
Synthesis of Stochastic Flow Networks
Hongchao Zhou, Ho-Lin Chen, and Jehoshua Bruck, Fellow, IEEE

Abstract—A stochastic flow network is a directed graphwith incoming edges (inputs) and outgoing edges (outputs), tokens enter through
the input edges, travel stochastically in the network, and can exit the network through the output edges. Each node in the network is a
splitter, namely, a token can enter a node through an incoming edge and exit on one of the output edges according to a predefined
probability distribution. Stochastic flow networks can be easily implemented by beam splitters, or by DNA-based chemical reactions, with
promising applications in optical computing, molecular computing and stochastic computing. In this paper, we address a fundamental
synthesis question:Given a finite set of possible splitters and an arbitrary rational probability distribution, design a stochastic flownetwork,
such that every token that enters the input edge will exit the outputs with the prescribed probability distribution. The problem of probability
transformation dates back to von Neumann’s 1951work and was followed, among others, by Knuth and Yao in 1976. Most existing works
have been focusing on the “simulation” of target distributions. In this paper, we design optimal-sized stochastic flow networks for
“synthesizing” target distributions. It shows thatwheneachsplitter has twooutgoingedgesand is unbiased, an arbitrary rational probability
with can be realized by a stochastic flownetwork of size that is optimal. Compared to the other stochastic systems, feedback

(cycles in networks) strongly improves the expressibility of stochastic flow networks.

Index Terms—Probabilistic computation, stochastic flow network, random-walk graph, probability transformer

1 INTRODUCTION

THE problem of probability transformation dates back to
von Neumann [10] in 1951, who first considered the

problem of simulating an unbiased coin by using a biased
coin with unknown probability. He observed that when one
focuses on apair of coin tosses, the eventsHT andTHhave the
same probability (H is for ‘head’ and T is for ‘tail’); hence, HT
produces the output symbol 0 and TH produces the output
symbol 1. The other two possible events, namely, HH and TT,
are ignored, namely, they do not produce any output sym-
bols. More efficient algorithms for simulating an unbiased
coin from a biased coin were proposed by Hoeffding and
Simons [7], Elias [3], Stout and Warren [17] and Peres [11]. In
1976, Knuth and Yao [8] presented a simple procedure for
generating sequences with arbitrary probability distributions
from an unbiased coin (the probability of H and T is ). They
showed that the expected number of coin tosses is upper-
bounded by the entropy of the target distribution plus two.
Han and Hoshi [6] and Abrahams [1] generalized their ap-
proach and demonstrated how to generate an arbitrary prob-
ability distribution using a general -sided biased coin. All
these works have been focusing on the “simulation” side of
probability transformation, and their goal is to minimize the

expected number of coin tosses for generating a certain
number of target distributions.

There are a few works that considered the problem of
probability transformation from a synthetic perspective,
namely, designing aphysical system for “synthesizing” target
distributions, by connecting certain probabilistic elements.
Such probabilistic elements can be electrical ones based on
internal thermal noise or molecular ones based on inherent
randomness in chemical reactions. In this scenario, the size of
the construction becomes a central issue. In 1962, Gill [4], [5]
discussed the problem of generating rational probabilities
using a sequential statemachine. Later, Sheng [13] considered
applying threshold logic elements as a discrete probability
transformer. Recently, Wilhelm and Bruck [18] proposed a
procedure for synthesizing stochastic switching circuits to
realize desired discrete probabilities. More properties and
constructions of stochastic switching circuits were studied
by Zhou, Loh and Bruck [9], [19], [20]; Qian et al. [12] studied
combinational logic for transforming a set of given probabili-
ties into target probabilities. Motivated by stochastic comput-
ing based on chemical reaction networks [15], in this paperwe
study stochasticflownetworks. A stochasticflownetwork is a
directed graph with incoming edges (inputs) and outgoing
edges (outputs), tokens enter through the input edges, travel
stochastically in the network and can exit the network
through the output edges. Each node in the network is a
splitter, namely, a token can enter anode throughan incoming
edge and exit on one of the output edges according to a
predefined probability distribution.We address a fundamen-
tal synthesis question: Given a finite set of possible splitters
and an arbitrary rational probability distribution, design an
optimal-sized stochastic flow network, such that every token
that enters the input edge will exit the outputs with the
prescribed probability distribution.

