8 (Algorithm ): Let the sequence generated by a
Markov chain be used as input to Algorithm , then Algorithm
generates an independent unbiased sequence of bits in ex-

pected linear time.
Proof: In the following proof, we use the same idea as in

the proof for Algorithm .
Let’s first divide all the possible input sequences in

into classes, and use to denote the
set consisting of all the classes. Two sequences and are
in the same class if and only if
1) and .
2) For all with
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where and are the segments used to generate out-
puts.

3) For all , , .
4) For all , .
Let’s use to denote Algorithm . For , let

be the set of sequences of length such that .
We show that for any , whenever

. If is empty, this conclusion is trivial. In the fol-
lowing, we only consider the case that is not empty.
Now, given a class , let’s define as the set consisting of

all the permutations of for . Given , we
continue to define

for all and , which is the subset of
consisting of all sequences yielding . According to Lemma
1, we know that whenever .
This implies that is a function of , which can be
written as .
Let be nonnegative integers

such that their sum is , we want to prove that

The proof is by induction. Let . First, the conclu-
sion holds for . Assume the conclusion holds for ,
we want to prove that the conclusion also holds for .
Note that for all , if , then generates an

output before in Algorithm . So given an input sequence
, the last segment that generates an output (the output

can be an empty string) is for some with .
Now, we show that this is fixed for all the sequences in ,
i.e., the position of the last segment generating an output keeps
unchanged. To prove this, given a sequence , let’s see
the first symbols of , i.e., , such that the last segment

generates an output just after reading when the input
sequence is . Based on our algorithm, has the following
properties.
1) The last symbol .
2) .
3) for , where .
Now, let’s permute each segment of to

, then we get another sequence .
According to Lemma 5, if we consider the first symbols of
, i.e., , it has the similar properties as :
1) The last symbol .
2) .
3) for , where .
This implies that when the input sequence is , gener-
ates an output just after reading and it is the last one. So we
can conclude that for all the sequences in , their last segments
generating outputs are at the same position.
Let’s fix the last segment and assume generates

the last bits of . We want to know howmany sequences in
have as their last segments that generate outputs?

In order to get the answer, we concatenate with as the
new . As a result, we have segments to

generate the first bits of . Based on our assumption,
the number of such sequences will be

where are nonnegative in-
tegers. For each , there are different choices
for . Therefore, can be obtained by multiplying

by the number above and summing them up over
. Namely, we can get the conclusion above.
According to this conclusion, we know that if ,

then . Using the same argument as in
Theorem 6 we complete the proof of the theorem.

Normally, the window size functions for
can be any positive integer functions. Here, we fix these window
size functions as a constant, namely, . By increasing the value
of , we can increase the efficiency of the scheme, but at the
same time it may cost more storage space and needmore waiting
time. It is helpful to analyze the relationship between scheme
efficiency and window size .

Theorem 9 (Efficiency): Let be a sequence of length
generated by a Markov chain with transition matrix , which
is used as input to Algorithm with constant window size .
Then as the length of the sequence goes to infinity, the limiting
efficiency of Algorithm is

where is the stationary distribution of
this Markov chain, and is the efficiency of when the
input sequence of length is generated by a -face coin with
distribution .

Proof: When , there exists an which ,
such that with probability ,

for all .
The efficiency of Algorithm can be written as , which

satisfies

With probability , we have

So when , we have that

This completes the proof.

Let’s define , where is the standard
binary expansion of . Assume is the Elias function, then
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Based on this formula, we can numerically study the relation-
ship between the limiting efficiency and the window size (see
Section VII). In fact, when the window size becomes large, the
limiting efficiency approaches the information-theo-
retic upper bound.

