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Abstract

This dissertation is devoted to the study of randomness and noise in a number of information systems

including computation systems, storage systems, and natural paradigms like molecular systems,

where randomness plays important and distinct roles. Motivated by applications in engineering and

science we address a number of theoretical research questions.

• In a computation system, randomness enables to perform tasks faster, simpler, or more space

efficient. Hence, randomness is a useful computational resource, and the research question we

address is: How to efficiently extract randomness from natural sources?

• In a molecular system such as a chemical reaction network or a gene regulatory network,

randomness is inherent and serves as the key mechanism for producing the desired quantities

of molecular species. A chemical reaction can be abstractly described as a probabilistic switch.

Hence, given a set of probabilistic switches (with some fixed switching probabilities), the

research question we address is: How to synthesize a stochastic network consisting of those

switches that computes a pre-specified probability distribution?

• In an information storage system, like flash memories where information is represented by a

relatively small number of electrons, randomness is a threat to data reliability. Hence, the

research question we address is: How to represent, write and read information in the presence

of randomness (noise)?

This dissertation is focusing on the foregoing key questions and describes novel contributions

related to randomness generation and extraction, stochastic system synthesis and coding for infor-

mation storage.
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The dissertation is organized in four parts. In part I, we study the classical problem of efficient

generation of perfect random bits from an ideal source. We first focus on the simple source model,

namely, an i.i.d. source, and derive a universal scheme for transforming an arbitrary algorithm

for binary sources to one that manages general source of a larger alphabet, and hence enable the

application of existing algorithms to general sources. We then address the long-standing open

problem related to Blum’s beautiful algorithm (1986) for generating random bits from Markov chains

and propose the first known optimal algorithm that generates random bits from an arbitrary Markov

chain in expected linear operation time. Finally, we propose an optimal streaming algorithm for

generation of random bits, it transforms an input stream into a stream of random bits. Compared to

existing methods, our algorithm is currently the best choice for implementation in practical systems.

In part II, we study randomness extraction from non-ideal sources. Instead of generating perfect

random bits, our goal is to generate random bits that are ϵ-close to perfect random bits. We

show that linear transformations based on sparse random matrices are very powerful for extracting

randomness from a variety of weak random sources; the simplicity of this method has high potential

for enabling applications in high-speed random number generation. We then study the problem of

extracting a prescribed number of random bits by reading the smallest possible number of symbols

from imperfect stochastic processes. Although fixed-length extractors such as seeded extractors

have been well studied, their information efficiency is far from optimal. We introduce the concept

of variable-length extractors and prove that they preform closely to the optimal entropy limit.

In part III, motivated by DNA-based molecular systems, we discuss research problems related

to stochastic computation. One fundamental question we study is related to the physical synthesis

of stochasticity. In particular, we consider stochastic switching circuits as a simple generalization

of traditional switching circuits, where deterministic switches are replaced by probabilistic switches.

We study the robustness of stochastic switching circuits, and present several methods for synthe-

sizing or approximating probabilities. We then propose a new model for stochastic computation

called stochastic flow networks - those are directed graphs with incoming edges and outgoing edges

where tokens enter through the input edges, travel stochastically in the network, and exit the net-



viii

work through the output edges. We show that when each element has two outgoing edges and is

unbiased, an arbitrary rational probability can be realized by a stochastic flow network of optimal

size. In addition, we demonstrate that feedback greatly improves the expressibility of stochastic flow

networks.

In part IV, we study coding for information storage. This topic is becoming increasingly impor-

tant due to the introduction of new storage technologies such as flash and phase-change memories.

We begin by considering the binary asymmetric channel and introduce the concept of nonuniform

codes. Our main observation is that asymmetric errors are content dependent, however, in informa-

tion storage applications, the reliability should be content independent; hence, we introduce the new

concept of nonuniform codes, whose codewords can tolerate different numbers of asymmetric errors

depending on their Hamming weights. To further increase the capacities of storage devices, we com-

bine channel modulation with code construction - we introduce a simple and practical write/read

scheme for nonvolatile memories, called balanced modulation. Finally, we propose a novel system-

atic error-correcting code for rank modulation where the errors are characterized by the Kendall

τ -distance.
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Chapter 1

Introduction

Maybe the brain uses random elements; maybe the universe does too.