The study of stochastic flow networks has important
applications. In quantum/optical computing, 50 : 50 beam
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splitters are usually provided, an essential problem is to
simulate an arbitrary beam splitter by composing multi-
ple fair beam splitters. The number of fair beam splitters in
participation is expected to be as few as possible for minimiz-
ing device complexity and photon losses. Stochastic flow
networks provide a natural approach of accomplishing this
task, such that any incoming photon, considered as a token,
can exit the resulting beam splitter by following two different
light routes with probability ratio . Another interesting
application of stochastic flow networks is in molecular com-
puting [14] or stochastic computing, where a fundamental
question is how to minimize system complexity in manipu-
lating stochasticity. For example, over 80% of the genes in the
E. coli chromosome are expressed at fewer than a hundred
copies per cell. Observations and computer simulations have
shown that stochastic effects resulting from these small num-
bers may be physiologically significant. In a molecular sys-
tem, wemay translate stochastic flow networks into chemical
reaction networks, where each splitter is translated into a
combination of two molecular species. Incoming tokens (an-
other type of molecules) react with both with a certain prob-
ability ratio. More importantly, the study of stochastic flow
networks provides us new insights in exploring computing
models betterfitting formolecular systems. For instance, ifwe
can control the probabilities of some splitters, then a stochastic
flow network can be interpreted as a circuit of computing
functions on probabilities. In some sense, it is a significant
generalization of the traditional computing approach based
on binary decision trees, from Boolean inputs to continuous
probabilistic inputs, and from loop-free structures to feedback
structures. The study of the computing powers of stochastic
flow networks will be an interesting topic and needs further
efforts. In this paper, we only focus on their powers in
expressing probability distributions.

Compared to the other synthetic stochastic systems, sto-
chastic flow networks demonstrate strong powers in expres-
sing an arbitrary rational target distribution. Fig. 1depicts von
Neumann’s algorithm in the language a stochastic flow net-
work that consists of three -splitters for any and generates
probability . Here, a -splitter indicates a splitter with two
outgoing edges with probabilities and . In this con-
struction, we have two outputs (correspond-
ing to the labels 0 and 1, respectively). For each incoming
token, it has the same probability to reach either output 0 or
output 1 directly, and it has probability to come back
to the starting point. Eventually, the probability for the
token to reach each of the outputs is . In general, the

outputs of a stochastic flow network have labels denoted by
. A token will reach an output

with probability , andwe call the probability of and call
the output probability distribution of the net-

work, where .
In this paperwe assume,without loss of generality, that the

probability of each splitter is ( -splitters can be implemented
using three -splitters for any ). Our goal is to realize the
target probabilities or distributions by constructing a network
of minimum size. In addition, we study the expected latency,
namely the expected number of splitters a token need to pass
before reaching the output (or we call it the expected operat-
ing time).

The main contributions of the paper are
1. General optimal construction: For any desired rational

probability, an optimal-sized construction of stochastic
flow network is provided.

2. The power of feedback: We show that with feedback
(loops), stochastic flow networks can generate signifi-
cantly more probabilities than those without feedback.

3. Constructions with well-bounded expected latency: We give
two constructions whose expected latencies are well-
bounded by constants. As a price, they use a few more
splitters than the optimal-sized one.

4. Constructions for arbitrary rational distributions:We gener-
alize our constructions so that they can realize an arbi-
trary rational probability distribution .

The remainder of this paper is organized as follows. In
Section 2 we introduce some preliminaries including Knuth
and Yao’s scheme and a few mathematical tools for calculat-
ing the distribution of a given stochastic flow network. Sec-
tion 3 introduces an optimal-sized construction of stochastic
flow networks for synthesizing an arbitrary rational proba-
bility, and it demonstrates that feedback significantly en-
hances the expressibility of stochasticflownetworks. Section 4
analyzes the expected latency of the optimal-sized construc-
tion. Section 5 gives two constructions whose expected laten-
cies are upper bounded by constants. Section 6 presents the
generalizations of our results to arbitrary rational probability
distributions. The concluding remarks and the comparison of
different stochastic systems are given in Section 7.

2 PRELIMINARIES

In this section, we introduce some preliminaries, including
Knuth and Yao’s scheme for simulating an arbitrary distribu-
tion from a biased coin, and how using absorbing Markov
chains orMason’Rule to calculate the output distribution of a
given stochastic flow network.

2.1 Knuth and Yao’s Scheme
In 1976, Knuth and Yao proposed a simple procedure for
simulating an arbitrary distribution from an unbiased coin
(the probability of H and T is ) [8]. They introduced a concept
called generating tree for representing the algorithm [2]. The
leaves of the tree are marked by the output symbols, and the
path from the root node to the leaves indicates the sequences
of bits generated by the unbiased coin. Starting from the root
node, the scheme selects edges to follow based on the coin
tosses until it reaches one of the leaves. Then it outputs the
symbol marked on that leaf.

