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Network Information Theoretic Security With
Omnipresent Eavesdropping

Hongchao Zhou , Member, IEEE, and Abbas El Gamal , Life Fellow, IEEE

Abstract— Shannon showed that to achieve perfect secrecy in
point-to-point communication, the message rate cannot exceed
the shared secret key rate giving rise to the simple one-time
pad encryption scheme. In this paper, we extend this work from
point-to-point to networks. We consider a connected network
with pairwise communication between the nodes and assume
that each node is provided with a certain amount of secret
bits before communication commences. An eavesdropper with
unlimited computing power has access to all communication and
can hack a subset of the nodes not known to the rest of the
nodes. We investigate the limits on information-theoretic secure
communication with end-to-end encryption for this network.
We establish a tradeoff between the secure channel rate (for
a node pair) and the secure network rate (sum over all node
pair rates) and show that information-theoretic secrecy can be
achieved asymptotically if and only if the sum rate of any subset
of unhacked channels does not exceed the shared unhacked-
secret-bit rate of these channels. We also propose a practical
scheme that achieves a good balance of network and channel
rates with information-theoretic secrecy guarantee. This work
has a wide range of potential applications for which strong
secrecy is desired, such as cyber-physical systems, distributed-
control systems, and ad-hoc networks.

Index Terms— Network information theoretic security, all com-
munication eavesdropped, network capacity.

I. INTRODUCTION

THE information-theoretic security introduced by Shan-
non [1] and widely accepted as the strictest notation

of security, is becoming increasingly attractive for many
cyber-physical systems, distributed-control systems, wireless
ad-hoc networks, among other applications. Secure net-
work coding [2] has been well studied to guarantee the
information-theoretic security when a subset of channels are
wiretapped [3], [4] or in the presence of Byzantine adver-
saries [5], [6]. In this paper, we make a stronger assump-
tion: all the channels are eavesdropped and some nodes are
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hacked without knowledge of the rest of the nodes. This
assumption is realistic for example in wireless networks in
which an eavesdropper can sense the transmitted signals,
or as another example, some network nodes communicate
via an insecure public network. Under this assumption, pure
network-coding approaches cannot work without the help
of common randomness shared among the network nodes.
Physical layer security [7]–[11] can be used to distribute secret
keys among network nodes, however, the channel advantage
required by the receivers over any eavesdropper is not easy
to guarantee in a wireless network. In some scenarios, it is
allowed to pre-distribute a very large number of secret bits
to network nodes to support future secure communication,
which also becomes realistic with the development of data-
storage technology, which enables each node to carry enough
secret bits. For instance, in some applications of mobile
ad-hoc networks one may pre-distribute secret bits to network
nodes at the same location before the network starts to work.
In this paper, we are interested in a fundamental problem: if
every node in the network is allowed to carry a certain large
number of secret bits, how much information can be securely
transmitted over the network with end-to-end encryption under
the information-theoretic security criterion?

We consider a connected network of n nodes, with each car-
rying up to l � n secret bits and at most t ≤ n−2 nodes being
hacked without knowledge of the other nodes. We assume
pairwise communication with end-to-end encryption, that is
each sender node encrypts its message using a secret key
generated from the common randomness shared with the
intended receiver node and only the receiver can decrypt it
using the same key. A secure network-communication scheme
includes two phases - the key pre-distribution phase and
the communication phase. Through the process of key pre-
distribution, each node gets a sequence of at most l secret
bits, which are correlated among the network nodes (a special
case is that each secret bit is distributed to multiple network
nodes). If a node is hacked, all its secret bits will be leaked to
eavesdroppers. When two nodes communicate to each other,
they would like to utilize their common randomness to realize
secure communication, but the problem is that this common
randomness may not be secure as some bits might be hacked
and some bits might have been used for communication before.
Information reconciliation [12], [13], allowing two nodes with
correlated random sequences to agree on a common shared
string, and privacy amplification [14]–[17], distilling a secret
key from a common shared string that is partially known by
an eavesdropper, have been studied to solve the problem. With
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these techniques, the two communication nodes can generate a
secure secret key from correlated random sequences and then
use the one-time pad encryption to transmit a message. As only
the destination node can decrypt the transmitted message,
such an end-to-end encryption can tolerate not only passive
eavesdropping of the transmitted ciphertext but also active
attacking from any relay node. With end-to-end encryption,
it is impossible for any hacked node to modify a transmitted
message or pretend to be another node sending messages,
unless the attacker can derive all the common randomness
shared between the source and the destination. As the total
length of the messages to be transmitted over a channel (i.e.,
between two terminal nodes) cannot exceed the secret-bit
length l of each node, we define their ratio as the channel
rate, and the sum rate of all the channels as the network rate.

The secure-communication limit of a network depends on
the secret bits distributed and the method of utilizing them to
deliver information. As an example, consider a network with
n = 4 nodes and t = 1 nodes being hacked. A straightforward
way to pre-distribute the secret bits is to assign each pair
of nodes l/3 common secret bits as the secret key which
they can use with the one-time pad scheme. In this case,
the messages are secure if and only if the rate of each channel
does not exceed 1/3. As the network size n increases, this
approach can only reach channel rate of at most 1/(n − 1),
limiting its applications for large networks. An alternative way
to reallocate the secret bits in the 4-node example is to assign
every three nodes l/3 common secret bits, and hence there are
four sequences of secret bits denoted by u123,u124, . . . , where
u123 is the secret bits distributed to nodes 1, 2, 3. When two
nodes say nodes 1 and 2 communicate to each other, they
use u123 + u124 as the secret key. In this case, no matter
whether node 3 or node 4 is hacked, the messages are secure
as long as the channel rate between node 1 and 2 does not
exceed 1/3. Compared to the former method, it can be proved
that for a larger network of size n, by allowing each secret
bit to be distributed to multiple nodes instead of only two
nodes, the maximum channel rate (channel capacity) can be
improved to more than 1/4 from 1/(n− 1). Our scheme can
be regarded as another application of linear network coding.
By utilizing the secret bits shared by multiple channels, higher
communication rates with information-theoretic secrecy can be
achieved.

We address several basic questions about our network
setting: (1) What is the limit on the network rate and the
channel rate for secure communication if the future network
communication load is unknown? (2) Given an arbitrary dis-
tribution on the secret bits, how can we determine the security
of a network with given channel rates? And (3) how to design
a practical network-communication scheme that has both high
network rate and high channel rate?

The rest of this paper is organized as follows. Section II
provides the formulation and definitions of the prob-
lem for network communication with information theoretic
security. Section III summaries some asymptotic results.
Section IV introduces and investigates a practical and efficient
key-distribution method named the combinational key distri-
bution, and Section V studies secure network communication

with asymptotically optimal privacy amplification, followed by
simplified security criteria discussed in Section VI. Section VII
further discusses the network security beyond the information
theoretic limit, the application of network coding, and some
open questions. The proofs of the main results are given in
Section VIII.

II. DEFINITIONS

We consider a network consisting of a set of nodes N =
{1, 2, . . . , n}, where every two nodes can find a path (channel)
connecting them. We refer each pair of nodes as a channel, and
use P = {(i, j)|i ∈ N, j ∈ N, i < j} to denote the set of all
the channels. Every two nodes of a channel communicate with
end-to-end encryption: they generate a secret key from their
common randomness, encrypt the message with the one-time
pad scheme, and then transmit the ciphertext through a path
from the source to the destination.

It is assumed that all the channels are wiretaped and up to
t ≤ n−2 nodes could be hacked by an eavesdropper. Namely,
every ciphertext transmitted over the network is possible to
be known by eavesdroppers, and if a node is hacked all its
secret bits are revealed to the eavesdropper. Each node in the
network is able to store up to l � n secret bits. To guarantee
the network security, the total message length mij of a channel
(i, j) ∈ P cannot exceed l. We call the number of message
bits transmitted through a channel (i, j) per a node’s secret
bit as the channel rate rij , and the sum of the channel rates
as the network rate r. Mathematically,

rij =
mij

l
, r =

∑
(i,j)∈P

rij . (1)

We use Nh ⊂ N with |Nh| ≤ t to denote the set of hacked
nodes, and use Ns = N/Nh to denote the set of unhacked
secure nodes. As a channel is insecure if one of its terminals
is hacked, our goal is to protect those channels between secure
nodes, denoted by Ps. Note that if t ≥ n− 1, it has |Ps| = 0,
and in this case no message bits can be securely transmitted
between any two nodes. In this paper, we assume that t ≤ n−2
by default. As Ps is assumed unknown, the network rate is
defined above as the sum of the channel rates over all the
channels instead of only the secure channels.

A secure network-communication scheme consists of two
phases. In the key pre-distribution phase, the scheme generates
n sequences of secret bits, denoted by u1,u2, . . . ,un ∈
{0, 1}li with li ≤ l, distributed to nodes 1, 2, . . . , n respec-
tively. To support secure communication between two nodes,
it requires the sequences of the two nodes having sufficient
common randomness, measured by the mutual information of
the two sequences. One example of key pre-distribution is to
assign a pool of independent and unbiased truly random bits to
the network nodes, with each bit possibly assigned to multiple
nodes. In the communication phase, we let xij ∈ {0, 1}mij be
the message transmitted in channel (i, j) with i < j, and the
corresponding ciphertext is yij with

yij = xij
⊕

sij ,

where sij is the secret key generated from the common ran-
domness between node i and j. Note that sending the message
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from node i to j is equivalent to sending it from node j to
i without affecting the network security, as they result in the
same ciphertext, and hence the communication is considered
undirected. For simplicity, we assume there is a single message
transmitted in each channel. If there are multiple messages
transmitted in a channel one can concatenate them as a single
one, and this does not change the security of the network.

A secure communication scheme ψ defines how to
pre-distribute secret bits to the network nodes and how to
extract secret keys for end-to-end encryption from the com-
mon randomness of any two nodes. A secure communica-
tion scheme ψ should be able to work with any specified
parameters (n, t, l) with n the network size, t the maximum
number of hacked nodes and l the maximum number of secret
bits distributed to each node. If the communication demand,
i.e. the message lengths m = {mij}, are known during the
key pre-distribute phase, the problem of designing a good
scheme is trivial: a best way is to assign mij secret bits to
the terminals of each channel (i, j), which then communicate
with the one-time pad encryption. In this paper, it is assumed
that the communication demand is unknown in advance, espe-
cially during the key pre-distribution phase, and it is desired
to design schemes that can support a variety of real-time
communication demands.