– Things a Computer Scientist Rarely Talks About, Donald E. Knuth (1999)

1.1 Randomness and Noise

“In World War II, Airplane bombers used mechanical computers to perform navigation and bomb

trajectory calculations. Curiously, these computers (boxes filled with hundreds of gears and cogs)

performed more accurately when flying on board the aircraft, and less well on ground. Engineers

realized that the vibration from the aircraft reduced the error from sticky moving parts. Instead

of moving in short jerks, they moved more continuously.” This is one example from Principles of

Digital Audio [91], showing that external randomness, namely noise, increases the accuracy of an

information system.

randomness

random number 

generation

resource

stochastic

computing

element

reliable

data storage

noise

Figure 1.1. The roles of randomness in different information systems.
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Randomness plays an important role in a number of information systems, including computa-

tion, communications and storage as well as in natural paradigms like molecular systems and social

networks. Randomness makes it possible to perform tasks that are hard to complete deterministi-

cally, or making some tasks computationally faster, simpler, or more space efficient. Examples [86]

of such tasks include generating prime numbers, polynomial factoring, permanent approximation

and volume approximation. On the other hand, randomness can be treated as noise, which is a

foe of reliable storage and fault-tolerant computing. Manipulating, utilizing and controlling this

double-edged sword is the key motivation for this dissertation. We study randomness in a number

of information systems; specifically, (1) the generation of randomness in computation systems, (2)

the synthesis of randomness in molecular systems, and (3) the elimination of randomness (noise) in

storage systems. In this dissertation we study and develop algorithms, approaches, and schemes to

process and manage randomness in those information systems (see figure 1.1).

1.2 Randomness in Computation Systems

There are countless applications of randomness in computation systems, such as randomized algo-

rithms [86] (like Monte Carlo method), network coding, compressive sensing, cryptography, machine

learning, intelligent systems, and optimization. Most such applications expect to receive “truly

random bits” as the input. Although pseudorandom number generation algorithms have been ex-

tensively studied [13, 47, 56, 124], they do not provide a sufficient level of security when applied in

cryptography (see the cover article of IEEE spectrum, September 2011, entitled “Behind Intel’s new

random-number generator” [113]). For most applications, it cannot be proved that pseudorandom

bits can perfectly simulate truly random bits. In addition, the process of pseudorandom number

generation requires truly random bits as a seed, namely, it uses a sequence of truly random bits

and stretches it to produce a long sequence bearing an appearance of randomness. This serves as

the motivation for the study of generating or extracting truly random bits from natural physical

sources. Examples of such sources include radioactive decay, quantum-effects in semiconductor de-

vices, thermal noise, shot noise, avalanche noise in Zener diodes, clock drift, magnetic disk timing,
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and radio noise.

The problem of random number generation dates back to von Neumann [128] in 1951 who

first considered the problem of simulating an unbiased coin by using a biased coin with unknown

probability. He observed that when one focuses on a pair of coin tosses, the events HT and TH

have the same probability (H is for “head” and T is for “tail”); hence, HT produces the output

symbol 0 and TH produces the output symbol 1. The other two possible events, namely, HH and

TT, are ignored and they do not produce any output symbols. Generally, given an arbitrary biased

coin or an arbitrary Markov chain, one can generate a sequence of truly random bits. Although

this is a well studied area, a number of fundamental problems remain unanswered. In the first part

of this dissertation, we will address some of those problems. Our contributions include a universal

scheme for transforming an arbitrary algorithm for binary sources to manage the general source of

an m-sided die (chapter 2), the first-known optimal algorithm that generates random bits from an

arbitrary finite-state Markov chain (chapter 3), and an optimal algorithm that generates random-bit

streams from an arbitrary biased coin (chapter 4).

The reality is that some (likely, most) physical sources are neither perfect biased coins nor

perfect Markov chains. In this case, one cannot generate perfect random bits. Instead, people derive

algorithms to generate a sequence that is arbitrarily close to perfect random bits, namely, it can

be used to replace the sequence of perfect random bits in any randomized application such that

the additional error probability of the application is upper bounded by a small constant ϵ. We call

this process randomness extraction, and we call such an algorithm an extractor. For some types of

random sources [63], like independent sources, bit-fixing sources, and small-space sources, one can

derive an extractor deterministically to extract randomness, and we call it a seedless extractor. For a

more general source, namely a k-source, in which each possible sequence has probability at most 2−k

of being generated, it was shown that it is impossible to derive a single function that extracts even a

single random bit. This observation led to the introduction of seeded extractors, which use a small

number of truly random bits as the seed (catalyst). When simulating a probabilistic algorithm, one

can simply eliminate the requirement of truly random bits by enumerating all the possible strings
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for the seed and taking a majority vote. We noticed that the existing contributions on randomness

extractors and random number generators are distinct. We introduced the concept of “variable-

length extractors” and created a conceptual bridge between them. Variable-length extractors can

achieve efficiency close to Shannon’s limit (chapter 6). In addition to efficiency, we also consider the

simplicity of the extractors; hence, we study linear constructions of extractors, especially those based

on sparse random matrices (chapter 5), which have potentially important applications in high-speed

random number generators.

1.3 Randomness in Molecular Systems

Randomness is inherent in biology: Within a living cell, the number of molecules involved in a specific

regulatory process is usually small. Hence, the analysis of the reactions can not be based on averages

and is typically assuming that the collisions between molecules are random [38]. Another example

is synapses in neural systems, where signals are generated and transmitted in a stochastic way [53].