Fig. 1. An instance of stochastic flow network that consists of three
-splitters for any and generates probability .
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In general, we assume that the target distribution is
. Since all the leaves of the tree have probabili-

ties of the form (if the depth of the leaf is ), we split each
probability into atoms of this form. Specifically, let the
binary expansion of the probability be

where or 0. Then for each probability , we get a
groupof atoms . For these atoms,we allot them to
leaves with label on the tree. Hence, the probability of
generating is . We can see that those the atoms satisfy the
Kraft inequality [2], i.e.,

with . Sowe can always construct such a tree with all
the atoms allotted on the leaves of the tree such that is
allotted on a leafwith depth . Knuth andYao showed that the
expectednumber of fair bits requiredby theprocedure (i.e. the
expected depth of the tree) to generate a random variable
with distribution lies between and

where is the entropy of the target
distribution.

Fig. 2 depicts a generating tree that generates a distribution
, where the atoms for are , and the atoms

for are . We see that the construction of gener-
ating trees is, in some sense, a special case of stochastic flow
networks that without cycles. If we consider each node in the
generating tree as a splitter, then each token that enters the
tree from the root node will reach the outputs with the target
distribution.WhileKnuth andYao’s schemeaims tominimize
the expected depth of the tree (or in our framework, we call
it the expected latency of the network), our goal is to optimize
the size of the construction, i.e., the number of nodes in the
network.

2.2 Absorbing Markov Chain
Let’s consider a stochasticflownetworkwith splitters and
outputs, in which each splitter is associated with a state
number in and each output is associated with
a state number in . When a token
reaches splitter with , we say that the current state
of this network is . When it reaches output with ,
we say that the current state of this network is . Note that

the current state of the network only depends on the last state,
and when the token reaches one output it will stay there
forever. So we can describe token flows in this network using
an absorbingMarkov chain. If the current state of the network
is , then theprobability of reaching state at the next instant of
time is given by .Here, ( ) if andonly if state
and state is connected by an edge ( ).
Clearly, the network with splitters and outputs with

different labels can be described by an absorbing Markov
chain,where thefirst states are transient states and the last
states are absorbing states. And we have

>
>

The transition matrix of this Markov chain is given by

where is an matrix, is an matrix, 0 is an
zeros matrix and is an identity matrix.

Let be the probability for an absorbing Markov chain
reaching the state if it starts in the transient state . Then

is an matrix, and

Assume this Markov chain starts from state 1 and let be
theprobability for it reaching the absorbing state . Then
is the distribution of the network

Given a stochastic flow network, we can use the formula
above to calculate its probability distribution. For example,
the transition matrix of the network in Fig. 3 is

From which we can obtain the probability distribution

Fig. 2. The generating tree to generate a distribution.
Fig. 3. The stochastic flow network to generate a distribution.
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2.3 Mason’s Rule
Mason’s gain rule is a method used in control theory to find
the transfer function of a given control system. It can be
applied to any signal flow graph. Generally, we describe it
as follows (see more details about Mason’s rule in [16]):

Let denote the transfer function of a signal flow
graph. Define the following notations:

1. determinant of the graph.
2. number of forward paths, with ,

denoting the forward path gains.
3. determinant of the graph that remains after

deleting the th forward path .
To calculate the determinant of a graph , we list all the

loops in the graph and their gains denoted by , all pairs of
non-touching loops , all pairwise non-touching loops

, and so forth. Then

The transfer function is

called Mason’s rule.
Let’s treat a stochastic flow network as a control system

with input . Applying Mason’s rule to this system,
we can get the probability that one token reaches output
with . Also having the network in Fig. 3 as an
example: In this network, wewant to calculate the probability
for a token to reach output 1 (for short, we call it as the
probability of 1). Since there is only one loopwith gain and
only one forward pathwith forward gain ,we can obtain that
the probability of 1 is

which accords with the result of absorbingMarkov chains. In
fact, it can be proved that the Mason’s rule and the matrix
form based on absorbing Markov chains are equivalent.

3 OPTIMAL-SIZED CONSTRUCTION AND FEEDBACK
In this section we present an optimal-sized construction of
stochastic flow networks. It consists of splitters with proba-
bility 1/2 and computes an arbitrary rational probability. We
demonstrate that feedback (loops) in stochasticflownetworks
significantly enhance their expressibility. To see that, let’sfirst
study stochastic flow networks without loops, and then those
with loops.