According to the assumption of the attack model, all the
transmitted ciphertexts y = {yij |(i, j) ∈ P}, the hacked secret
bits uh = ∪j∈Nhuj and the secure communication scheme ψ
are known to the eavesdropper. Let xs = {xij |(i, j) ∈ Ps}
be the set of all the messages transmitted among unhacked
nodes. Given a secure communication scheme ψ with end-to-
end encryption, the information-theoretic security of a network
with parameters (n, t, l) is measured by the maximum amount
of information that can be possibly leaked to an eavesdropper.
This security depends on the message lengths m = {mij}, not
necessarily their exact values or which of the two terminals
is the source. As m = r · l with the channel rates r = {rij},
we write the security (leaked information normalized by l) as

Iψ(n, t, l, r) =
maxNh,xs I[xs;y,uh]

l
(2)

where the maximum is over all possible combinations of
hacked nodes and distributions of the messages. Our interests
focus on the case of l � n, as the development of data-storage
technology makes it more realistic and attractive to carry a
large number of secret bits in network nodes. In particular,
this paper studies some asymptotic results of the network
information-theoretic security with l → ∞ as a theoretical
approximation.

Definition 1: Given a network of n nodes with at most t ≤
n − 2 nodes being hacked, the channel rates r = {rij} are
achievable (asymptotically) if and only if when l → ∞, there
exits a scheme ψ with end-to-end encryption such that

Iψ(n, t, l, r) = 0,

i.e., when the maximum number of secret bits l of each node
is sufficiently large, the amount of leaked information can be
arbitrarily close to zero. We call the set of achievable rates

using a scheme ψ as the security region of the scheme, denoted
by R(n, t, ψ).

Usually, it is not easy to express R(n, t, ψ) explicitly.
To characterize the security region R(n, t, ψ), we introduce
two metrics - the maximum channel rate and the maximum
network rate, reflecting the maximal amount of information
that can be securely communicated through a single channel or
over the entire network asymptotically. It is desired to design
schemes with relatively high maximum network rate and high
maximum channel rate.

Definition 2: Given a network of n nodes with at most
t ≤ n − 2 nodes being hacked, the maximum channel rate
of channel (i, j) with a scheme ψ is defined as the supremum
of rij over all the achievable channel rates. The maximum
channel rate of a scheme ψ is the minimum of the maximum
channel rates over all the channels, denoted by

Rchannel(n, t, ψ) = min
(i,j)∈P

sup
{rij}∈R(n,t,ψ)

rij .

The minimum is taken over all the channels, due to the
assumption that the communication load is not known in
advance.

Definition 3: Given a network of n nodes with at most t ≤
n − 2 nodes being hacked, the maximum network rate of a
scheme ψ is the supremum of all the achievable network rates
of the scheme, denoted by

Rnet(n, t, ψ) = sup
{rij}∈R(n,t,ψ)

∑
(i,j)∈P

rij .

To investigate the communication limit, we define the
channel capacity and the network capacity of a network as the
maximum over all the maximum channel rates and maximum
network rates of any scheme with end-to-end encryption.

Definition 4: Given a network of n nodes with at most t ≤
n−2 nodes being hacked, the channel capacity of the network
is the maximum over all the maximum channel rates of any
scheme with end-to-end encryption

Cchannel(n, t) = max
ψ

Rchannel(n, t, ψ),

and the network capacity of the network is the maximum over
all the maximum network rates of any scheme with end-to-end
encryption

Cnet(n, t) = max
ψ

Rnet(n, t, ψ).

III. ASYMPTOTIC RESULTS

This section summaries some main asymptotic results when
l → ∞ and provides an overview of network secure-
communication schemes.

From its definition, the maximum channel rate of a scheme
is at most 1. But this upper bound cannot be reached when the
maximum number of hacked nodes t > 0. The following two
theorems study the network capacity and the channel capacity
of a general network of n nodes with at most t ≤ n − 2
nodes being hacked. The proofs are given in Section VIII-A
and Section VIII-B. In this result of Theorem 1, the network
capacity is independent of t, partially because the network rate
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is the sum rate of all the channels, not only those in Ps (as Ps

is unknown to the network). From the result of Theorem 2,
a network with n = 4 and t = 1 has channel capacity of 1/3.
Interestingly, if we further increase the size of the network to
5, the channel capacity is still 1/3.

Theorem 1: Given a network of n nodes with at most t ≤
n− 2 nodes being hacked, its network capacity is

Cnet(n, t) =
n

2
.

Theorem 2: Given a network of n nodes with at most t ≤
n− 2 nodes being hacked, its channel capacity is

Cchannel(n, t) =

(
n−t−2
a−2

)
(
n−1
a−1

)
with a = 
 n

t+1� the minimal integer larger than or equal to
n
t+1 .

Among all the ways of key pre-distribution, we are particu-
larly interested in those that assign a pool of independent and
unbiased truly random bits to the network nodes, for which
any two secret bits from two different nodes are either identical
or independent. We call them random-bit assignments. In this
case, no information reconciliation is necessary for two nodes
to agree on a common random sequence (the process of
information reconciliation costs extra secret-bit resources). For
a network with assigned random bits, let ui be the sequence
of random bits assigned to node i with i ∈ N, and let uij be
the sequence of common random bits shared by both node i
and j. The secret key sij between node i and j is generated
with a privacy-amplification method h such that

sij = h(uij),

which is then used for one-time pad encryption.
The following result shows that there is a certain tradeoff

between the maximum network rate and the maximum channel
rate of a scheme that assigns random bits to the network nodes
when t = 0, implying that one may sacrifice the maximum
network rate to gain a better maximum channel rate, and vice
versa. The proof is provided in Section VIII-C.

Theorem 3: Given a network of n nodes without any nodes
being hacked, for any scheme ψ based on random-bit assign-
ment, it satisfies

Rnet(n, 0, ψ)
2

n+ 1
+ Rchannel(n, 0, ψ)

n− 1
n+ 1

≤ 1. (3)

For any 1 ≤ Rnet ≤ n
2 , the equality is achievable by a

scheme.
Given a scheme, it is crucial to determine whether

a network with current channel rates r = {rij} is
information-theoretically secure or not. When the channel
rates reach the limit, it may need to terminate the network
communication for guaranteeing information-theoretic secrecy.
Mathematically, we need a method to check whether r ∈
R(n, t, ψ) for a scheme ψ. The difficulty arises from the fact
that different channels may share some common secret bits,
hence “interfere” with each other. Furthermore, it is easy to
derive the accurate security region of a scheme for finite l, but
when l is sufficiently large, the security region can be well
approximated by the asymptotic result with infinitely large l.

Theorem 4: Given a network of n nodes with each node
assigned up to l random bits, the channel rates {rij} are
achievable if and only if when l → ∞, ∀Nh and P ⊆ Ps,

∑
(i,j)∈P

rij <
| ∪(i,j)∈P uij/uh|

l
or

∑
(i,j)∈P

rij = 0, (4)

where uij is the sequence of common secret bits shared by
both node i and j, and uh is the set of secret bits in hacked
nodes.

Given the set of hacked nodes Nh and a set of channels
between unhacked nodes P ⊆ Ps, we call

|∪(i,j)∈P uij/uh|
l the

shared unhacked-secret-bit rate of the channels P . The above
result shows that information-theoretic secrecy can be achieved
if and only if for any subset of unhacked channels, the sum
of their channel rates does not exceed the shared unhacked-
secret-bit rate of these channels asymptotically. The proof of
this theorem is given in Section VIII-D.

Example 1: Let us use a network of 4 nodes as an example
of demonstrating the security criteria in Theorem 4. Assume
that the secret bits are equally distributed to 4 groups of
network nodes, i.e., (1, 2, 3), (1, 2, 4), (1, 3, 4) and (2, 3, 4).
It means every 3 nodes share l/3 common secret bits.

If no nodes are hacked, according to Theorem 4, the network
is secure for sufficiently large l if and only if

r12 <
|u12|
l

= 2/3

r12 + r13 <
|u12 ∪ u13|

l
= 1

r12 + r34 <
|u12 ∪ u34|

l
= 4/3

r12 + r13 + r14 <
|u12 ∪ u13 ∪ u14|

l
= 1

. . .∑
(i,j)

rij < 4/3

holds for every node permutation (not all permutations are
listed here for simplicity). As some conditions can be derived
by the others, the above conditions can be simplified as

rij <
2
3
,
∑
j

rij < 1,
∑
(i,j)

rij < 4/3.

They are necessary and sufficient to guarantee the security
of the network.

Example 2: In the network of the above example, assume
that at most 1 node is hacked. Then the network is secure for
sufficiently large l if and only if

r12 <
|u12/uh|

l
= 1/3

r12 + r13 <
|u12 ∪ u13/uh|

l
= 1/3

. . .

holds for every node permutation. It is equivalent to have

r12 + r13 + r23 < 1/3 (5)

holding for every node permutation.
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The achievability of Theorem 4 uses a simple method for
privacy amplification that generates a secret key sij from the
common sequence uij with a random linear transformation
such that sij = Mijuij with a binary random matrix Mij

where each entry is one with probability O(log l/l) indepen-
dently. For simplicity, we call it a random matrix of density
O(log l/l). This leads to the following observation.

Corollary 5: Given a network of n nodes with each node
assigned up to l random bits, the privacy-amplification method
that generates

sij = Mijuij

with a binary random matrix Mij of density O(log l/l) for all
(i, j) is asymptotically optimal when l → ∞. The optimality
means that any achievable channel rates {rij} can be realized
by this method.

From Theorem 4, we further derive the maximum channel
rate and the maximum network rate of a network that is
assigned sufficient random bits and uses an asymptotically-
optimal privacy-amplification method for generating secret
keys from common random bits.

Corollary 6: Given a network of n nodes, with each node
assigned up to l random bits with l → ∞ and at most t ≤ n−2
nodes being hacked, the maximum channel rate of the network
with asymptotically-optimal privacy amplification is

Rchannel = min
Nh,i,j|i,j /∈Nh

|uij/uh|
l

(6)

and the maximum network rate of the network with
asymptotically-optimal privacy amplification is

Rnetwork =
∑

Nh:|Nh|=t

| ∪(i,j)∈Ps uij/uh|
l

/

(
n− 2
t

)
. (7)

The maximum channel rate is straightforward following the
result of Theorem 4. The maximum network rate is based on
the observation that

∑
Nh:|Nh|=t

(
∑

(i,j)∈Ps

rij) =
(
n− 2
t

)
(

∑
(i,j)∈P

rij),

where
(
n−2
t

)
is the number of combinations for Nh that does

not include specific nodes i and j, equal to the number of
times that rij appears on the left of the equality.

Besides Theorem 4, the following result provides an alterna-
tive approach to check the security of a network. It is sufficient,
and for some schemes it is easier to use to check the security of
the network. In particular, given any subset of network nodes
G, we use uG to be the set of secret bits assigned only to
all the nodes in set G. As a result, all the secret bits can be
divided into distinct groups {uG} with G ⊆ N. One idea here
is that one can further decompose each group of secret bits uG
into sub-groups {uGij} such that the sub-group of secret bits
uGij is only used for the communication between node i and j.
Then the maximum possible amount of information that can
be communicated between node i and j is

∑ |uGij |, where the
summation is over all the node set G that includes i and j but
not any hacked node. The following result extends this idea to
general schemes. Here, we call |uG|/l as the secret-bit rate of a

set of nodesG. {xGij |i, j ∈ G} is a non-negative decomposition
of |uG|/l if and only if xGij ≥ 0 and

∑
i,j∈G x

G
ij = |uG|/l.