As engineers, we treat biology as an integrated system that behaves randomly. For example, insects

in flight tend to move about with random changes in direction [66], so that their trajectories are

hard to predict by pursuing predators. Generally, randomness is pivotal to biology for increasing

diversity, enhancing robustness, eluding enemies, and creating intelligence. Randomness is one of

the most beautiful and mysterious parts of nature. As Donald E. Knuth said in 1999 [70]:

“I tend to believe that recently proposed models of the brain, which are based on the idea of contin-

uous dynamic evolution of symbolic signals instead of on processes that resemble today’s computing

machines, have good prospects for helping to explain the mysteries of consciousness. If so, a lot of

randomness must be involved in that .... ”

Motivated by biology, we study the synthesis of systems that can process randomness and can

be easily implemented by molecular reactions. A concrete question is how to compose existing prob-

abilistic elements to produce any other target distribution. The study of this question is an initial

step that potentially can lead to stochastic computing or molecular computing, where computation

is performed on distributions of random variables.
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We study the problem of stochastic system synthesis. Continuing Wilhelm and Bruck’s work

[134], we study the robustness of stochastic switching circuits and present a number of general

methods for synthesizing or approximating desired probabilities (chapter 7). Then, we introduce a

new framework, called stochastic flow networks, which is more computationally powerful than any

of existing models for probability synthesis (chapter 8).

1.4 Randomness in Storage Systems

The domain of information storage is becoming increasingly important due to the rapid growth of

global data, the development of new storage devices, and the emergence of new services like cloud

computing. In this domain, the dissertation focuses on reliability and coding of nonvolatile memories

including flash memories, which are currently the most widely used family of nonvolatile memories,

as well as emerging nonvolatile memory technologies such as phase-change memories.

In storage systems, we treat randomness as noise. Reading information from physical devices

(like memories) is a the dual process to extracting randomness, in the sense that it removes ran-

domness (noise) from the source. Developing data protection schemes is important in nonvolatile

memories, in which stored data can be lost due to many mechanisms, including cell-level drift (like

charge leakage in Flash memories), heterogeneity, programming noise, write disturbance and read

disturbance. These mechanisms make the errors in nonvolatile memories heterogeneous, asymmet-

ric, time dependent, and unpredictable. Hence the development of simple, reliable, and efficient

reading/writing schemes is a timely research challenge.

In the fourth part of this dissertation, we will adapt the design of error-correcting schemes to

the requirement of data storage and the physical properties of storage devices and introduce some

new types of codes and practical writing/reading schemes for storage systems; including, nonuniform

codes for data storage (chapter 9), balanced modulation for nonvolatile memories (chapter 10), and

systematic rank modulation codes (chapter 11).



6

Ch 1. Introduction
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Figure 1.2. The structure of this thesis.

1.5 Structure and Contributions of the Thesis

The scope of this dissertation is to study the generation, extraction, synthesis and elimination of

randomness in information systems, including computation systems, molecular systems and storage

systems. The structure of this dissertation is shown in figure 1.2. The contribution of each chapter

is listed bellows. All of the chapters can be read separately according to the readers’ interests and
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backgrounds.

Part I: Random Number Generation (Chapters 2, 3, 4)

Chapter 2 focuses on the problem of generating random bits from biased coins or biased dice

and derives a universal scheme for transforming an arbitrary algorithm for 2-faced coins to generate

random bits from the general source of an m-sided die, hence enabling the application of existing

algorithms to general sources.

Chapter 3 studies the problem of efficiently generating random bits from Markov chains and

provides the first known algorithm that generates unbiased random bits from an arbitrary finite

Markov chain, operates in expected linear time and achieves the information-theoretic upper bound

on efficiency.

Chapter 4 introduces an algorithm that generates random bit streams from biased coins, uses

bounded space and runs in expected linear time. As the size of the allotted space increases, the

algorithm approaches the information-theoretic upper bound on efficiency.

Part II: Randomness Extraction (Chapters 5, 6)

Chapter 5 studies linear transformations for randomness extraction and shows that sparse random

matrices are very powerful for extracting randomness from many noisy sources, which are very

attractive in the practical use of high-speed random number generators due to their simplicity.

Chapter 6 studies the problem of extracting a prescribed number of random bits by reading the

smallest possible number of symbols from imperfect stochastic processes. A new class of extractors

called variable-length extractors is introduced, they achieve efficiency near Shannon’s (optimal) limit.

Part III: Stochastic System Synthesis (Chapters 7, 8)

Chapter 7 studies stochastic switching circuits, which are relay circuits that consist of stochastic

switches called pswitches. It introduces new properties of stochastic switching circuits, including

robustness, expressibility, and probability approximation.

Chapter 8 designs optimal-sized stochastic flow networks for “synthesizing” target distributions.

It shows that when each splitter (basic probabilistic element) has probability 1/2, an arbitrary

rational probability a
b with a ≤ b ≤ 2n can be realized by a stochastic flow network of size n, and
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its size is optimal.