VI. ALGORITHM C: AN OPTIMAL ALGORITHM

Both Algorithm and Algorithm are asymptotically op-
timal, but when the length of the input sequence is finite they
may not be optimal. In this section, we try to construct an op-
timal algorithm, called Algorithm C, such that its information-
efficiency is maximized when the length of the input sequence
is finite. Before presenting this algorithm, following the idea of
Pae and Loui [11], we first discuss the equivalent condition for
a function to generate random bits from an arbitrary Markov
chain, and then present the sufficient condition for to be op-
timal.

Lemma 10 (Equivalent Condition): Let be an
nonnegative integer matrix with .

We define as

where is the number of in . A function
can generate random

bits from an arbitrary Markov chain, if and only if for any
and two binary sequences and with

where is the
set of sequences of length that yield .

Proof: It is easy to see that if
for all and , then

and have the same probability to be generated. In this case,
can generate random bits from an arbitrary Markov chain. In

the rest, we only need to prove the inverse claim.
If can generate random bits from an arbitraryMarkov chain,

then for any two binary
sequences and of the same length. Here, let be the
transition probability from state to state for all ,

, we can write

where

and

Similarly

As a result

Since can be any value in , for all
we have

It can be proved that are
linear independent in the vector space of functions on the
transition probabilities, namely

Based on this fact, we can conclude that
for all if .

Let’s define , where is the standard
binary expansion of , then we have the sufficient condition for
an optimal function.

Lemma 11 (Sufficient Condition for an Optimal Function):
Let be a function that generates random bits from an arbi-
trary Markov chain with unknown transition probabilities. If
for any and any non-negative integer matrix with

, the following equation is satisfied,

then generates independent unbiased random bits with op-
timal information efficiency. Note that is the length of

and is the size of .
Proof: Let denote an arbitrary function that is able to

generate random bits from anyMarkov chain. According to [11,
Lemma 2.9], we know that

Then the average output length of is

So is the optimal one. This completes the proof.

Here, we construct the following algorithm (Algorithm )
which satisfies all the conditions in Lemma 10 and Lemma 11.
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As a result, it can generate unbiased random bits from an arbi-
trary Markov chain with optimal information efficiency.

Algorithm C

Input: A sequence produced by a Markov
chain, where .
Output: A sequence of and .
Main Function:
1) Get the matrix with

2) Define as

then compute .
3) Compute the rank of in with respect to a
given order. The rank with respect to a lexicographic order
will be given later.
4) According to and , determine the output
sequence. Let be the standard binary expansion of

with and assume the starting value of
is 0. If , the output is the digit binary

representation of . If , the
output is the digit binary representation of .
Comment: The fast calculations of and will be
given in the rest of this section.

In Algorithm , when we use Elias’s function as , the lim-
iting efficiency (as ) realizes the bound

. Algorithm is optimal, so it has the same or higher ef-
ficiency. Therefore, the limiting efficiency of Algorithm as

also realizes the bound .
In Algorithm , for an input sequence with , we

can rank it with respect to the lexicographic order of and
. Here, we define

which is the vector of the last symbols of for .
And is the complement of in , namely

For example, when the input sequence is

Its exit sequences are

Then for this input sequence , we have that

Based on the lexicographic order defined above, both
and can be obtained using a brute-force search. How-
ever, this approach in not computationally efficient. Here, we

describe an efficient algorithm for computing and
when is a small constant, such that Algorithm is computable
in time. This method is inspired by the
algorithm for computing the Elias function that is described in
[13]. However, when is not small, the complexity of com-
puting (or ) has an exponential dependence on ,
which will make this algorithm much slower in computation
than the previous algorithms.

Lemma 12: Let

and let , then is computable in
time (not related with ).