Theorem 7: Given a network of n nodes with each node
assigned up to l random bits, the channel rates {rij} are
achievable if when l → ∞, there exists non-negative decom-
positions {xGij |i, j ∈ G} of |uG|

l for all G ⊆ N and they
satisfy∑
G|i,j∈G⊆Ns

xGij > rij , ∀Ns and (i, j) ∈ Ps with rij > 0.

(8)

Example 3: We continue to apply the criteria to the network
of 4 nodes in Example 1. There are 4 groups of secret bits,
denoted by u(123), u(124), u(134), u(234), each of size l/3.
Their corresponding non-negative decompositions satisfy

x
(123)
12 + x

(123)
13 + x

(123)
23 = 1/3,

x
(124)
12 + x

(124)
14 + x

(124)
24 = 1/3, . . .

The network is secure if and only if for any Nh the network
is secure. Without loss of generality, we assume that node 4
is hacked. In this case, only u(123) is not hacked. According
to Theorem 7, the network is secure for sufficiently large l if
the decompositions exist such that

x
(123)
12 > r12 if r12 > 0,

x
(123)
13 > r13 if r13 > 0,

x
(123)
23 > r23 if r23 > 0.

It is equivalent to r12 + r13 + r23 <
1
3 . This should hold

for any node permutation, as we don’t know which node is
actually hacked, reaching the same condition as (5).

We hope to develop schemes that can securely communicate
as many message bits as possible not only over the entire
network but also through a single channel. As defined earlier,
a secure network-communication scheme consists of a key
pre-distribution phase and a communication phase. In this
key pre-distribution phase, the secret bits of the network
nodes are assigned from a pool of independent and unbiased
truly random bits, and we use uij to denote the sequence of
common secret bits between node i and j. For each node i,
it needs to identify uij for all j �= i. In the communication
phase, whenever node i needs to communicate with node j,
it establishes a secret key sij from their common secret bits
uij via privacy amplification, and then use the key sij for
the one-time pad encryption to realize secure communication.
Fig. 1 depicts a brief and complete diagram for secure network
communication, with a short description for each of the
steps. In the next two sections, we will study and analyze
key distribution methods and privacy amplification methods,
respectively, in detail.

IV. COMBINATIONAL KEY DISTRIBUTION

This section focuses on the study of key distribution,
i.e., how to assign truly random bits to the network nodes and
how to let a node i find the common secret bits uij shared
with another node j for any j �= i.
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Fig. 1. A diagram for secure network communication. (a) With the key distribution, each node receives multiple groups of secret bits and the indices of the
common groups shared with each other node. (b) Before sending a message or periodically, the sender checks whether the current channel can support more
communication with information-theoretic security. (c) If node i needs to send a message xij to node j, node i determines their common secret bits uij and
from which it generates a secret key sij , with each bit generated by computing the XOR of d uniformly sampled common secret bits. (d) With the generated
secret key sij , node i encrypts the message xij using the one-time pad scheme, and sends the resulting ciphertext yij as well as the node indices and the
pseudo-random seed for secret-bit sampling to the receiver. (e) The receiver finds the common secret bits uij based on the received i, and from which it
further reconstructs the secret key sij based on the pseudo-random seed. (f) Finally, the receivers get the decrypted xij from the ciphertext yij and the secret
key sij .

A. Combinational Key Distribution

Key pre-distribution was explored in sensor networks with
computational security [22], [23]. In contrast, we study key
pre-distribution for the information theoretic security, where
the way of distributing secret bits directly affects the com-
munication rates. The idea of combinational key distribution
is to assign the same number of distinct secret bits to each
combination of a nodes with a ≥ 2. Given a network of n
nodes, there are totally

(
n
a

)
combinations of a nodes. Hence,

we divide all the secret bits into
(
n
a

)
groups with each of

size l/
(
n−1
a−1

)
, and assign the secret bits of each group to

a unique combination of a nodes. For every two nodes,
their shared common secret bits consist of the secret bits
from

(
n−2
a−2

)
groups. In Theorem 2, it has been shown that

this method with an appropriate parameter a combined with
asymptotically-optimal privacy amplification can achieve the
channel capacity of a network for sufficiently large l.

Example 4: Let’s consider a network of size 4 and a =
3. The combination key distribution assigns secret bits to
4 combinations of network nodes, corresponding to nodes
(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4), respectively. As a result,

each node obtains 3 groups of secret bits, with each group of
size l/3.

The combinational key distribution described above
becomes less practical when both n and a are large, as there
are too many combinations of a nodes. To reduce the com-
plexity, we would like to consider only a fraction of the
combinations, saying m combinations of a nodes. Then we
divide all the secret bits into m groups of the same size,
and assign them to the m combinations of nodes respectively.
Finding the m combinations is equivalent to constructing a
binary m × n matrix, with each row including a ones that
represent a combination. We call this matrix as the assignment
matrix. This assignment matrix is publicly known by all the
network nodes, and helps to identify the sequence of shared
common secret bits between any two nodes. It is expected that
each column of the assignment matrix has roughly the same
number of ones, so that each node belongs to almost an equal
number of combinations. So does the intersection (common
ones) of any two columns, for any two nodes having enough
common secret bits.

Example 5: We continue using the network of size 4 and
a = 3 as an example. Assuming that the secret bits are equally
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distributed to 3 combinations, (1, 2, 3), (1, 2, 4) and (1, 3, 4).
These node combinations can be represented by an assignment
matrix

M =

⎛
⎝ 1 1 1 0

1 1 0 1
1 0 1 1

⎞
⎠ .

The 2nd column of the matrix has 2 ones, meaning that
node 2 belongs to two of the combinations and hence receives
two groups of secret bits.

B. Random Construction of Assignment Matrix

A simple construction of the assignment matrix is to con-
struct a random matrix in which each row has exactly a
ones and each column has exactly b = am

n ones (taking m
as a multiple of n). Such a construction has been studied
for the parity-check matrix of regular LDPC codes [21], see
Example 6. Based on this assignment matrix, the pool of secret
bits are equally divided and distributed to m combinations of
a nodes, with each node receiving b groups of secret bits. For
each pair of nodes i and j, the expected number of their shared
common groups is about

mij = b · a− 1
n− 1

=
a(a− 1)
n(n− 1)

m,

where a−1
n−1 is the probability that node j belongs to a random

combination of a nodes that includes node i. Following the
law of large numbers, one can choose m sufficiently large so
that every pair of nodes can receive roughly the same amount
of common secret bits. As m becomes larger, the performance
of this method converges to that of the original combinational
key distribution with

(
n
a

)
groups when l is infinitely large.

Example 6: This example demonstrates how to construct a
6 × 10 random matrix with each row containing exactly 5
ones and each column containing exactly 3 ones. First, let
the 1st row be (1, 1, 1, 1, 1, 0, 0, 0, 0, 0) and the 2nd row be
(0, 0, 0, 0, 0, 1, 1, 1, 1, 1), and let π1, π2 be random permuta-
tions on {0, 1}10. Applying π1 on the 1st and 2nd rows yields
the 3rd and 4th rows, and applying π2 on the 1st and 2nd rows
yields the 5th and 6th rows. It guarantees that the resulting
matrix contains exactly 5 ones in each row and 3 ones in each
column, for instance,

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 0 1 0
0 1 1 1 0 0 0 1 0 1
0 0 1 0 0 1 1 0 1 1
1 0 0 1 1 1 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(9)

The proposed method can run on the network nodes with
both low computational complexity and low space complexity.
For each node, it only needs to store b rows of the assignment
matrix for identifying the combinations of nodes that it belongs
to, and the row indices of the b rows in the assignment matrix.
Hence, the total space overhead of the method in each node
is about b(n + log2 m), where log2 m is for storing the
index of a row. When node i needs to establish a secret key
with another node j, it can identify the groups of the common

secret bits by finding the jth column of the stored b rows and
mapping its ones to row indices. The running time for the two
nodes to find their common groups of secret bits is O(b).

Example 7: This example demonstrates the method for a
node to find the groups of common secret bits shared with
another node, considering the assignment matrix in (9) and
node 3. Node 3 only needs to store 3 rows

1 1 1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 1 0 1
0 0 1 0 0 1 1 0 1 1

and their indices (1, 4, 5). When node 3 needs to find the
groups of common secret bits shared with node 4, it first finds
the 4th column of the stored rows, which is (1, 1, 0)T , and
then based on the locations of the ones it finds the indices of
the shared groups, i.e., (1, 4).

C. Maximum Rates

For the original combinational key distribution with a ≥ 2,
each node is assigned

(
n−1
a−1

)
groups of secret bits, and every

two nodes share
(
n−2
a−2

)
groups of secret bits. From Corol-

lary 6, the maximum network rate and the maximum channel
rate of the combinational key distribution combined with
asymptotically-optimal privacy amplification can be derived.

Corollary 8: Given a network of n nodes with at most t ≤
n − 2 nodes being hacked, let ψ be a secure communication
scheme that uses the combinational key distribution with a ≥ 2
and an asymptotically-optimal privacy amplification method.
The maximum network rate of the scheme is

Rnetwork(n, t, ψcomb) =
n

a

(
n−t−2
a−2

)
(
n−2
a−2

) , (10)

and the maximum channel rate of the scheme is

Rchannel(n, t, ψcomb) =
a− 1
n− 1

(
n−t−2
a−2

)
(
n−2
a−2

) . (11)

The proof is given Section VIII-G. For the maximum rates
of the scheme based on the combinational key distribution,
they have a common term γ(t, a) =

(
n−t−2
a−2

)
/
(
n−2
a−2

)
which

is a decreasing function of t with γ(0, a) = 1. This term
captures the effect of the number of hacked nodes t on the
maximum rates of the scheme. From this term, we can estimate
the number of hacked nodes that the scheme can tolerate.
For instance, when a = 3, γ(t, a) = n−t−2

n−2 , and one can
tolerate relatively large t. When a is large, the scheme can only
tolerate a very small number of nodes to be hacked. Besides
the common term, the maximum network rate is proportional
to n

a and the maximum channel rate is proportional to a−1
n−1 .

The intuition behind this is that, given a random set of a
nodes that includes node i, the probability for this set including
another specific node j is a−1

n−1 . As the number of nodes a that
each secret bit distributed to increases, the number of common
secret bits shared between any two nodes (corresponding to
the maximum channel rate) increases by a factor of a − 1.
Meanwhile, the usage efficiency of each secret bit (correspond-
ing to the maximum network rate) is reduced by a factor of
roughly 2

a , as each secret bit stored with a copies can only
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be used to securely transmit at most 1-bit information all over
the network.