Part IV: Coding for Data Storage (Chapters 9, 10, 11)

Chapter 9 introduces a new type of code called a nonuniform code, whose codewords can tol-

erate different numbers of asymmetric errors depending on their Hamming weights. The goal of

nonuniform codes is to guarantee the reliability of every codeword while maximizing the code size

for correcting asymmetric errors.

Chapter 10 presents a practical writing/reading scheme in nonvolatile memories, called balanced

modulation, for minimizing the asymmetric component of errors. The main idea is to encode da-

ta using a balanced error-correcting code. When reading information from a block, it adjusts the

reading threshold such that the resulting word is also balanced or approximately balanced. Bal-

anced modulation has suboptimal performance for any cell-level distribution and it can be easily

implemented in the current systems of nonvolatile memories.

Chapter 11 explores systematic error-correcting codes for rank modulation while considering the

Kendall τ -distance. It presents (k + 2; k) systematic codes for correcting a single error, and proves

that systematic codes for rank modulation can achieve the same capacity as general error-correcting

codes.
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Part I

Random Number Generation
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Chapter 2

Random Number Generation from
Biased Coins and Dice

This chapter focuses on the problem of generating random bits from biased coins or loaded

dice and derives a universal scheme for transforming an arbitrary algorithm for 2-faced

coins to generate random bits from the general source of an m-sided die, hence enabling the

application of existing algorithms to general sources.

2.1 Introduction

In this chapter, we study the problem of random number generation from i.i.d. sources, which is

the most fundamental and important source model. Many real sources can be well approximated

by this model, and the algorithms developed based on this model can be further generalized in

generating random bits from more sophisticated models, like Markov chains [138], or more generally,

approximately stationary ergodic processes [143].

The problem of random number generation dates back to von Neumann [128] in 1951 who con-

sidered the problem of simulating an unbiased coin by using a biased coin with unknown probability.

He observed that when one focuses on a pair of coin tosses, the events HT and TH have the same

probability (H is for ‘head’ and T is for ‘tail’); hence, HT produces the output symbol 1 and TH

produces the output symbol 0. The other two possible events, namely, HH and TT, are ignored,

namely, they do not produce any output symbols. More efficient algorithms for generating random

bits from a biased coin were proposed by Hoeffding and Simons [54], Elias [33], Stout and War-
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ren [109] and Peres [90]. Elias [33] was the first to devise an optimal procedure in terms of the

information efficiency, namely, the expected number of unbiased random bits generated per coin

toss is asymptotically equal to the entropy of the biased coin. In addition, Knuth and Yao [71]

presented a simple procedure for generating sequences with arbitrary probability distributions from

an unbiased coin (the probability of H and T is 1
2 ). Han and Hoshi [52] generalized this approach

and considered the case where the given coin has an arbitrary known bias.

In this chapter, we consider the problem of generating random bits from a loaded die as a natural

generalization of generating random bits from a biased coin. There is some related work: In [30],

Dijkstra considered the opposite question and showed how to use a biased coin to simulate a fair

die. In [61], Juels et al. studied the problem of simulating random bits from loaded dice, and their

algorithm can be treated as the national generalization of Elias’s algorithm. However, for a number

of known beautiful algorithms, like Peres’s algorithm [90], we still do not know how to generalize

them for larger alphabets (loaded dice).

In addition, we notice that most existing works for biased coins take a fixed number of coin tosses

as the input and they generate a variable number of random bits. In some occasions, the opposite

question seems more reasonable and useful: given a biased coin, how to generate a prescribed number

of random bits with as a few as possible coin tosses? Hence, we want to create a function f that

maps the sequences in a dictionary D, whose lengthes may be different, to binary sequences of the

same length. This dictionary D is complete and prefix-free. That means for any infinite sequence, it

has exactly one prefix in the dictionary. To generate random bits, we read symbols from the source

until the current input sequence matches one in the dictionary.

For completeness, in this chapter, we first present some of the existing algorithms that generate

random bits from an arbitrary biased coin in section 2.2, including the von Neumann Scheme, Elias

algorithm and Peres algorithm. Then in section 2.3, we present a universal scheme for transforming

an arbitrary algorithm for 2-faced coins to generate random bits from the general source of an m-

sided die, hence enabling the application of existing algorithms to general sources. In section 2.4,

we study approaches of efficiently generating a required number of random bits from an arbitrary
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biased coin and achieving the information-theoretic upper bound on efficiency. Finally, we provide

the concluding remarks in section 2.5.