3.1 Loop-Free Networks
Here, we want to study the expressive power of loop-free
networks. We say that there are no loops in a network if no
tokens can pass any position in the network more than once.
For loop-free networks, we have the following theorem:

Theorem 1. For a loop-free network with -splitters, any prob-
ability with integer can be realized, and only
probabilities with integer can be realized.

Proof.
a. In order to prove that all probability with integer

canbe realized,weonlyneed toprovide
the constructions of the networks.
1. Construct a tree, as shown in Fig. 4. In this tree

structure, each token will reach with
probability , and reach with probability

.
2. Let , where or 1. For each

with , , we connect to output 0;
otherwise, we connect to output 1. Then we
connect to output 1. Eventually, the probabil-
ity for a token to reach output 0 is

Using the procedure above, we can construct a
network such that its probability is . Actually, it is
a special case of Knuth and Yao’s construction [8].

b. Now, we prove that only probability with integer
can be realized. If this is true, then

with odd cannot be realized with less than split-
ters. It means that in the construction above, the
network size is optimal.

According toMason’s rule, for a networkwithout loops,
the probability for a token reaching one output is

, where is the path gain of a forward path
from the root to the output. Given splitters, the length of
each forward path should be at most . Otherwise, there
must be a loop along this forward path (have to pass the
same splitter for at least two times). For each , can be
written as for some . As a result, we can get that can
be written as for some . ◽

3.2 Networks with Loops
We showed that stochastic flow networks without loops can
only realize binary probabilities. Here,we show that feedback
(loops) plays an important rule in enhancing their expressi-
bility. For example,with feedback,we can realize probability
with only two splitters, as shown in Fig. 3. But without loops,
it is impossible (or requires an infinite number of splitters) to
realize .More generally, for any desired rational probability
with integers , we have the following theorem:

Fig. 4. Tree structure used to realize probability for an integer
.
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Theorem 2. For a network with -splitters, any rational
probability with integers can be realize, and
only rational probabilities with integers can
be realized.

Proof.
a. We prove that all rational probability with integers

can be realized. When , the prob-
lem becomes trivial due to the result of Theorem 1.
In the following proof, without loss of generality
(w.l.o.g), we only consider the case in which <
< for some .
We first show that all probability distributions

with integers s.t. can
be realized with splitters. Now let’s construct the
network iteratively.

When , by enumerating all the possible con-
nections, we can verify that all the following proba-
bility distributions can be realized:

So all the probability distributions with
integers s.t. can be realized.

Assume that all the probability distribution
with integers s.t. can

be realized by a network with splitters, then we
show that any desired probability distribution

s.t. can be realized
with one more splitter. Since , at least
one of is even. W.l.o.g, we let be even. Then
there are two cases to consider: either both and are
even, or both and are odd.

When both and are even, the problem is trivial
since the desired probability distribution can be writ-

ten as , which can be realized by a net-

work with splitters.
When both and are odd, w.l.o.g, we assume that

. In this case, we construct a network to realize

probability distribution with split-

ters. By connecting the last output with probability
to an additional splitter, we can get a new distribution

. If we consider the second and

the third output as a single output, then we can get a
new network in Fig. 5(a), whose probability distribu-
tion is .

Hence, for any probability distribution
with , we can always construct a net-
work with splitters to realize it.

Now, in order to realize probability with
< < for some , we can construct a network

with probability distribution with
splitters and connect the last output (output 2) to the
starting point of the network, as shown in Fig. 5(b).
Using themethodof absorbingMarkov chains,we can
obtain that the probability for a token to reach output 0

is . A simple understanding for this result is that:
(1) the ratio of the probabilities for a token to reach the
first output and the second output is that equals

(2) the sum of these two probabilities is 1,
since the tokens will finally reach one of the two
outputs.

b. Now we prove that with splitters, only rational
probability with integers can be real-
ized. For any flow network with splitters, it can be
described as an absorbing Markov chain with tran-
sient states and 2 absorbing states, whose transition
matrix can be written as

where each row consists of two entries and zeros.
Let

then the probability distribution of the network can be
written as

In order to prove the result in the theorem, we only
need to prove that can be written as
with , where is an integer matrix (all the
entries in are integers).

Fig. 5. (a) The network to realize iteratively. (b) The
network to realize .
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Let , we know that is invertible if and
only if . In this case, we have

where is defined as the determinant of the square
matrix of order obtained from by removing
the row and the column multiplied by .

Since each entry of is chosen from ,
can be written as for some integer and
can be written as for some integer . In the supple-
mental material (Appendix A, which can be found in
the Computer Society Digital Library at https://doi.
ieeecomputersociety.org/10.1109/270), we prove the
following lemma.