D. Irregular Key Distribution

We call the combinational key distribution described above
the regular combinational key distribution, where each secret
bit is distributed to exactly a network nodes. The multi-
plication of its maximum network rate and its maximum
channel rate does not exceed 1, implying that with a regular
combinational key distribution, high network rate and high
channel rate cannot be achieved at the same time. Generally,
with a smaller a, the regular combinational key distribution
can have a higher network rate and tolerate more nodes being
hacked, and with a bigger a, the regular combinational key
distribution can have a higher channel rate. We denote the
regular combinational key distribution with a = 2 as the
pairwise key distribution, which assigns each pair of nodes
the same number of distinct secret bits.

To contrast to the regular key distributions, we introduce
the irregular key distributions, where each node uses a fraction
λa ∈ [0, 1] of its storage space to run the regular combinational
key distribution with a such that

∑
a λa = 1. If the channel

rates {r(a)ij } is achievable by the regular combinational key
distribution with a, then for the same n and t, the channel
rates {rij} with rij =

∑
a λar

(a)
ij is achievable by the irregular

combinational key distribution with λa for a ≥ 2.
Example 8: This example considers a simple irregular com-

binational key distribution, in which each node uses 1
2 of its

storage space to run the pairwise key distribution and the
rest to run the combinational key distribution with a > 2.
The maximum network rate of this irregular key distribution
(combined with asymptotically-optimal privacy amplification)
is the weighted sum of their respective component schemes’
maximum network rates, and so is its maximum channel rate.
The maximum rates of the scheme based on the irregular key
distribution are

Rnet(n, t, ψexample) =
n

4
+

n

2a

(
n−t−2
a−2

)
(
n−2
a−2

) ,

Rchannel(n, t, ψexample) =
1

2(n− 1)
+

a− 1
2(n− 1)

(
n−t−2
a−2

)
(
n−2
a−2

) .

The maximum network rate is strictly larger than n/4,
and the maximum channel rate can be adjusted by selecting
appropriate a.

Fig. 2 compares the maximum network rates and the maxi-
mum channel rates of the regular and irregular combinational
key distributions combined with asymptotically-optimal pri-
vacy amplification in the above example, when the network
size n = 100 and the maximum number of hacked nodes t = 1
or 2. For a network with n = 100 and t = 1, the maximum
network and channel rates of the combinational key distribu-
tion with a = 2 are 50.0 and 0.0101, respectively, and those
of the irregular key distribution with a = 25 are 26.53 and
0.0978, respectively, which improves on the maximum channel
rate by sacrificing on the maximum network rate. It is worth
mentioning that the maximum network rate and the maximum

channel rate are only two important metrics characterizing
the security region of a scheme. They are not sufficient to
guarantee the security of the network. When running a scheme
in a network with l sufficiently large, the network needs to
keep monitoring the channel rates of all the channels and
using Theorem 4 or Theorem 7 to guarantee the information-
theoretic security.

V. SECURE COMMUNICATION WITH PRIVACY

AMPLIFICATION

This section discusses how secure network communication
can be achieved with privacy amplification and end-to-end
one-time pad encryption.

A. Secure Network Communication

Before two nodes i and j start to communicate, it is assumed
that they share a sequence of common secret bits uij , which
can be quickly identified by both of the parties (this has been
realized in key pre-distribution phase). However, this common
sequence uij is not perfectly secure to be directly used as
secret keys, because some of the bits might be hacked and
some of the bits might have been used before to generate
other secret keys. Privacy amplification is a key technique here
that distils a secure secret key from a common shared random
sequence that is partially known by eavesdroppers. There are a
variety of methods for privacy amplification, such as universal
hashing [18], random linear transformations [19] and polar
codes [20]. For certain types of random sources, such as i.i.d.
sources, privacy amplification can extract a secret key of length
up to H(x|z), with x the random source and z the set of
information possibly known by eavesdroppers.

When node i needs to send a message xij to node j, it first
generates a secret key sij of length |sij | = |xij | from uij
with privacy amplification, and then encrypts the message
xij with the one-time pad encryption and sends it to node
j. It is desired that given all information possibly known by
eavesdroppers, the generated secret key sij is very close to
the uniform distribution. One problem arises when node i
sends a series messages to node j on demand. Given a large
number of common secret bits uij , one straightforward idea
is to divide the shared secret bits into blocks, and then apply
privacy amplification to each block. However, this approach is
not appropriate for our applications as it requires knowledge of
the total message length (channel rate) before communication
as well as sophisticated coordination among the nodes. More
importantly, it results in unbalanced utilization of the secret
bits, which may introduce some block-necks of the network
security.

This motivates us to directly apply privacy amplification on
the whole common sequence uij , instead of on the blocks of
uij . We are particularly interested in the method of random
linear transformations as described in Corollary 5 due to its
asymptotic optimality. With this method, the generated secret
key is

sij = Mijuij
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Fig. 2. The maximum network rate vs. the maximum channel rate for the regular and irregular combinational key distributions with different a. Here,
an irregular method uses 1

2
space to run the pairwise key distribution and the rest to run the regular combinational key distribution with a > 2.

with a random matrix Mij in which each entry is one with
probability d

|uij| independently. If d = O(log l) and l is
sufficiently large, it is asymptotically optimal. Besides of its
optimality, this method is naturally good for communication
on demand. Assuming that node i needs to send a series of
messages x1

ij ,x
2
ij , . . . to node j. Whenever a new message

xkij needs to be transmitted, node i creates a corresponding
new random matrix Mk

ij for privacy amplification that yields
a secret key skij . Then it sends both the encrypted message
xkij + skij and the random matrix Mk

ij to the receiver. The
receiver can recover the secret key skij from both uij and Mk

ij ,
based on which the message can be decrypted.

For the privacy-amplification method based on random lin-
ear transformations, the random matrices are assumed known
by public. These random matrices can be generated with
pseudo random numbers instead of truly randomness, hence
only their pseudo-random seeds need to be transmitted, not
the entire matrices. This saves a lot of communication cost.
In addition, because of the sparsity of these random matrices,
the computational complexity of privacy amplification can be
reduced by transforming matrix multiplication into secret bit
sampling.

B. Privacy Amplification With Finite d

The method of random linear transforms have been proved
asymptotically optimal for privacy amplification when d =
O(log l) and l is sufficiently large. We further investigate how
the selection of d affects its performance when d is finite.
Our study is based on a simplified example only for the
purpose of gaining some insight. Specifically, let u ∈ {0, 1}r
be a sequence of independent and unbiased truly random bits,
where δ random bits are known by eavesdroppers (we don’t
know which δ bits). A secret key s ∈ {0, 1}k is generated
from u by privacy amplification, and we call the probability
that s is not truly uniform as the failure probability.

First of all, the limit of the secret-key length k is H(u|z) =
r − δ, where z represents all the information known by
eavesdropper. If k > r − δ, the failure probability must be 1.
Then, we consider that s ∈ {0, 1}k is generated by multiplying
an k × r random matrix of density d/r on u. Its failure
probability is

P1 ≤
k∑
j=1

(
k

j

)
(
1
2

+
1
2
(1 − 2d

r
)j)r−δ, (12)

following (44) in the proof of Lemma 15.
Fig. 3 shows the upper bound on the probability P1 under

different parameters n, k, d, where δ = r/2 and the limit for
k is r/2. It can be seen that given r = 10000, the failure
probability is non-decreasing function of k. As k decreases,
there is a turning point depending on d such that the prob-
ability quickly becomes saturated. On the other hand, fixing
d = 128, the bigger r is, the smaller the probability P1 is. It is
illustrated that when d = 128 and r is large, the performance
of the method is very close to the limit.

C. Privacy Amplification by Sampling

We introduce a variant of the above proposed privacy-
amplification method: each secret-key bit is generated by
computing the XOR of d randomly sampled common secret
bits from uij with d a large integer, for example, 128.
Each common secret bit is sampled based on a uniform
distribution. We can repeat this process whenever more
secret-key bits are needed. The computational complexity
of the privacy-amplification method to generate k secret-
key bits is O(kd). To reduce the times of random memory
or disk accesses, one can generate q � 1 secret-key bits
simultaneously by packing q secret bits together at the same
location and performing the same operations on them. While
the sampling process is based on pseudo random numbers,
the pseudo-random seed along with the encrypted message is
sent to the receiver for reconstructing the secret key.
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Fig. 3. The upper bound of the failure probability for privacy amplification by multiplying a random matrix of probability d/r, where the input is a sequence
of r truly random bits with r/2 of them possibly known by eavesdroppers, and k is the output length whose limit is r/2.

This privacy-amplification method can also be described as
a random linear transformation on uij such that the secret key

sij = Mijuij

where Mij is a random matrix with each row containing
exactly d ones. The difference between this method and the
former one is that, in the former method the entries in Mij are
i.i.d. and there are approximately d ones in each row when d
is large (according to the law of large numbers). We call the
modified method as d-sampling and the former one as i.i.d.
sampling with probability d/r.

For d-sampling, the dependency of the entries in Mij makes
it difficult to analyze the performance. But we suspect that
the d-sampling performs slightly better than the i.i.d. sampling
with the same d when |uij | is finite. Our intuition follows that
the i.i.d. sampling is actually equivalent to computing the XOR
of x sampled common secret bits with x a random variable of
Poisson distribution with expected value d. It seems that, when
d� r/2, the smaller x is, the more chance that all the x secret
bits get hacked or their XOR collides with other generated
secret-key bits. Therefore, limiting the number of sampled
secret bit to exact d could likely improve the performance
of privacy amplification.

We continue investigate the performance of d-sampling on
the above simplified example.

Lemma 9: Let u ∈ {0, 1}r be a sequence of independent
and unbiased truly random bits, with δ random bits known
by eavesdroppers. Let s ∈ {0, 1}k be a secret key generated
from u such that s = Mu with a binary random matrix M
that contains exactly d ones in each row. The probability for
s being not uniform (not truly random) is

P2 ≤
k∑
j=1

(
k

j

) r∑
w=0

Pj(w)
(
δ

w

)
/

(
r

w

)
. (13)

Here, Pj(w) is the probability that the sum of given j rows
in M has exactly w ones, and

(
δ
w

)
/
(
r
w

)
is the probability

that all the corresponding w random bits are known by
eavesdroppers.

The proof follows a similar idea as proving Lemma 15.
The secret key s is uniform if and only if all the rows of M
are linearly independent if only considering the columns of
unhacked random bits. It means that the sum of any rows is a
non-zero vector on those columns. Specifically, there are

(
k
j

)
subsets of j rows, the probability for the sum of the j rows
having w ones is Pj(w), and

(
δ
w

)
/
(
r
w

)
is the probability that

all the w ones are in the columns of hacked bits. This leads
to the above result.