2.2 Existing Algorithms for Biased Coins

2.2.1 Von Neumann Scheme

In 1951, von Neumann [128] considered the problem of random number generation from biased coins

and described a simple procedure for generating an independent unbiased binary sequence z1z2...

from an input sequence X = x1x2.... His original procedure is described as follows: For an input

sequence, we divide all the bits into pairs x1x2, x3x4, ... and apply the following mapping to each

pair

HT → 1, TH → 0, HH → ϕ, TT → ϕ,

where ϕ denotes the empty sequence. By concatenating the outputs of all the pairs, we can get a

binary sequence, which is independent and unbiased. The von Neumann scheme is computationally

(very) fast, however, its information efficiency is far from being optimal. Here, the information

efficiency is defined by the expected number of random bits generated per input symbol. Let p1, p2

with p1 + p2 = 1 be the probabilities of getting H and T, then the probability for a pair of input

bits to generate one output bit (not a ϕ) is 2p1p2, hence the information efficiency is 2p1p2

2 = p1p2,

which is 1
4 at p1 = p2 = 1

2 and less elsewhere.

2.2.2 Elias Algorithm

In 1972, Elias [33] proposed an optimal (in terms of information efficiency) algorithm as a general-

ization of the von Neumann scheme.

Elias’s method is based on the following idea: The possible 2n binary input sequences of length

n can be partitioned into classes such that all the sequences in the same class have the same number

of H’s and T’s. Note that for every class, the members of the class have the same probability to be



13

generated. For example, let n = 4, we can divide the possible 2n = 16 input sequences into 5 classes:

S0 = {HHHH},

S1 = {HHHT,HHTH,HTHH,THHH},

S2 = {HHTT,HTHT,HTTH,THHT,THTH,TTHH},

S3 = {HTTT,THTT,TTHT,TTTH},

S4 = {TTTT}.

Now, our goal is to assign a string of bits (the output) to each possible input sequence, such that

any two possible output sequences Y and Y ′ with the same length (say k), have the same probability

to be generated, which is ck
2k

for some 0 ≤ ck ≤ 1. The idea is that for any given class we partition

the members of the class to sets of sizes that are a power of 2, for a set with 2i members (for some

i) we assign binary strings of length i. Note that when the class size is odd we have to exclude one

member of this class. We now demonstrate the idea by continuing the example above.

In the example above, we cannot assign any bits to the sequence in S0, so if the input sequence

is HHHH, the output sequence should be ϕ (denoting the empty sequence). There are 4 sequences

in S1 and we assign the binary strings as follows:

HHHT → 00, HHTH → 01,

HTHH → 10, THHH → 11.

Similarly, for S2, there are 6 sequences that can be divided into a set of 4 and a set of 2:

HHTT → 00, HTHT → 01,

HTTH → 10, THHT → 11,

THTH → 0, TTHH → 1.



14

In general, for a class with W members that were not assigned yet, assign 2j possible output

binary sequences of length j to 2j distinct unassigned members, where 2j ≤ W < 2j+1. Repeat

the procedure above for the rest of the members that were not assigned. When a class has an odd

number of members, there will be one and only one member assigned to ϕ.

Given a binary input sequence X of length n, using the method above, the output sequence can

be written as a function of X, denoted by ΨE(X), called the Elias function. In [99], Ryabko and

Matchikina showed that the Elias function of an input sequence of length n (that is generated by a

biased coin with two faces) is computable in O(n log3 n log log(n)) time.

2.2.3 Peres Algorithm

In 1992, Peres [90] demonstrated that iterating the original von Neumann scheme on the discarded

information can asymptotically achieve optimal information efficiency. Let us define the function

related to the von Neumann scheme as Ψ1 : {H,T}∗ → {0, 1}∗. Then the iterated procedures Ψv

with v ≥ 2 are defined inductively. Given an input sequence x1x2...x2m, let i1 < i2 < ... < ik denote

all the integers i ≤ m for which x2i = x2i−1, then Ψv is defined as

Ψv(x1, x2, ..., x2m)

= Ψ1(x1, x2, ..., x2m) ∗Ψv−1(x1 ⊕ x2, ..., x2m−1 ⊕ x2m)

∗Ψv−1(x2i1 , ..., x2ik).

Note that on the righthand side of the equation above, the first term corresponds to the random

bits generated with the von Neumann scheme, the second and third terms relate to the symmetric

information discarded by the von Neumann scheme. For example, when the input sequence is

X = HHTHTT, the output sequence based on the von Neumann scheme is

Ψ1(HHTHTT) = 0.
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But based on the Peres scheme, we have the output sequence

Ψv(HHTHTT) = Ψ1(HHTHTT) ∗Ψv−1(THT) ∗Ψv−1(HT),

which is 001, longer than that generated by the von Neumann scheme.

Finally, we can define Ψv for sequences of odd length by

Ψv(x1, x2, ..., x2m+1) = Ψv(x1, x2, ..., x2m).

Surprisingly, this simple iterative procedure achieves the optimal information efficiency asymp-

totically. The computational complexity and memory requirements of this scheme are substantially

smaller than those of the Elias scheme. However, the generalization of this scheme to the case of an

m-sided die with m > 2 is still unknown.