Proof: It is known that given two numbers of length
bits, their multiplication or division is computable in

time based on Schönhage-Strassen algo-
rithm [1]. We can calculate based on this fast multiplication.
For simplification, we denote . Note that we

can write as a multiplication of terms, namely

which are denoted as

It is easy to see that the notation of every used
bits ( for the numerator and for the denomi-
nator). The total time to compute all of them is much less than

.
Based on these notations, we write as

Suppose that is an integer. Otherwise, we can add trivial
terms to the formula above to make be an integer. In
order to calculate quickly, the following calculations are per-
formed:

Then we are able to compute iteratively and finally get

To calculate for , it takes mul-
tiplications of numbers with length bits. Similarly, to
calculate for , it takes multiplica-
tions of numbers with length bits. So the time com-
plexity of computing is

This value is not greater than

which yields the result in the lemma.
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Lemma 13: Let be a small constant, then in Algo-
rithm is computable in time.

Proof: The idea to compute in Algorithm is that
we can divide into different classes, denoted by
for different such that

where is the number of ’s in for all
, . is the vector of the last symbols of

defined above. As a result, we have .
Although it is not easy to calculate directly, but it is
much easier to compute for a given .
For a given , we need first determine

whether is empty or not. In order to do this, we quickly
construct a collection of exit sequences
by moving the first in to the end for all .
According to the main lemma, we know that is empty
if and only if does not include for some or is
not feasible.
If is not empty, then is feasible. In this case,

based on the main lemma, we have

Here, we let

Then we can get

According to Lemma 12, is computable in
time. So if is a small constant, then

is also computable in time.
However, when is not small, we have to enumerate all the
possible combinations for with time, which is not
computationally efficient.

Lemma 14: Let be a small constant, then in Algo-
rithm is computable in time.

Proof: Based on some calculations in the lemma above,
we can try to obtain when is ranked with respect to the
lexicographic order of and . Let denote
the rank of in , then we have that

where is based on the lexicographic order. In the formula,
when is a small constant, can be obtained

in time by computing

where is defined in the last lemma and the second term can be
calculated fast when is a small constant. (However, cannot
be big, since the complexity of computing the second term has
an exponential dependence on .)
So far, we only need to compute , with respect to

the lexicography order of . Here, we write as the
concatenation of a group of sequences, namely

such that for all .
There are symbols in . Let

be the number of sequences in such that their first
symbols are and their symbols

are smaller than . Then we can get that

Let’s assume that for some ,
and it is the symbol in . For simplicity, we denote

as . For example, when and
, we have

To calculate , we can count all the sequences generated
by permuting the symbols of such
that the symbol of the new sequence is smaller
than . Then we can get

where counts the number of ’s in .
Let’s define the values

for all . In this expression, is the number of
’s in , and is the first symbol of .
It is easy to show that for

If we also define the values

for all , then we have
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and

Suppose that is an integer. Otherwise, we can add
trivial terms to the formula above to make an integer.
In order to quickly calculate , the following calcu-
lations are performed for from 1 to :

By computing all and for from 1 to iteratively,
we can get that

Now, we use the same idea in [13] to analyze the computa-
tional complexity. Note that every and can be represented
using bits ( for the numerator and for
the denominator). And we can calculate all of them quickly. To
calculate for , it takes at most
multiplications of numbers with length bits. To calculate
for , it takes multiplications of

numbers with length bits. That is because we can write
as for some integers , , , with length

bits. Similarly, to calculate all and for some , it
takes at most multiplications of numbers with length

bits. As a result, the time complexity of computing
is

which is computable in time. As
a result, for a small constant , is computable in

time.

Based on the discussion above, we know that Algorithm is
computable in time when is a small
constant. However, when is not a constant, this algorithm is
not computationally efficient since its time complexity depends
exponentially on .