The probability Pj(w) can be derived based on an iterative
relation

Pj(w) =
d∑
i=0

Pj−1(w + 2i− d)

×
(
w + 2i− d

i

)(
r − w − 2i+ d

d− i

)
/

(
r

d

)
(14)

and it satisfies P1(d) = 1, P0(w �= d) = 0, Pj(w < 0) = 0
and Pj(w > r) = 0. This relation comes from the fact that a
vector of length r and weight w can be generated by adding a
vector of weight d to a vector of weight w+2i− d if the two
vectors has i overlapped ones. Here,

(
w+2i−d

i

)(
r−w−2i+d

d−i
)
/
(
r
d

)
is the probability of having such a random vector of weight
d, given any vector of weight w + 2i− d.

Based on (13), we can numerically calculate the upper
bound on the failure probability of the d-sampling, and com-
pare it with that of the i.i.d. sampling given by (12). Fig. 4
conducts two groups of experiments for r = 100, k = 40 and
r = 200, k = 80 respectively and depicts the comparison
of the two methods with the same d. In the experiments
under the same r and k, the performance of the d-sampling
surpasses that of the i.i.d. sampling when d is relatively small.
As d becomes larger, the performances of the two methods
converge.

VI. SIMPLIFYING SECURITY CRITERIA

To guarantee the information-theoretic security of the net-
work, it is desired that each node can monitor its neighboring
channel rates and broadcasts their status to all the other
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Fig. 4. The upper bound of the failure probability for i.i.d. sampling with probability d/r and d-sampling, where the input is a sequence of r random bits
with r/2 of them possibly known by eavesdroppers, and k is the output length whose limit is r/2.

nodes periodically, e.g., through flooding [27]. So when two
nodes communicate with each other, they can first check
whether this communication violates the requirements of the
network’s information-theoretic security. However, when the
network size is large, given a scheme and the channel rates,
it is computationally too complex to check the security of a
network directly based on Theorem 4 and Theorem 7, as the
number of constraints in the criteria becomes prohibitively
large even when n = 10. We discuss some techniques to
reduce the number of constraints by relaxing or tightening the
criteria, and their applications to the proposed scheme. Here,
we assume that the underlying privacy-amplification method
used by the schemes is asymptotically optimal.

A. Relaxing Theorem 4

As there are too many constraints in the criteria of The-
orem 4, we relax the criteria by keeping only an important
subset of the constraints. One way is to only consider those
set of channels P that form a clique, namely, P = {(i, j)|i, j ∈
N} for a set of unhacked nodes N ⊆ Ns. Then, the conditions
become ∀Nh and N ⊆ Ns,

∑
i,j∈N

rij <
| ∪i,j∈N uij/uh|

l
or

∑
i,j∈N

rij = 0. (15)

This relaxation makes the criteria not sufficient to guarantee
the information-theoretic security, but it helps to approximate
the boundary of the network’s security region. To further
reduce the number of conditions, we tighten (15) such that
for every clique size w with 2 ≤ w ≤ n− t,

max
N :|N |=w

∑
i,j∈N

rij < min
Nh,N :|N |=w,N⊆Ns

| ∪i,j∈N uij/uh|
l

.

(16)

Then the number of conditions become n − t − 1. For
a network with the combinational key distribution, the right

terms of the conditions can be computed explicitly based on
the following result.

Lemma 10: Given a network of n nodes with at most t ≤
n − 2 nodes being hacked, where each node is assigned up
to l random bits by the combinational key distribution with
a ≥ 2, it has

min
Nh,N :|N |=w,N⊆Ns

| ∪i,j∈N uij/uh|
l

=

(
n−t
a

) − (
n−t−w

a

) − w
(
n−t−w
a−1

)
(
n−1
a−1

) .

This result is due to the symmetry of the combinational key
distribution (permutating the indices of the network nodes does
not change the joint probability distribution of the distributed
secret bits). Without loss of generality, we can assume that the
node set N consists of the first w nodes, and the last t nodes
are hacked. In this result,

(
n−1
a−1

)
is the number of groups (of

secret bits) assigned to each node,
(
n−t
a

)
is the total number

of unhacked groups, and
(
n−t−w

a

)
+w

(
n−t−w
a−1

)
is the number

of unhacked groups that are owned by at most one node in
N .

Example 9: Let us continue considering the network of 4
nodes as an example. Assume that the combinational key dis-
tribution with a = 3 is applied, then the simplified conditions
become

max
i,j

rij <
1
3
, max

N :|N |=3

∑
i,j∈N

rij <
1
3
,

i.e., within any clique of size 3 the total channel rate should
be less than 1/3. This is consistent with (5) that is derived
from the criteria of Theorem 4.

B. Tightening Theorem 7

For the criteria of Theorem 7, instead of determining
whether there exists feasible decompositions of |uG|

l for all
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G ⊆ N, it is much easier to check whether given decom-
positions are feasible or not. Specifically, we can construct
non-negative decompositions {xGij} of |uG|

l such that

xGij =
rij∑

i′,j′∈G ri′j′
|uG|
l
. (17)

If (8) of Theorem 7 holds with these {xGij}, it is sufficient
to guarantee the security of the network for sufficiently large
l.

Example 10: For the combinational key distribution, |uG|
l

is a constant. If given a network of size 4 with at most 1 node
being hacked, the combinational key distribution with a = 3
leads to |uG|

l = 1
3 . In this case, |u(123)|

l is decomposed as

x
(123)
12 =

r12
r12 + r13 + r23

· 1/3,

x
(123)
13 =

r13
r12 + r13 + r23

· 1/3,

x
(123)
23 =

r23
r12 + r13 + r23

· 1/3.

So is |u(124)|
l , and so on. Without loss of generality,

we assume that node 4 is hacked. To let (8) hold, it requires
x

(123)
12 > r12. This leads to

r12 + r13 + r23 < 1/3.

This should hold for any node permutation, as we don’t
know which node is actually hacked, reaching the same
condition as (5).

VII. DISCUSSIONS

In this section we provide some further discussions, includ-
ing the security strength with channel rates near their theoret-
ical limit, the application of network coding, and several open
questions.

A. Security Beyond Limit

Can a network continue to communicate when its channel
rates reach or even exceed the theoretical limit? Our claim is
that when l is very large, e.g. l > 109 (1GB), the network
communication near the theoretical limit is more secure than
widely used cryptographic approaches that are based on some
unproven assumptions about computational hardness.

For the network communication model that we studied,
let u ∈ {0, 1}r be a sequence of independent and unbiased
random bits assigned to the network nodes, and let s ∈ {0, 1}k
be the concatenation of the secret keys that generated all
over the network. Then s can be represented as a linear
transformation of u, i.e., s = Mu with a k × r partially-
random matrix M . Hence, the concatenation of the ciphertexts
generated using the one-time pad encryption is

y = s + x = Mu + x (18)

with x ∈ {0, 1}k the concatenation of the transmitted
messages. According to our network model, the matrix M ,
the ciphertexts y and some secret bits uh in u are possibly
known by eavesdroppers. Let us be the set of unhacked

random bits in u, i.e., us = u/uh. Attacking the system
is to derive some information about us or x from M , y
and uh. By moving the part corresponding to uh to the left,
Equation (18) can be simplified as

y′ = M ′us + x (19)

with M ′ and y′ known by eavesdroppers.
When |y′| > |us|, the network is not information-

theoretically secure, but it is still extremely difficult to derive
some information about us or x if |us| is very large and
|y′| < 2|us|. Firstly, this attacking process is analog to the
decoding of a linear random code, with us being the message
and M ′us as the codeword. It has been proven that with a
general M ′, finding the x with the minimum Hamming weight
is NP-complete [25].

Secondly, there are some uncertainties in the messages
x especially when the message is compressed. Even if an
eavesdropper is possible to search all the possibilities of us

with unlimited computing power, given M ′ and y′, there
are about 2O(H(x)+|us|−|y′|) feasible choices for x. When
H(x) + |us| − |y′| � 1, it is difficult for an eavesdropper
to choose the right one for x.

Thirdly, as in our proposed schemes, the secret bits are
typically shared by multiple network nodes, and each secret
key is generated by jointly utilizing all the common secret bits
between the two terminals (not block by block). Attacking the
system needs to solve the values of a very large number of
secret bits together, which is very difficult in a typical applica-
tion with each node storing more than gigabytes of secret bits.
Even if an attacking algorithm of polynomial computational
complexity exists, e.g. O(r4), it is still practically impossible
to break the system.

B. Network Coding

In this paper, we mainly focus on network communica-
tions with end-to-end encryption. Another way to realize the
information-theoretic security is using network coding. One
idea of network coding that can be used here is called “secret
sharing” [26]. In order to tolerate t nodes to be hacked,
the source node encodes the message into t+ 1 packets such
that no eavesdropper can obtain any information about the
message unless getting all the t + 1 packets. For example,
let x ∈ {0, 1}m be the message to communicate, then it is
encoded into

r1, r2, . . . , rt, r1 + . . .+ rt + x

with the random-bit sequence ri ∈ {0, 1}m as the ith packet
for 1 ≤ i ≤ t. Then the source node sends the t + 1 packets
over node-disjoint paths (only the channels whose rates are
below the limit are used) to the destination. Each path has
at least one relay node that decrypts and re-encrypts the data.
After receiving all the packets, the destination node can decode
the original message x. Two nodes can communicate to each
other with information-theoretic secrecy if and only if there
exits at least t+ 1 node-disjoint paths connecting them.

Our results on the network security with end-to-end encryp-
tion can be applied to network communications with network
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coding. When sending a message from a source node to a
destination node with network coding, the communication can
be decomposed as multiple end-to-end encryptions, resulting
in the increment of the rates of multiple channels on the paths
instead of only the channel between the two terminals. For
example, if node 1 sends two packets to node 4 through relay
nodes 2 and 3 respectively, it increases all of r12, r14, r13, r34
in the same amount. In this case, we can use the criteria
developed in this paper to check the security of the network.

This network-coding approach based on multiple paths is
very expensive in general. It costs at least 2(t + 1) times
of secret-bit resources (more precisely proportional to the
number of channels in the selected t+ 1 node-disjoint paths),
and introduces much more communication latency. Further-
more, it may bring in additional adversaries, as some hacked
nodes may interrupt the communication by modifying relayed
packets or injecting corrupted packets, known as Byzantine
adversaries [5], [6]. One possible application scenario of
network coding is when there are two nodes having to com-
municate with information-theoretic security but their channel
rate has already reached the limit. Then the two nodes can
communicate via network coding by finding t + 1 node-
disjoint paths whose underlying channels have sufficient gaps
to their secure communication limits.