2.2.4 Properties

Let us denote Ψ : {H,T}n → {0, 1}∗ as a scheme that generates independent unbiased sequences

from any biased coins (with unknown probabilities). Such Ψ can be the von Neumann scheme, the

Elias scheme, the Peres scheme, or any other scheme. Let X be a sequence of biased coin tosses of

length n, then a property of Ψ is that for any Y ∈ {0, 1}∗ and Y ′ ∈ {0, 1}∗ with |Y | = |Y ′|, we have

P [Ψ(X) = Y ] = P [Ψ(X) = Y ′],

i.e., two output sequences of equal length have equal probability.

This observation leads to the following property for Ψ. It says that given the numbers of H’s and

T’s, the number of sequences yielding a binary sequence Y equals the number of sequences yielding

Y ′ when Y and Y ′ have the same length. It further implies that given the condition of knowing

the number of H’s and T’s in the input sequence, the output sequence of Ψ is still independent and

unbiased. This property is due to the linear independence of probability functions of the sequences
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with different numbers of H’s and T’s.

Lemma 2.1. [138] Let Sk1,k2 be the subset of {H,T}n consisting of all sequences with k1 appearances

of H and k2 appearances of T such that k1 + k2 = n. Let BY denote the set {X|Ψ(X) = Y }. Then

for any Y ∈ {0, 1}∗ and Y ′ ∈ {0, 1}∗ with |Y | = |Y ′|, we have

|Sk1,k2

∩
BY | = |Sk1,k2

∩
BY ′ |.

2.3 Generalization for Loaded Dice

In this section, we propose a universal scheme for generalizing all the existing algorithms for biased

coins such that they can deal with loaded dice with more than two sides. There is some related

work: In [30], Dijkstra considered the opposite question and showed how to use a biased coin to

simulate a fair die. In [61], Juels et al. studied the problem of simulating random bits from loaded

dice, and their algorithm can be treated as the generalization of Elias’s algorithm. However, for a

number of known beautiful algorithms, like Peres’s algorithm, we still do not know how to generalize

them for larger alphabets (loaded dice). We propose a universal scheme that is able to generalize all

the existing algorithms, including Elias’s algorithm and Peres’s algorithm. Compared to the other

generalizations, this scheme is universal and easier to implement, and it preserves the optimality of

the original algorithm on information efficiency. The brief idea of this scheme is that given a loaded

die, we can convert it into multiple binary sources and apply existing algorithms to these binary

sources separately. This idea seems natural, but not obvious.

2.3.1 An Example

Let us start from a simple example: Assume we want to generate random bits from a sequence

X = 012112210, which is produced by a 3-sided die. Now, we write each symbol (die roll) into a
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binary representation of length two (H for 1 and T for 0), so

0 → TT, 1 → TH, 2 → HT.

Hence, X can be represented as

TT,TH,HT,TH,TH,HT,HT,TH,TT.

Only collecting the first bits of all the symbols yields an independent binary sequence

Xϕ = TTHTTHHTT.

Collecting the second bits following T, we get another independent binary sequence

XT = THHHHT.

Note that although both Xϕ and XT are independent sequences individually, Xϕ and XT are corre-

lated with each other, since the length of XT is determined by the content of Xϕ.

Let Ψ be any function that generates random bits from a fixed number of coin tosses, such

as Elias’s algorithm and Peres’s algorithm. We see that both Ψ(Xϕ) and Ψ(XT) are sequences of

random bits. But we do not know whether Ψ(Xϕ) and Ψ(XT) are independent of each other since

Xϕ and XT are correlated. One of our main contributions is to show that concatenating them

together, i.e.,

Ψ(Xϕ) + Ψ(XT)

still yields a sequence of random bits.
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TTHTTHHTT 

THHHHT 
  

Figure 2.1. An instance of binarization tree.

2.3.2 A Universal Scheme

Generally, given a sequence of symbols generated from an m-sided die, written as

X = x1x2...xn ∈ {0, 1, ...,m− 1}n

with the number of states (sides) m > 2, we want to convert it into a group of binary sequences.

To do this, we create a binary tree, called a binarization tree, in which each node is labeled with a

binary sequence of H and T. See figure 2.1 as an instance of binarization tree for the above example.

Given the binary representations of xi for all 1 ≤ i ≤ n, the path of each node in the tree indicates

a prefix, and the binary sequence labeled at this node consists of all the bits (H or T) following the

prefix in the binary representations of x1, x2, ..., xn (if it exists).

Given the number of sidesm of a loaded die, the depth of the binarization tree is b = ⌈log2m⌉−1.

At the beginning, the binarization tree is a complete binary tree of depth b in which each node is

labeled with an empty string, then we process all the input symbols x1, x2, ..., xn one by one. For

the ith symbol, namely xi, its binary representation is of length b+1. We add its first bit to the root

node. If this bit is T, we add its second bit to the left child, otherwise we add its second bit to the

right child ... repeating this process until all the b+ 1 bits of xi are added along a path in the tree.