Lemma 1. Given an matrix with each entry in ,
where the sum of each row is at most 1, we have

, where is an identity matrix and
is the determinant of a matrix.

It shows that , which leads us to <
(note that ).

Then, we have that

Since each entry of is also in , we know that

is an integer matrix.
As a result

where each entry of is an integer. So all the probabilities in
the final distribution are of the form .

This completes the proof. ◽

Based on the method in the theorem above, we can realize
any arbitrary rational probability with an optimal-sized net-
work. The construction has two steps:

1. Construct a network with output distribution
iteratively using at most splitters.

2. Connect the last output to the starting point, such that
the distribution of the resulting network is .

When for some , the construction above is exactly
the generating tree construction in the Knuth and Yao’s
scheme as described in Section 2. Now, assume we want to
realize probability . We can first generate a probability
distribution , which can be realized by adding one
splitter to a network with probability distribution

Recursively, we can have the following proba-
bility distributions:

As a result, we get a network to generate probability
distribution , as shown in Fig. 6(a), where only
5 splitters are used. Connecting the last output to the starting
point results in the network in Fig. 6(b) with probability .

Fig. 6. (a)Thenetwork to realizeprobabilitydistribution . (b)The
network to realize probability .
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Comparing the results in Theorem 2with those in Theorem 1,
we see that introducing loops into networks can strongly
enhance their expressibility.

4 EXPECTEDLATENCYOFOPTIMALCONSTRUCTION

Besides network size, anther important issue of a stochastic
flow network is the expected operating time, or we call it
expected latency, definedas the expectednumber of splitters a
token need to pass before reaching one of the outputs. For the
optimal-sized construction proposed in the above section, we
have the following results about its expected latency.

Theorem 3. Given a network with rational probability with
constructed using the optimal-sized construction, its

expected latency is upper bounded by1

<

Proof. For the optimal-sized construction, we first prove that
the expected latency of the network with distribution

is bounded by .
Let’s prove this by induction. When or , it is

easy to see that this conclusion is true.Assumewhen ,
this conclusion is true,wewant to show that the conclusion
still holds for . Note that in the optimal-sized
construction, a network with size can be constructed
by adding two more splitters to a network with size . Let

denote the latency of the network with size , then

where is the probability for a token to reach the first
additional splitter and is the probability for a token to
reach the second additional splitter. Assume the distribu-
tion of the networkwith size is .Without loss of
generality, we add the first splitter to and connect one of
the splitter’s output to . As a result, the distribution of the
new network is . Then

s.t.

It leads to

So the conclusion is true for . By induction, we
know that it holds for all .

Secondly, we prove that if the expected latency of the
network with distribution is , then by con-
necting its last output to its starting point, we can get a
network such that its expected latency is . This
conclusion can be obtained immediately from

This completes the proof. ◽

Theorem 4. There exists a network of size constructed using the
optimal-sized construction such that its expected latency is
lower bounded by

Proof. Weonly need to construct a networkwith distribution
for some integers such that its expected

latency is lower bounded by .
Let’s construct such a network in the following way:

Starting from a network with single splitter, and at each
step adding one more splitter. Assume the current distri-
bution is with (if this is not true,we
can change the order of the outputs), then we can add an
additional splitter to as shown in Fig. 7. Iteratively, with
splitters, we can construct a network with distribution

for some integers and its expected latency
is more than .

By connecting one output with probability smaller than
to the starting point, we can get such a network. ◽

The theorems above show that the upper bound of the
expected latency of a stochastic flow network based on the
optimal-sized construction is not well-bounded. However,
this upper bound only reflects the worst case. That does not
mean that the optimal-sized construction always has a bad
performance in expected latency when the network size is
large. Let’s consider the case that the target probability is
with for some . In this case, the optimal-sized con-
struction leads to a tree structure, whose expected latency can
be written as

Substituting with leads us to

which is well-bounded by 2.

5 ALTERNATIVE CONSTRUCTIONS

In the last section, we show that the expected latency of a
stochastic flow network based on the optimal-sized

Fig. 7. Illustration for the construction of a network with unbounded
expected latency. Here, we have .

1. By making the construction more sophisticated, we can reduce the
upper bound to .
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construction is not always well-bounded. In this section, we
give two other constructions, called size-relaxed construction
and latency-oriented construction. They take both the net-
work size and the expected latency in consideration. Table 1
shows the summary of the results in this section, from which
wecan see that there is a tradeoff between theupper-boundon
the network size and the upper-bound on the expected
latency.