C. Further Questions

In this paper, we work on a framework that studies the prob-
lem of network communication with the information-theoretic
security when each node is allowed to carry some pre-
distributed randomness. This work is an extension of the well-
known one-time pad scheme from ‘links’ to ‘networks.’ There
are several questions that haven’t been completely answered
in this paper, which deserve further studies.

1) The tradeoff between the maximum network rate and the
maximum channel rate for a network without any nodes
being hacked is given in Theorem 1. A natural question
is how to extend it to a network with t > 1.

2) The criteria in Theorem 4 are both necessary and suffi-
cient for guaranteeing the information theoretic security.
It is also proved that the criteria in Theorem 7 are
sufficient, but it is unclear whether they are necessary
or not.

3) This paper only considers communication with end-to-
end encryption to avoid active attacks. How to compute
the theoretical bounds for secure communication with
both end-to-end encryption and network coding is an
open question.

4) The theoretical bounds and security criteria derived in
this paper consider asymptotically large l. It would be
useful to study the non-asymptotic bounds and security
criteria.

5) Does the d-sampling for privacy amplification perform
strictly better than the i.i.d. sampling for finite l and d?
This paper only provides some numerical comparisons.

6) How to derive simple criteria that guarantee the net-
work’s information-theoretic security and meanwhile

they are very easy to verify and very close to the
theoretical limits?

This paper mainly focuses on networks with all the network
nodes playing the same role, in which every node can carry the
same number of secret bits. The models, methods and analysis
developed can be naturally applied or extended to some
other occasions, such as a clustered network or a centralized
network. For example, if a network has a trustable central
node with a larger storage space than the other nodes, one
may distribute all the secret bits to this central node, with each
secret bit also shared by some of the other nodes. This allows
the central node to easily communicate with the other nodes
and monitor all the messages transmitted over the network.

VIII. PROOFS OF MAIN RESULTS

In this section we provide proofs of our main results.

A. Proof of Theorem 1

The network capacity is easy to derive: The total message
length communicated with a node cannot exceed l, hence for
any i, ∑

j|i<j≤n
mij +

∑
j|1≤j<i

mji ≤ l.

Summing over all the nodes,∑
i|1≤i≤n

(
∑

j|i<j≤n
mij +

∑
j|1≤j<i

mji) ≤ nl.

This leads to the total message length over the whole
network ∑

i,j|1≤i<j≤n
mij ≤ nl

2
,

yielding the upper bound n
2 on the network capacity.

This upper bound is achievable using the simple pairwise
key distribution when t ≤ n− 2: for each pair of nodes, it is
distributed l

n−1 secret bits, distinct from the other pairs. With
this scheme, the common sequence between any two nodes
can be used directly as the secret key of the one-time pad
encryption, and hence the limiting channel rate is rij = 1

n−1
for all (i, j). Its network capacity is

r =
∑

(i,j)∈P

rij ≤ 1
n− 1

(
n

2

)
=
n

2
,

which reaches the upper bound n
2 .

B. Proof of Theorem 2

We now prove that the channel capacity is at most (n−t−2
a−2 )

(n−1
a−1)

with a = 
 n
t+1�, and it’s achievable.

Given the sequence of secret bits stored in node i, ui, for
all i ∈ N, the entropy of ui is at most l. Assume there
are t nodes hacked and the hacked secret bits are uh. The
number of message bits that can be securely communicated
between node i and j with i, j ∈ Ns is upper bounded by
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the mutual information between ui and uj conditioning on
uh asymptotically. Specifically, for any (i, j) ∈ Ps, as l → ∞,

sup
{rij}∈R(n,t,ψ)

rij ≤ min
Nh|i,j /∈Nh,|Nh|=t

I[ui;uj |uh]
l

. (20)

This upper bound is based on Theorem 3 in [16]. We briefly
describe the result here. In order to get a common sequence
from ui and uj , node i and j may need to exchange some
messages denoted by c. Then node i computes a secret key
sij as a function of ui and c, and node j computes a secret
key s′ij as a function of uj and c. To guarantee the security of
the communication between node i and j, as l → ∞, it needs

rij ≤ H(sij)
l

under the conditions that sij and s′ij agree with very high
probability and very little information about either sij or s′ij
is known by eavesdroppers. It was proved in [16] that

H(sij) ≤ I[ui;uj|uh] +H(sij |s′ij) + I[sij ; cuh],

where H(sij |s′ij) measures how sij agrees with s′ij , and
I[sij ; cuh] computes the amount of information about sij
leaked to an eavesdropper. As l → ∞, it requires

H(sij |s′ij)

l →
0, which ensures that node i and node j can create the same
secret key sij , and I[sij ;cuh]

l → 0, which guarantees that little
information about sij is leaked to eavesdroppers. As a result,
we can get (20).

According to the definition of the maximum channel rate,
we can get that the maximum channel rate Cchannel satisfies

Cchannel ≤ min
i,j

min
Nh|i,j /∈Nh,|Nh|=t

I[ui;uj |uh]
l

≤
∑

i,j,Nh|i,j /∈Nh,|Nh|=t I[ui;uj |uh](
n
t

)(
n−t
2

)
l

. (21)

On the other hand, for any node i, H(ui) ≤ l. Hence,∑
i∈N H(ui)

l
≤ n. (22)

To derive an upper bound on Cchannel from (21) and (22),
the key is to find the connection between

∑
i∈N H(ui) and∑

i,j,Nh|i,j /∈Nh,|Nh|=t I[ui;uj |uh].
We generalize this concept of conditional

mutual information to a higher order, and let
I(a1, a2, . . . , au|b1, b2, . . . , bv) ≥ 0 be the amount of
mutual information among all the nodes a1, a2, . . . , au given
the secret bits of the nodes b1, b2, . . . , bv. It is the maximum
amount of information shared by a1, a2, . . . , au and unknown
by b1, b2, . . . , bv. By definition,

I(a1|b1, b2, . . . , bv) = H(ua1 |ub1ub2 . . .ubv ),
I(a1, a2|b1, b2, . . . , bv) = I[ua1 ;ua2 |ub1ub2 . . .ubv ].

It has

I(a1, a2|b1, b2, . . . , bv)
= I(a1|b1, b2, . . . , bv) − I(a1|a2, b1, b2, . . . , bv).

Mathematically, when u > 2, it is defined by

I(a1, a2, . . . , au|b1, b2, . . . , bv)
= I(a1, a2, . . . , au−1|b1, b2, . . . , bv)

−I(a1, a2, . . . , au−1|au, b1, b2, . . . , bv). (23)

If u+v = n, I(a1, a2, . . . , au|b1, b2, . . . , bv) can be written
as the form of I(A|N/A) with A = {a1, a2, . . . , au}, which
is the amount of mutual information among all the nodes in
A given all the secret bits of the nodes not in A. If u + v <
n, I(a1, a2, . . . , au|b1, b2, . . . , bv) can be decomposed as the
sum of multiple terms in the form of I(A|N/A) by iteratively
applying

I(a1, a2, . . . , au−1|b1, b2, . . . , bv)
= I(a1, a2, . . . , au|b1, b2, . . . , bv)

+I(a1, a2, . . . , au−1|au, b1, b2, . . . , bv). (24)

From Lemma 11 (given later in this subsection), we can get

∑
i∈N

H(ui) =
n∑
i=1

n∑
a=1

(
∑

A:i∈A,|A|=a
I(A|N/A))

=
n∑
a=1

(
n∑
i=1

∑
A:i∈A,|A|=a

I(A|N/A))

=
n∑
a=1

(
∑

A:|A|=a

∑
i∈A

I(A|N/A))

=
n∑
a=1

(a
∑

A:|A|=a
I(A|N/A)). (25)

On the other hand, from Lemma 12 (given later in this
subsection), we can get∑

i,j,Nh|i,j /∈Nh,|Nh|=t
I[ui;uj |uh]

=
∑

i,j,Nh|i,j /∈Nh,|Nh|=t
(
n−t∑
a=2

(
∑

A:i,j∈A⊆N/Nh,|A|=a
I(A|N/A)))

=
n−t∑
a=2

(
∑

i,j,Nh|i,j /∈Nh,|Nh|=t
(

∑
A:i,j∈A⊆N/Nh,|A|=a

I(A|N/A)))

=
n−t∑
a=2

(
∑

A:|A|=a

∑
i,j,Nh|i,j∈A⊆N/Nh

I(A|N/A)))

=
n−t∑
a=2

(
(
a

2

)(
n− a

t

) ∑
A:|A|=a

I(A|N/A)). (26)

Let β(a) =
∑
A:|A|=a I(A|N/A) ≥ 0. From (25) and (26),

we get∑
i,j,Nh|i,j /∈Nh,|Nh|=t I[ui;uj |uh]∑

i∈N H(ui)
=

∑n−t
a=2(

(
a
2

)(
n−a
t

)
β(a))∑n

a=1(aβ(a))

≤ n−t
max
a=2

(
a
2

)(
n−a
t

)
a

,

where the maximum is achieved with a = 
 n
t+1�. To see this,

we let α(a) = (a
2)(n−a

t )
a , then α(a+ 1) > α(a) if and only if

a(n− a− t) > (a− 1)(n− a), equivalent to a < n
t+1 .
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As a result,∑
i,j,Nh|i,j /∈Nh,|Nh|=t I[ui;uj |uh]∑

i∈N H(ui)
≤

(
a
2

)(
n−a
t

)
a

(27)

with a = 
 n
t+1�.

Combining (27) with (21) and (22), we can get

Cchannel ≤
(
a
2

)(
n−a
t

)
n(

n
t

)(
n−t
2

)
a

=
(a− 1)(n− t− 2)!(n− a)!

(n− 1)!(n− a− t)!

=

(
n−t−2
a−2

)
(
n−1
a−1

) .

This leads to the upper bound on the channel capacity.
From Corollary 8, the maximum channel rate of the combi-

national key distribution that distributes each combination of
a nodes the same number of distinct secret bits is

Rchannel(n, t, ψcomb) =
a− 1
n− 1

(
n−t−2
a−2

)
(
n−2
a−2

) =

(
n−t−2
a−2

)
(
n−1
a−1

) .

So the above upper bound can be achieved with the com-
binational key distribution with a = 
 n

t+1� if the underlying
privacy amplification is asymptotically optimal.

Lemma 11:

H(ui) =
n∑
a=1

(
∑

A:i∈A,|A|=a
I(A|N/A)). (28)

Proof: Let us prove this by induction. Without loss of
generality, we let i = 1. Firstly, when n = 1, the equation (28)
holds as

n∑
a=1

(
∑

A:1∈A,|A|=a
I(A|N/A)) = I(1) = H(u1).

We show that if (28) holds for any n ≤ k, then it also holds
for n = k + 1.