Finally, we can get the binarization tree of X by processing all the symbols in X, i.e., x1, x2, ..., xn.

Lemma 2.2. Given the binarization tree of a sequence X ∈ {0, 1, ...,m − 1}n, we can reconstruct

X uniquely.
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Proof. The construction of X from its binarization tree can be described as follows: At first, we read

the first bit (H or T) from the root (once we read a bit, we remove it from the current sequence). If

it is T, we read the first bit of its left child; if it is H, we read the first bit of its right child ... finally

we reach a leaf, whose path indicates the binary representation of x1. Repeating this procedure, we

can continue to obtain x2, x3, ..., xn.

Let Υb denote the set consisting of all the binary sequences of length at most b, i.e.,

Υb = {ϕ, T, H, TT, TH, HT, HH, ..., HHH...HH}.

Given X ∈ {0, 1, ...,m− 1}n, let Xγ denote the binary sequence labeled on a node corresponding to

a prefix γ in the binarization tree, then we get a group of binary sequences

Xϕ, XT, XH, XTT, XTH, XHT, XHH, ...

For any function Ψ that generates random bits from a fixed number of coin tosses, we can generate

random bits from X by calculating

Ψ(Xϕ) + Ψ(XT) + Ψ(XH) + Ψ(XTT) + Ψ(XTH) + ...,

where A+B is the concatenation of A and B. We call this method as the generalized scheme of Ψ.

We show that the generalized scheme works for any binary algorithm Ψ such that it can generate

random bits from an arbitrary m-sided die.

Theorem 2.3. Let Ψ be any function that generates random bits from a fixed number of coin tosses.

Given a sequence X ∈ {0, 1, ...,m− 1}n with m ≥ 2 generated from an m-sided die, the generalized

scheme of Ψ generates an independent and unbiased sequence.

The proof of this theorem will be given in the next subsection.
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2.3.3 Proof of Theorem 2.3

Lemma 2.4. Let {Xγ} with γ ∈ Υb be the binary sequences labeled on the binarization tree of

X ∈ {0, 1, ...,m − 1}n as defined above. Assume X ′
γ is a permutation of Xγ for all γ ∈ Υb, then

there exists exactly one sequence X ′ ∈ {0, 1, ...,m − 1}n such that it yields a binarization tree that

labels {X ′
γ} with γ ∈ Υb.

Proof. Based on {X ′
γ} with γ ∈ Υb, we can construct the corresponding binarization tree and then

create the sequence X ′ in the following way (if it exists). At first, we read the first bit (H or T)

from the root (once we read a bit, we remove it from the current sequence). If it is T, we read

the first bit of its left child; if it is H, we read the first bit of its right child ... finally we reach a

leaf, whose path indicates the binary representation of x′1. Repeating this procedure, we continue

to obtain x′2, x
′
3, ..., x

′
n. Hence, we are able to create the sequence X ′ = x′1x

′
2...x

′
n−1x

′
n if it exists.

It can be proved that the sequence X ′ can be successfully constructed if and only the following

condition is satisfied: For any γ ∈ Υb−1,

wT(Xγ) = |XγT|, wH(Xγ) = |XγH|,

where wT(X) counts the number of T’s in X and wH(X) counts the number of H’s in X.

Obviously, the binary sequences {Xγ} with γ ∈ Υb satisfy the above condition. Permuting them

into {X ′
γ} with γ ∈ Υb does not violate this condition. Hence, we can always construct a sequence

X ′ ∈ {0, 1, ...,m− 1}n, which yields {X ′
γ} with γ ∈ Υb.

This completes the proof.

Now, we divide all the possible input sequences in {0, 1, ...,m− 1}n into classes. Two sequences

X,X ′ ∈ {0, 1, ...,m− 1}n are in the same class if and only if the binary sequences obtained from X

and X ′ are permutations with each other, i.e., X ′
γ is a permutation of Xγ for all γ ∈ Υb. Here, we

use G to denote the set consisting of all such classes.

Lemma 2.5. All the sequences in a class G ∈ G have the same probability of being generated.
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Proof. Based on the probability distribution of each die roll {p0, p1, ..., pm−1}, we can get a group

of conditional probabilities, denoted as

qT|ϕ, qH|ϕ, qT|T, qH|T, qT|H, qH|H, qT|TT, qH|TT, ...,

where qa|γ is the conditional probability of generating a die roll xi such that in its binary represen-

tation the bit following a prefix γ is a.

Note that q0|γ + q1|γ = 1 for all γ ∈ Υb. For example, if {p0, p1, p2} = {0.2, 0.3, 0.5}, then

q0|ϕ = 0.5, q0|0 = 0.4, q0|1 = 1.

It can be proved that the probability of generating a sequence X ∈ {0, 1, ...,m− 1}n equals

∏
γ∈Υb

q
wT(Xγ)

T|γ q
wH(Xγ)

H|γ ,

where wT(X) counts the number of T’s in X and wH(X) counts the number of H’s in X. This

probability keeps unchanged when we permute Xγ to X ′
γ for all γ ∈ Υb.