VII. NUMERICAL RESULTS

In this section, we describe numerical results related to the
implementations of Algorithm , Algorithm , and Algorithm
. We use the Elias function for .
In the first experiment, we use the following randomly gen-

erated transition matrix for a Markov chain with three states

Consider a sequence of length 12 that is generated by the
Markov chain defined above and assume that is the first

TABLE II
THE PROBABILITY OF EACH POSSIBLE OUTPUT SEQUENCE

AND THE EXPECTED OUTPUT LENGTH

state of this sequence. Namely, there are pos-
sible input sequences. For each possible input sequence, we
can compute its generating probability and the corresponding
output sequences using our three algorithms. Table II presents
the results of calculating the probabilities of all possible output
sequences for the three algorithms. Note that the results show
that indeed the outputs of the algorithms are independent
unbiased sequences. Also, Algorithm has the highest infor-
mation efficiency (it is optimal), and Algorithm has a higher
information efficiency than Algorithm (with window size 4).
In the second calculation, we want to test the influence of

window size (assume for ) on the
efficiency of Algorithm . Since the efficiency depends on the
transition matrix of the Markov chain we decided to evaluate of
the efficiency related to the uniform transition matrix, namely
all the entries are , where is the number of states. We as-
sume that is infinitely large. In this case, the stationary dis-
tribution of the Markov chain is . Fig. 3 shows
that when (Blum’s Algorithm), the limiting efficiencies
for are , respectively. When ,
their corresponding efficiencies are .
So if the input sequence is long enough, by changing from
2 to 15, the efficiency can increase 189% for , 240% for

and 296% for . When is small, we can in-
crease the efficiency of Algorithm significantly by increasing
the window size . When becomes larger, the efficiency of
Algorithm will converge to the information-theoretical upper
bound, namely, . Note that 3 is not a good value for the
window size in the algorithm. That is because the Elias function
is not very efficient when the length of the input sequence is 3.
Let’s consider a biased coin with two states , . If the input
sequence is or , the Elias function will generate
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Fig. 3. The limiting efficiency of Algorithm varies with the value of window size for different state number , where we assume that the transition probability
for all , .

nothing. For all other cases, it has only chance to generate
one bit and chance to generate nothing. As a result, the effi-
ciency is even worse than the efficiency when the length of the
input sequence equals 2.

VIII. CONCLUDING REMARKS

We considered the classical problem of generating indepen-
dent unbiased bits from an arbitrary Markov chain with un-
known transition probabilities. Our main contribution is the first
known algorithm that has expected linear time complexity and
achieves the information-theoretic upper bound on efficiency.
Our work is related to a number of interesting results in both

computer science and information theory. In computer science,
the attention has focused on extracting randomness from a
general weak random source (introduced by Zuckerman [18]).
Hence, the concept of an extractor was introduced—it uses a
small number of truly random bits as the seed (catalyst) for
randomness extraction. During the past two decades, extractors
and their applications have been studied extensively, see [10],
[15] for surveys on the topic. While our algorithms generate
truly random bits (given a prefect Markov chain as a source) the
goal of extractors is to generate random sequences which are
asymptotically close to random bits in the sense of statistical
distance.
In information theory, it was discovered that optimal source

codes can be used as universal random bit generators from ar-
bitrary stationary ergodic random sources [16], [6] (Markov
chains studied in our paper are special cases of stationary er-
godic sources). When the input sequence is generated from a
stationary ergodic process and it is long enough one can obtain
an output sequence that behaves like truly random bits in the

sense of normalized divergence. However, in some cases, the
definition of normalized divergence is not strong enough. For
example, suppose is a sequence of unbiased random bits in
the sense of normalized divergence, and is with a 1
concatenated at the beginning. If the sequence is long enough
the sequence is a sequence of unbiased random bits in the
sense of normalized divergence. However the sequence
might not be useful in applications that are sensitive to the ran-
domness of the first bit.

APPENDIX

In this appendix, we prove the main lemma.

Lemma 4 (Main Lemma: Feasibility and Equivalence of
Exit Sequences): Given a starting state and two collections
of sequences and
such that (tail-fixed permutation) for all .
Then is feasible if and only if is feasible.
In the rest of the appendix we will prove the main lemma.

To illustrate the claim in the lemma, we express and by
a directed graph that has labels on the vertices and edges, we
call this graph a sequence graph. For example, when
and , we have the directed
graph in Fig. 4.
Let denote the vertex set, then

and the edge set is
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Fig. 4. An example of a sequence graph .