Our idea is to concatenate the secret bits of node k and node
k + 1 as a new node k′. Therefore, we get a new groups of
network nodes N′ = {1, 2, . . . , k−1, k′} of size k. According
to our assumption that (28) for n = k,

H(u1)

=
k∑
a=1

(
∑

A′:1∈A′⊆N′,|A′|=a
I(A′|N′/A′)))

=
k∑
a=1

(
∑

A′:1,k′∈A′⊆N′,|A′|=a
I(A′|N′/A′)))

+
k∑
a=1

(
∑

A′:1∈A′⊆N′⊆N′,k′ /∈A′,|A′|=a
I(A′|N′/A′))). (29)

Given any A′ ⊆ N′, we define A ⊆ N by replacing k′ in
A′ with k and k + 1, we define Ak ⊆ N by replacing k′ in
A′ with k, and define Ak+1 ⊆ N by replacing k′ in A′ with
k + 1.

When k′ ∈ A′ ⊆ N′, it has

I(A′|N′/A′)
= I(A′|N/A)
= I(A′k|N/A) + I(A′|k(N/A)) (30)

= I(Ak|N/A) + I(Ak+1|N/Ak+1)
= I(Ak(k + 1)|N/A) + I(Ak|(k + 1)(N/A))

+I(Ak+1|N/Ak+1) (31)

= I(A|N/A) + I(Ak|N/Ak) + I(Ak+1|N/Ak+1), (32)

where (30) and (31) are due to the definition (24).
When k′ /∈ A′ ⊆ N′, it has

I(A′|N′/A′) = I(A|N/A). (33)

Substituting (32) and (33) into (29) yields

H(u1)

=
k∑
a=1

(
∑

A:1,k,k+1∈A⊆N,|A|=a+1

I(A|N/A))

+
k∑
a=1

(
∑

Ak:1,k∈Ak⊆N,k+1/∈Ak,|Ak|=a
I(Ak|N/Ak))

+
k∑
a=1

(
∑

Ak+1:1,k+1∈Ak+1⊆N,k/∈Ak+1,|Ak+1|=a
I(Ak+1|N/Ak+1))

+
k∑
a=1

(
∑

A:1∈A⊆N,k,k+1/∈A,|A|=a
I(A|N/A))

=
k∑
a=1

(
∑

A:1∈A⊆N,|A|=a
I(A|N/A)))

+
k+1∑
a=k+1

(
∑

A:1,k,k+1∈A⊆N,|A|=a
I(A|N/A)))

−
1∑
a=1

(
∑

A:1,k,k+1∈A⊆N,|A|=a
I(A|N/A)))

=
k∑
a=1

(
∑

A:1∈A⊆N,|A|=a
I(A|N/A)))

+
k+1∑
a=k+1

(
∑

A:1∈A⊆N,|A|=a
I(A|N/A)))

=
k+1∑
a=1

(
∑

A:1∈A⊆N,|A|=a
I(A|N/A))). (34)

Finally, the result can be reached by induction. This com-
pletes the proof.

Lemma 12:

I[ui;uj |uh] =
n−t∑
a=2

(
∑

A:i,j∈A⊆N/Nh,|A|=a
I(A|N/A)).

Proof: The proof is similar to that of Lemma 11, emitted
here.
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C. Proof of Theorem 3

Given a scheme ψ, let u ∈ {0, 1}u be the independent
sequence of random bits from which the assigned secret bits
are chosen. Denote the fraction of bits that are assigned only
to the set of nodes A ⊆ N by pA with 0 ≤ pA ≤ 1 and∑

A⊆N

pA = 1.

We define

E(x) =
∑
A⊆N

(pAx)

for a variable x depending on A. It is like the expectation of
x.

The total amount of space in all the n nodes needed to store
the assigned secret bits is∑

A⊆N

(pAu)|A| = (
∑
A⊆N

pA|A|)u = E(|A|)u ≤ nl, (35)

where u is the total number of independent secret bits assigned
to the network.

Firstly, the total number of secure message bits is upper
bounded by the total number of secret bits u, hence as l → ∞,
the maximum network rate

Rnet(n, 0, ψ) ≤ u

l
≤ nl

E(|A|)l =
n

E(|A|) . (36)

Secondly, the number of message bits that can be securely
communicated over a channel is upper bounded by the number
of common secret bits shared by the two terminals. Let uij be
the sequence of common random bits shared by node i and j.
As l → ∞,

Rchannel(n, 0, ψ) ≤ min
(i,j)∈P

|uij |
l

≤
∑

(i,j)∈P |uij |(
n
2

)
l

=

∑
(i,j)∈P

∑
A:i,j∈A pAu(
n
2

)
l

=

∑
A⊆N pA

(|A|
2

)
u(

n
2

)
l

=
uE(|A|(|A| − 1))
l · n(n− 1)

. (37)

Substituting (35) into the above inequality yields

Rchannel(n, 0, ψ) ≤ E(|A|(|A| − 1))
E(|A|)(n − 1)

(38)

Since |A|(|A| − 1) ≤ (n + 1)|A| − 2n for 2 ≤ |A| ≤ n,
it has

Rchannel(n, 0, ψ) ≤ n+ 1
n− 1

− 2n
E(|A|)(n − 1)

. (39)

From(36) and (39), we obtain

Rnet(n, 0, ψ)
2

n+ 1
+ Rchannel(n, 0, ψ)

n− 1
n+ 1

≤ 1.

Let us prove the achievablity, starting from two sim-
ple schemes. In the first scheme, the same-key distribution

scheme, all the nodes share the same set of secret bits, and its
maximum rates are

Rnet(n, 0, ψsame) = 1, Rchannel(n, 0, ψsame) = 1. (40)

The second scheme is the pairwise key distribution, where
each pair of nodes share the same number of distinct secret
bits. Its maximum rates are

Rnet(n, 0, ψpair) =
n

2
, Rchannel(n, 0, ψpair) =

1
n− 1

. (41)

The equality in the theorem holds both for the same-key
distribution and the pairwise key distribution. Here we con-
struct a scheme as the hybrid of the two simple schemes. For
each node, it uses a fraction 0 ≤ λ ≤ 1 of its storage space
for the same-key distribution and the rest for the pairwise key
distribution. The maximum rates for the hybrid scheme ψhybrid

are

Rnet(n, 0, ψhybrid) = λ+
n

2
(1 − λ),

Rchannel(n, 0, ψhybrid) = λ+
1

n− 1
(1 − λ).

By adjusting the fraction λ, we can obtain all the maximum
network rates and the maximum channel rates meeting the
equality in the theorem.

D. Proof of Theorem 4

The necessity is easy to prove. For privacy amplification,
the total length of the secret keys generated for a subset of
channels P is less than the total number of unhacked secret
bits, i.e., ∑

(i,j)∈P |sij |
| ∪(i,j)∈P uij/uh| < 1.

If there exists a subset of channels P violating (4), i.e.,

∑
(i,j)∈P

rij ≥
| ∪(i,j)∈P uij/uh|

l
,

then their total message length must be larger than the total
secret-key length. As a result, at least one of these messages
must be information-theoretically insecure.

To prove achievability, we consider a simple method for
privacy amplification: for every channel (i, j), given the com-
mon secret bits uij , the secret key sij = Mijuij with a sparse
random matrix Mij of density O(log l/l). The reason of using
this method is not only due to its asymptotic optimality, but
also to its practicality. It is the basis of our proposed network
schemes.

Let ss = {sij |(i, j) ∈ Ps} be the secret keys between
unhacked nodes, and let uh be the distinct secret bits stored
in hacked nodes, which are disclosed to the eavesdropper. The
network communication is information-theoretically secure if
and only if for any possible set of hacked nodes Nh, the secret
keys ss and the hacked secret bits uh are truly random bits,
and ss,uh are independent. Note that both ss and uh can be
written as linear transformations of the source sequence u.

Let z be the concatenation of ss and uh, then

z = ssuh = Mu (42)
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for some matrix M . The network is information-theoretically
secure if and only if all the rows in matrix M are linearly
independent.

We can write the secret key sij as

sij = A
′
ij(uij/uh) + B

′
ij(uij ∩ uh)

= Aij(u/uh) +Bijuh

for some matrices Aij and Bij , where Aij is an (lrij)×|u/uh|
matrix consisting of |uij/uh| random columns of density
O(log l/l) and |u/uh| − |uij/uh| zero columns.

Then z = ssuh is represented by

z = Mu =
(
A B
0 I

) (
u/uh

uh

)
, (43)

where I is an identity matrix and A consists of all the matrices
Aij with (i, j) ∈ Ps, i.e.,

A =

⎛
⎜⎜⎜⎝

A12

A13

...
A(n−1)n

⎞
⎟⎟⎟⎠ .

The kth column of Aij is a random vector of length |sij |
and density O(log l/l) if the kth bit in u is distributed to both
node i and node j, i.e., u[k] ∈ uij , otherwise the k column
of Aij is the all-zero vector of length |sij |.

The network is information-theoretically secure if the rows
in M are linearly independent. This is equivalent to showing
that the rows in A are linearly independent, i.e., all the rows in
{Aij |(i, j) ∈ Ps} are linearly independent. This can be proved
based on the following results.

Lemma 13: All the rows in {Aij |(i, j) ∈ Ps} are linearly
independent if and only if for any subset of channels P ⊆ Ps,
there does not exist any subset of rows from {Aij |(i, j) ∈ P}
that includes at least one row from each matrix such that their
sum is a zero-vector.

Lemma 14: Given any subset of channels P ⊆ Ps, if sij =
Mijuij with a random matrix Mij of density O(log l/l) and∑

(i,j)∈P |sij |
| ∪(i,j)∈P uij/uh| < 1

with | ∪(i,j)∈P uij/uh| = O(l), when l → ∞, with proba-
bility almost 1 there does not exist any subset of rows from
{Aij |(i, j) ∈ P} that includes at least one row from each
matrix such that their sum is a zero-vector.

The proof of Lemma 14 is provided in subsection VIII-F.
Finally, we can conclude that the rows of the security matrix
M are linearly independent with high probability, and the
criteria in Theorem 4 are sufficient.

E. Proof of Theorem 7

Using the same proof as Theorem 4, the network is
information-theoretically secure if and only if the rows of
the matrix A in (43) are linearly independent. In Theorem 7,
for this matrix A, it has the following properties: there are
|uG/uh| columns in A corresponding to the bits in uG/uh,
in which each column has

∑
(i,j)∈Gmij random entries with

mij = l · rij corresponding to the bits in {sij} with i, j ∈ G.

The rank of the matrix A remains unchanged if we do
elementary row or column operations on A. The rows of a
matrix are linearly independent if and only if the the matrix can
be reduced to the simplest form [I, 0] by elementary operations
such that it consists of an identity matrix and a zero matrix.

If there exists a feasible solution for {xGij}, we can divide the
columns corresponding to the bits in uG/uh into some groups
of sizes {uGij} with uGij = l · xGij and

∑
i,j∈G u

G
ij = |uG/uh|.