5.1 Size-Relaxed Construction
Assume that the desired probability is with < for
some . In this subsection, we give a construction, called size-
relaxed construction for realizing , with at most split-
ters and its expected latency is well-bounded by a constant.

Assume and are relatively prime, and let . Then
and can be represented as binary expansions, namely

Let’s start from the structure in Fig. 8,where theprobability
of with is and the probability of is .
We connect with to one of { and
output 2}, such that the probability distribution of the outputs

is . Based on the values of with

(from binary expansions of and ), we have the
following rules for these connections:

1. If , connect with .
2. If , connect with .
3. If , connect with .
4. If , connect with output 2.
5. Connect with output 2.
Assume that the probability for a token to reach with

is , then we have

where if and only if is true, otherwise .

As a result, the probability for a token to reach the first
output is

Similarly, the probability for a token to reach the second
output is

So far, we get that the distribution of the network is

. Similar as Theorem 2, by connecting the

output 2 to the starting point, we get a new network with
probability . Note that compared to the optimal-sized con-
struction, 3 more splitters are used in the size-relaxed con-
struction to realize the desired probability. But it has a much
better upper bound on the expected latency as shown in the
following theorem.

Theorem 5. Given a network with probability ( < < )
constructed using the size-relaxed construction, its expected
latency is bounded by

<

Proof. First, without the feedback, the expected latency for a
token to reach or output 2 is less than 2. This can
beobtained from the example in the last section.As a result,

TABLE 1
The Comparison of Different Construction, Here <

Fig. 8. The framework to realize probability .
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without the feedback, the expected latency for a token to
reach one of the outputs is less than 3. Finally, we can get
the theorem. ◽

Let’s give an example of the size-relaxed construction.
Assume the desired probability is , then we can write
and into binary expansions:

According to the rules above, we connect to , to
output 2, After connecting output 2 to the starting point,
we can get a network with probability , as shown
in Fig. 9.

Another advantage of the size-relaxed construction is that
from which we can build an Universal Probability Generator
(UPG) efficiently with as inputs, such that its
probability output is . The definition and description of
UPG can be found in [18]. Instead of connecting with

to oneof { andoutput 2} directly,we insert
a deterministic device as shown in Fig. 10. At each node of this
device, if its corresponding input is 1, all the incoming tokens
will exit the left outgoing edge. If the input is 0, all the
incoming tokens will exit the right outgoing edge. As a result,
the connections between and { , , ,Output 2} are
automatically controlled by inputs and with .
Finally,we can get anUniversal Probability Generator (UPG),
whose output probability is

5.2 Latency-Oriented Construction
In this subsection, we propose another construction, called
latency-orient construction. It uses more splitters than the

size-relaxed construction, but achieves a better upper bound
on the expected latency. Similar to the optimal-sized con-
struction, this construction is first trying to realize the distri-
bution , and then connecting the last output to
the starting point. Thedifference is that in the latency-oriented
construction, this distribution is realized by
applying Knuth and Yao’s scheme [8] that was introduced
in the section of preliminaries.

Let’s go back to the example of realizing probability .
According to Knuth and Yao’s scheme, we need first find the
atoms for the binary expansions of , i.e.

Then we allot these atoms to a binary tree, as shown in
Fig. 11. In this tree, the probability for a token to reach outputs
labeled 0 is , the probability for a token to reach
outputs labeled 1 is , and the probability for a token to reach
outputs labeled 2 is . If we connect the outputs labeled 2 to
the starting point, the desired probability can be achieved.

Theorem 6. Given a network with probability ( < < )
constructed the latency-oriented construction, its network size is
bounded by and its expected latency is bounded by

<

Fig. 9. The network to realize probability .

Fig. 10. The deterministic device to control flow in UPG.

Fig. 11. The network to realize probability distribution using
Knuth and Yao’s scheme.
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Proof. Let’s first consider the network with distribution
, which is constructed using Knuth and

Yao’s scheme.
1. The network size is bounded by . To prove this,

let’s use to denote the number of atomswith value ,
and use to denote the number of nodeswith depth in
the tree. Then and have the following recursive
relations,

As a result,

From which, we can get the total number of atoms in
the tree is

We know that and also satisfy the following
constraints,

From to , by induction, we can prove that

That is because is even, and if , then

Since , we can get that

To create atoms, we need
splitters.