For each edge , the label of this edge is . For the edge
, the label is 1. Namely, the label set of the outgoing

edges of each state is .
Given the labeling of the directed graph as defined above, we

say that it contains a complete walk if there is a path in the graph
that visits all the edges, without visiting an edge twice, in the
following way: (1) Start from . (2) At each vertex, we choose
an unvisited edge with the minimal label to follow. Obviously,
the labeling corresponding to is a complete walk if and
only if is feasible. In this case, for short, we also say
that is a complete walk. Before continuing to prove the
main lemma, we first give Lemma 15 and Lemma 16.

Lemma 15: Assume with
is a a complete walk, which

ends at state . Then with
is also a complete walk ending at , if (permutation).

Proof: and correspond to different label-
ings on the same directed graph , denoted by and . Since
is a complete walk, it can travel all the edges in one by

one, denoted as

where and . We call as the
indexes of the edges.
Based on , let’s have a walk on starting from until

there is no unvisited outgoing edges to select. In this walk, as-
sume the following edges have been visited:

where are distinct indexes chosen from
and . In order to prove that is a

complete walk, we need to show that: 1) and 2)
.

Fig. 5. An illustration of the incoming and outgoing edges of . In which, the
solid arrows indicate visited edges, and the dashed arrows indicate unvisited
edges.

First, let’s prove that . In , let denote the

number of outgoing edges of and let denote the number
of incoming edges of , then we have that

Based on these relations, we know that once we have a walk
starting from in , this walk will finally end at state . That
is because we can always get out of due to
if .
Now, we prove that . This can be proved by contra-

diction. Assume , then we define

where corresponds to the visited edges based on and
corresponds to the unvisited edges based on . Let

, then is the unvisited edge with the
minimal index. Let , then is an outgoing edge
of . Here , because all the outgoing edges of have
been visited. Assume the number of visited incoming edges of
is and the number of visited outgoing edges of is

, then

see Fig. 5 as an example.
Note that the labels of the outgoing edges of are the same

for and , since . Therefore, based on , before
visiting edge , there must be outgoing edges
of have been visited. As a result, based on , there must be

incoming edges of have been visited
before visiting . Among all these incoming
edges, there exists at least one edge such that ,
since only incoming edges of have been visited based
on .
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Fig. 6. The sequence graph with new labels.

According to our assumption, both , , and is themin-
imal one, so . On the other hand, we know that
is visited before based on , so . Here, the
contradiction happens. Therefore, .
This completes the proof.

Here, let’s give an example of the lemma above. We know
that, when , ,

is feasible. The labeling on a directed graph
corresponding to is given in Fig. 4, which is a complete
walk starting at state and ending at state . The path of the
walk is

By permutating the labels of the outgoing edges of , we can
have the graph as shown in Fig. 6. The new labeling on is also
a complete walk ending at state , and its path is

Based on Lemma 15, we have the following result.

Lemma 16: Given a starting state and two col-
lections of sequences and

such that (tail-fixed
permutation). Then and have the same feasi-
bility.

Proof: We prove that if is feasible, then is
also feasible. If is feasible, there exists a sequence
such that and . Suppose its last element is

.
When , according to Lemma 15, we know that

is feasible.
When , we assume that

. Let’s consider the subsequence
of . Then and the

last element of is . According to Lemma 15, we can get

that: there exists a sequence with and
such that

since .
Let , i.e., concate-

nating to the end of , we can
generate a sequence such that its exit sequence of
state is

and its exit sequence of state with is .
So if is feasible, then is also feasible. Simi-

larly, if is feasible, then is feasible. As a result,
and have the same feasibility.

According to the lemma above, we know that
and

have the same feasibility,
and have the same fea-
sibility, and

have the same feasibility,
so the statement in the main lemma is true.
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