On the other hand, we can divide the rows corresponding
to the bits in sij into some groups of sizes {mG

ij} with mG
ij =

l · yGij and

yGij =
rij∑
G x

G
ij

xGij ,
∑

G|i,j∈G
mG
ij = |sij |.

According to the inequalities in the theorem, it has either
yGij < xGij or yGij = 0.

Based on the row groups and the column groups, the matrix
A is divided into |{mG

ij}|×|{uGij}| sub-matrices, whose dimen-
sions are {mG

ij}× {uGij}. By switching the rows and columns
of the matrix A, the matrix A can be transformed into a form
such that the sub-matrices of dimensions {mG

ij × uGij} are on
the diagonal of the sub-matrices. We denote the sub-matrices
on the diagonal by [A1, A2, . . .] = {AGij}, and the matrix A is
transformed to

A⇔

⎛
⎜⎜⎝

A1 . . . . . .
... A2

...
... . . .

. . .

⎞
⎟⎟⎠ .

The sub-matrices [A1, A2, . . .] are random matrices of den-
sity O(log l/l). The dimension of the sub-matrix Ai is mi×ui
for some mi, ui such that mi

ui
< 1 for ui = O(l) or mi = 0.

For the sub-matrix A1, according to Lemma 15 in subsec-
tion VIII-F, the rows of A1 are linearly independent with high
probability when l is sufficiently large. The sub-matrix A1

can be reduced to its simplest form [I1, 0] consisting of an
identity matrix and a zero matrix by elementary operations on
A. Furthermore, all the other entries on the right of A1 (in
the same rows with A1) can be reduced to 0 by elementary
column operations. Right now, each sub-matrix Ai with i > 1
is transformed to A′

i with

A′
i = Ai +Ai

for some Ai independent of Ai, and the matrix A is reduced
to

A⇔

⎛
⎜⎜⎝

I10 0 0
... A′

2

...
... . . .

. . .

⎞
⎟⎟⎠ .

We continue repeating the above process to handle
A′

2, A
′
3, . . . , iteratively. For the sub-matrix A′

i = Ai + Ai,
it can be proved that the conclusion of Lemma 15 still holds,
and all the rows of A′

i are linearly independent with high
probability when l is sufficiently large.

Finally, all the sub-matrices [A1, A2, . . .] are reduced to their
simplest forms with high probability, and all the other entries
on their right are 0s. In this case, the matrix A is reduced to
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the reversed row echelon form, and it has full rank. Hence
all the rows of the matrix A are linearly independent with
high probability if l is sufficiently large. This leads to the
achievability of the channel rates.

F. Proof of Lemma 14

We first prove the following result.
Lemma 15: Let M ∈ {0, 1}k×r be a random matrix such

that the probability of each entry being 1 is p = O(log r/r).
The rows in M are linearly independent with high probability
for sufficiently large r if and only if k/r < 1.

Each row in M is an independent random vector. The sum
of any j rows in M is still an independent random vector.
Denote the probability of its entry being 1 by pj . Let p = d

r
for a d = O(log r).

It is easy to show that

pj = pj−1(1 − p) + (1 − pj−1)p,

from which and by induction, we obtain

pj =
1
2
− 1

2
(1 − 2d

r
)j .

Furthermore, since the sum of any j rows is an independent
vector, the probability for it being a zero-vector is

Pj(0) = (1 − pj)r.

The rows of M are linearly independent if and only if for
any subset of the rows, their sum is not a zero-vector. Hence,
the probability of the rows of M being linearly independent

Pindep(M) ≥ 1 −
k∑
j=1

(
k

j

)
Pj(0),

where
(
k
j

)
is the number of subsets consisting of j rows.

This leads to

Pindep(M) ≥ 1 −
k∑
j=1

(
k

j

)
(
1
2

+
1
2
(1 − 2d

r
)j)r. (44)

When j < r
2d with r sufficiently large, it has

r
2d∑
j=1

(
k

j

)
(
1
2

+
1
2
(1 − 2d

r
)j)r

≤
r
2d∑
j=1

kj(1 − dj

r
+
j(j − 1)d2

r2
)r

≤
r
2d∑
j=1

kj(1 − dj

2r
)r

≤
r
2d∑
j=1

rje−dj/2

≤
r
2d∑
j=1

(elog r−d/2)j → 0.

When r
2d ≤ j < r

3 log r with r sufficiently large, it has

r
3 log r∑
j= r

2d

(
k

j

)
(
1
2

+
1
2
(1 − 2d

r
)j)r

≤
r

3 log r∑
j= r

2d

(
k

j

)
(
1
2

+
e−1

2
)r

≤r r
3 log r +1(

1
2

+
e−1

2
)r

≤r(e 1
3 (

1
2

+
e−1

2
))r → 0.

When j ≥ r
3 log r with r sufficiently large, it has

k∑
j= r

3 log r

(
k

j

)
(
1
2

+
1
2
(1 − 2d

r
)j)r

≤
k∑

j= r
3 log r

(
k

j

)
(
1
2

+
e−

2d
3 log r

2
)r

≤2k(
1
2

+
e−

2d
3 log r

2
)r

=(2
k
r −1(1 + e−

2d
3 log r ))r

→(2
k
r −1)r → 0.

Summing the above results up, we obtain

Pindep(M) ≥ 1 − 	

for any 	 > 0 when r is sufficiently large.
Lemma 16: Given Si ⊆ {1, 2, . . . , r} with 1 ≤ i ≤ k, let

Mi ∈ {0, 1}mi×r with 1 ≤ i ≤ k be a binary matrix such that
each entry in columns Si is 1 with probability O(log r/r)
and each entry not in columns Si is 0. If

�
i mi

|∪iSi| < 1 and
| ∪i Si| = O(r), as r → ∞, with high probability there does
not exist any subset of rows from {Mi} that includes at least
one row from each matrix such that their sum is a zero-vector.

We say that a set of matrices {Mi} are linearly
cross-independent if and only if there does not exist a subset
of rows from {Mi} that includes at least one row from each
matrix such that their sum is a zero-vector. If the rows of
M1,M2, . . . ,Mk are linearly cross-independent, it does not
necessarily imply that these rows are linearly independent. For
example, consider the matrices

M1 =
(

1 1 0
1 1 0

)
,M2 =

(
0 1 1

)

The rows in M1,M2 are linearly cross-independent, but
not linearly independent, as the rows in M1 are not linearly
independent.

One observation is that if {Mi} are linearly
cross-independent on a subset of columns, then {Mi}
are linearly cross-independent on all the columns.

We divide the columns into at most 2k groups depending
on which Si the column belongs to. Two columns are in the
same group if and only if they belong to the same subset of
{S1, S2, . . . , Sk}. Now, we are only interested in the groups
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of size O(r) (sufficiently large groups), and the union of their
columns are denoted by S. Then

|S| > | ∪i Si|(1 − 	)

for sufficiently small 	, which leads to
�

i mi

|S| < 1 for
sufficiently large r. We will prove that the matrices {Mi} are
linearly cross-independent on the columns in S.

Given 
 = {l1, . . . , lk} with 1 ≤ li ≤ mi, we choose li
rows from Mi with 1 ≤ i ≤ k, and we use P (
) to denote
the probability that the sum of all the

∑
i li chosen rows is a

zero-vector on S. Then the probability of the matrices {Mi}
being not linearly cross-independent on S is

Pdep. =
∑
l1,l2,...

k∏
i=1

(
mi

li

)
P (
).

There are two possibilities considering the chosen
∑

i rows:
(1) every column in S has more than r

log r random entries in
the chosen rows; and (2) there exists a group (among the up
to 2k groups) of columns in S, whose size is at least b = O(r)
and in which each column has at most r

log r random entries in
the chosen rows. We use P1(
) to denote the probability that
the sum of chosen rows is a zero-vector on S in the first case,
and P2(
) to denote that in the second case. It can be shown
that

P1(
) ≤ (
1
2

+ 	)|S|

for sufficient small 	 and

P2(
) ≤ 2k
r

log r∑
j=1

(∑
i li
j

)
(
1
2

+
1
2
(1 − 2d

r
)j)b.

Consider all possible choices of 
, as r → ∞, the sum
probability of the first case is

P1 =
∑
l1,l2,...

k∏
i=1

(
mi

li

)
P1(
)

≤
∑
l1,l2,...

k∏
i=1

(
mi

li

)
(
1
2

+ 	)|S|

≤ 2
�

i mi(
1
2

+ 	)|S|

≤ 	

for sufficiently small 	.
Consider all possible choices of 
, as r → ∞, the sum

probability of the second case is

P2 =
∑
l1,l2,...

k∏
i=1

(
mi

li

)
P2(
)

≤
r

log r∑
j=1

(∑
imi

j

)
(
1
2

+
1
2
(1 − 2d

r
)j)b

≤ 	

for sufficiently small 	. The last step follows the same proof
as Lemma 15.

Finally, the matrices {Mi} are not linearly
cross-independent with probability

Pdep. ≤ P1 + P2 ≤ 2	

as r → ∞. This leads to the conclusion in Lemma 16.
It is straightforward to obtain Lemma 14 from Lemma 16.

G. Proof of Corollary 8

The proof directly follows Corollary 6. We first work on the
maximum network rate of the combinational key distribution
with a ≥ 2, which is

Rnetwork(n, t, ψcomb) =
∑

Nh:|Nh|=t

| ∪(i,j)∈Ps uij/uh|
l

/

(
n− 2
t

)

for sufficiently large l. Given any set of hacked nodes Nh with
|Nh| = t, the number of unhacked groups is

(
n−t
a

)
, with each

of size w = l

(n−1
a−1)

. As a result, for any Nh,

| ∪(i,j)∈Ps uij/uh|
l

=
(
n− t

a

)
w

l
=

(
n−t
a

)
(
n−1
a−1

) .
This leads to the maximum network rate

Rnetwork(n, t, ψcomb) =

(
n
t

)(
n−t
a

)
(
n−2
t

)(
n−1
a−1

) =
n

a

(
n−t−2
a−2

)
(
n−2
a−2

) .

It can be achieved by the equal channel rates with rij =
2

a(n−1)

(n−t−2
a−2 )

(n−2
a−2)

.

For the maximum channel rate,

Rchannel(n, t, ψcomb) = min
Nh,i,j|i,j /∈Nh

|uij/uh|
l

.

With the combinational key distribution, every pair of
unhacked nodes share

(
n−t−2
a−2

)
groups of secret bits that are

not hacked. As a result, for any Nh and i, j /∈ Nh, |uij/uh|
l =

(n−t−2
a−2 )

(n−1
a−1)

. This leads to

Rchannel(n, t, ψcomb) =

(
n−t−2
a−2

)
(
n−1
a−1

) =
a− 1
n− 1

(
n−t−2
a−2

)
(
n−2
a−2

) .

It can be achieved when there is only one channel with
message transmissions.
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