2. The expected latency of the network with distribu-
tion is bounded by . That
is because the expected latency is equal to
the expected number of fair bits required. According to
the result of Knuth and Yao, it is not hard to get this
conclusion.
Now we can get a new network by connecting the last

output to the starting point. The size of the network is

unchanged and the expected latency of the new network is
. So we can get the results in the theorem. ◽

6 GENERATING RATIONAL DISTRIBUTIONS

In this section,wewant togeneralize our results togenerate an
arbitrary rational probabilitydistribution with

. Two different methods will be proposed and studied.
The first method is based onKnuth and Yao’s scheme and it is
a direct generalization of the latency-oriented construction.
The second method is based on a construction with a binary-
tree structure. At each inner node of the binary tree, one
probability is split into two probabilities. As a result, using
a binary-tree structure, the probability one can be split into
probabilities (as a distribution) marked on all the leaves. In
the rest of this section, we will discuss and analyze these two
methods. Sincewe consider rational probability distributions,
we can write as with integers

and minimized.

6.1 Based on Knuth and Yao’s Scheme
In order to generate distribution with

< for some , we can first construct a network
with distribution using Knuth and Yao’s
scheme. Then by connecting the last output to the starting
point, we can obtain a network with distribution

. In order to study the properties of this meth-
od, we will analyze two extreme cases: (1) and
(2) .

When , the target probability distribution can be
written as . For this distribution, we have the
following theorem about the network constructed using the
method based on Knuth and Yao’s scheme.

Theorem 7. For a distribution , the method based on
Knuth and Yao’s scheme can construct a network with

splitters. Here, we assume
and .

Proof. See the network in Fig. 12 as an example of the
construction.

First, let’s consider a complete tree with depth . The
network size of such a tree (i.e. the number of parent nodes)
is , denoted by .

Let be the network size of the construction above to
realize distribution . Assume

Fig. 12. The network to realize probability distribution .
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with > > > > is a binary expansion of ,
then we can get the difference between the size of the
construction and the size of the complete binary tree

So the network size of the construction is

where . ◽

Let be the optimal size of a network that realizes the
distribution . It is easy to see that .
Note that is at most the number of bits in the binary
expansion of (which is smaller than ), sowe can get the
following inequality quickly

It shows that the construction based on Knuth and Yao’s
scheme is near-optimal when . More generally, we
believe that when is large, this construction has a good
performance in network size.

For a general , we have the following results regarding
the network size and expected latency.

Theorem 8. For a distribution with , the
method based on Knuth and Yao’s scheme can construct a
network with at most splitters, such
that its expected latency is bounded by

where < . is the entropy of the distribution
.

Proof. We can use the same argument as that in Theorem 6.
Theproof for the expected latency is straightforward.Here,
we only briefly describe the proof for the network size,
which equals the total number of atoms in the tree minus
one.

In the network that realizes , let’s
use to denote the number of atoms with value , and
use to denote the number of nodes with depth in the
tree. It can be proved that the total number of atoms in the
tree is

since the total number of atoms is equal to the total number
of inner nodes plus 1.

Here, the constraints are

Recursively, we can get that for all ,

For the first levels, i.e., , we have

Hence,

So we can conclude that splitters
are enough for realizing as well as

. ◽

This theorem is a simple generalization of the results in
Theorem6.Here, the upper bound for the network size is tight
only for small .

6.2 Based on Binary-Tree Structure
In this subsection, we propose another method to generate an
arbitrary rational distribution . The idea of this
method is based on binary-tree structure.We can describe the
method in the followingway:We construct a binary tree with

leaves,where theweight of the th leaf is .
For each parent (inner) node, its weight is sum of the weights
of its two children. Recursively, we can get all the weights of
the inner nodes in the tree and theweight of the root node is 1.
For each parent node, assume the weights of its two children
are and , then we can replace this parent node by a
subnetwork which implements a splitter with probability

distribution . For each leaf, we treat it as an

output. In this new network, a token will reach the output
with probability .

For example, in order to realize the distribution ,
we can first generate a binary-tree with 4 leaves, as shown in
Fig. 13(a). Then according to themethod above,we can obtain
the weight of each node in this binary tree, see Fig. 13(b).
Based on these weights, we replace the three parent nodes
with three subnetworks, whose probability distributions are

. Eventually, we construct a network with
the desired distribution as shown in Fig. 13(c). It can be
implemented with splitters.

In the procedure above, any binary-tree with leaves
works.Among all these binary-trees,we need tofindone such
that the resulting network satisfies our requirements in net-
work size and expected latency. For example, given the target
distribution , the binary tree depicted above does
not result in an optimal-sized construction. When is ex-
tremely small, such as 3, 4, we can search all the binary-trees
with leaves. However, when is a little larger, such as 10,
the number of such binary-trees grows exponentially. In this
case, themethod of brute-force search becomes impractical. In
the rest of this section, we will show that Huffman procedure
can create a binary-tree with good performances in network
size and expected latency for most of the cases.
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Huffman procedure can be described as follows [2]:
1. Draw nodes with weights .
2. Let denote the set of nodes without parents. Assume

node and node are the two nodes with the minimal
weights in , then we added a new node as the parent of

and , with weight , where is the
weight of node .

3. Repeat 2 until the size of is 1.
Fig. 14 shows an example of a binary-tree constructed by

Huffman procedure, when the desired distribution is
. From [2], we know that using

Huffman procedure, we can create a tree with minimal ex-
pected path length. Let denote this minimal expected
path length, then its satisfies the following inequality,

where is the entropy of the desired probability distri-
bution .

Let denote theweight of the parent node in the binary
tree. In order to simplify our analysis, we assume that this
parent node can be replaced by a subnetwork with about

splitters. This simplification is reasonable from the
statistical perspective and according to the results about our
constructions for realizing rational probabilities in the sec-
tions above. Then the size of the resulting network is approxi-
mately . The following lemma shows that
when is small, Huffman procedure can create a binary-tree
that minimizes .

Lemma 2. Given a desired probability distribution
and < , Huffman procedure can construct a binary-tree
such that
1. It has leaves with weight .
2. is minimized, where is the weight of

parent node in a binary tree with leaves.

The proof of this lemma is given in the supplemental
material (Appendix A, available online). As a result, among
all the binary-trees with leaves, when is small, the one
constructed based on Huffman procedure has an optimal
network size – however, it is only true based on our assump-
tion. For example, let’s consider a desired distribution

with for some set . In this case,
the binary-tree structure based on Huffman procedure may
not be the best one.

Nowwe can get the following conclusion about stochastic
flownetworks constructedusing themethodbasedonbinary-
tree structures.

Theorem 9. For a distribution with , the
method based on binary-tree structures constructs a network
with at most splitters. If the binary tree is constructed
using Huffman procedure, then the expected latency of the
resulting network, namely , is upper bounded by

where is the entropy of the target distribution and
is themaximum expected latency of the inner nodes in the binary-
tree.

Proof.
1. According to the optimal-sized construction, each inner

node can be implemented using at most splitters.
2. The upper bound on the expected latency is immediate

following the result that the expected path length
. ◽

6.3 Comparison
Let’s have a brief comparison between the method based on
Knuth andYao’s scheme and themethodbasedonbinary-tree
structure. Generally, when is large, the method based
Knuth and Yao’s scheme may perform better. When is
small, the comparison between these twomethods is given in
Table 2, where the desired distribution is with

< . In this table, we assume that the binary tree (in
the secondmethod) is constructed usingHuffman procedure.

denotes the maximum expected latency of the parent
nodes in agivenbinary-tree. It is still hard to say that oneof the
two methods has an absolutely better performance than the
other one, no matter in network size or expected latency. In
fact, the performance of a construction is usually related with
the number structure of the target distribution. In practice, we

Fig. 14. The tree constructed using Huffman procedure when the desired
distribution is .

Fig. 13. (a) A binary-treewith 4 leaves. (b)Nodeweights in the binary tree.
(c) The network to realize probability distribution , where

can be realized using the methods in the sections above.
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can compare both of the constructions based on real values
and choose the better one.

7 CONCLUDING REMARKS

Motivated by computing based on chemical reaction net-
works,we introduced the concept of stochastic flownetworks
and studied the synthesis of optimal-sized networks for
realizing rational probabilities. We also studied the expected
latency of stochastic flow networks, namely, the expected
number of splitters a token need to pass before reaching the
output. Two constructions with well-bounded expected la-
tency are proposed. Finally, we generalize our constructions
to realize arbitrary rational probability distributions. Besides
of network size and expected latency, robustness is also an
important issue in stochastic flow networks. Assume the
probability error of each splitter is bounded by a constant
, the robustness of a given network can be measured by the
total probability error. It canbe shown thatmost constructions
in this paper are robust against small errors in the splitters.

To end this paper, we compare a few types of stochastic
systems of the same size in Table 3. Herewe assume that the
basic probabilistic elements in these systems have probability
1/2andwewantuse themto synthesize the otherprobabilities.
To fairly compare different systems, we remove threshold
logic circuits from the list, since their complexity is difficult to
analyze. From this table, we see that stochastic flow networks
have excellent performances in both expressibility and oper-
ating time. Futureworkswill include the synthesis of stochas-
tic flow network to ‘approximate’ desired probabilities or
distributions, and the study of the scenario that the probabili-
ty of each splitter is not .
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