This implies that all the elements in G have the same probability of being generated.

Lemma 2.6. Let Ψ be any function that generates random bits from a fixed number of coin tosses.

Given Zγ , Z
′
γ ∈ {0, 1}∗ for all γ ∈ Υb, we define

S = {X|∀γ ∈ Υb,Ψ(Xγ) = Zγ},

S′ = {X|∀γ ∈ Υb,Ψ(Xγ) = Z ′
γ}.

If |Zγ | = |Z ′
γ | for all γ ∈ Υb, i.e., Zγ and Z ′

γ have the same length, then for all G ∈ G,

|G
∩
S| = |G

∩
S′|,
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i.e., G
∩
S and G

∩
S′ have the same size.

Proof. We prove that for any θ ∈ Υb, if Zγ = Z ′
γ for all γ ̸= θ and |Zθ| = |Z ′

θ|, then

|G
∩
S| = |G

∩
S′|.

If this statement is true, we can obtain the conclusion in the lemma by replacing Zγ with Z ′
γ one

by one for all γ ∈ Υb.

In the class G, assume |Xθ| = nθ. Let us define Gθ as the subset of {0, 1}nθ consisting of all the

permutations of Xθ. We also define

Sθ = {Xθ|Ψ(Xθ) = Zθ},

S′
θ = {Xθ|Ψ(Xθ) = Z ′

θ}.

According to lemma 2.1, if Ψ can generate random bits from an arbitrary biased coin, then

|Gθ

∩
Sθ| = |Gθ

∩
S′
θ|.

This implies that all the elements in Gθ

∩
Sθ and those in Gθ

∩
S′
θ are one-to-one mapping.

Based on this result, we are ready to show that the elements in G
∩
S and those in G

∩
S′ are

one-to-one mapping: For any sequence X in G
∩
S, we get a series of binary sequences {Xγ} with

γ ∈ Υb. Given Z ′
θ with |Z ′

θ| = |Zθ|, we can find a (one-to-one) mapping of Xθ in Gθ

∩
S′
θ, denoted

by X ′
θ. Here, X ′

θ is a permutation of Xθ. According to lemma 2.4, there exists exactly one sequence

X ′ ∈ {0, 1, ...,m − 1}n such that it yields {Xϕ, XT, XH, ..., X
′
θ, ...}. Right now, we see that for any

sequence X in G
∩
S, we can always find its one-to-one mapping X ′ in G

∩
S′, which implies that

|G
∩
S| = |G

∩
S′|.

This completes the proof.
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Based on the lemma above, we get theorem 2.3.

Theorem 2.3. Let Ψ be any function that generates random bits from a fixed number of coin tosses.

Given a sequence X ∈ {0, 1, ...,m− 1}n with m ≥ 2 generated from an m-sided die, the generalized

scheme of Ψ generates an independent and unbiased sequence.

Proof. In order to prove that the binary sequence generated is independent and unbiased, we show

that for any two sequences Y1, Y2 ∈ {0, 1}k, they have the same probability to be generated. Hence,

each binary sequence of length k can be generated with probability ck
2k

for some 0 ≤ ck ≤ 1.

First, we let f : {0, 1, ...,m− 1}n → {0, 1}∗ be the function of the generalized scheme of Ψ, then

we write

P [f(X) = Y1] =
∑
G∈G

P [f(X) = Y1, X ∈ G].

According to lemma 2.5, all the elements in G have the same probability of being generated.

Hence, we denote this probability as pG, and the formula above can written as

P [f(X) = Y1] =
∑
G∈G

pG|{X ∈ G, f(X) = Y1}|.

Let Zγ ∈ {0, 1}∗ be the sequence of bits generated from the node corresponding to γ for all

γ ∈ Υb, then Y1 =
∑

γ∈Υb
Zγ . We get that P [f(X) = Y1] equals

∑
G∈G

∑
{Zγ :γ∈Υb}

pG|{X ∈ G,∀γ ∈ Υb,Ψ(Xγ) = Zγ}|

×I∑
γ∈Υb

Zγ=Y1
,

where I∑
γ∈Υb

Zγ=Y1
= 1 if and only if

∑
γ∈Υb

Zγ = Y1, otherwise it is zero.

Similarly, P [f(X) = Y2] equals

∑
G∈G

∑
{Z′

γ :γ∈Υb}

pG|{X ∈ G,∀γ ∈ Υb,Ψ(Xγ) = Z ′
γ}|
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×I∑
γ∈Υb

Z′
γ=Y2

,

If |Z ′
γ | = |Zγ | for all γ ∈ Υb, then based on lemma 2.6, we can get

|{X ∈ G,∀γ ∈ Υb,Ψ(Xγ) = Zγ}|

= |{X ∈ G,∀γ ∈ Υb,Ψ(Xγ) = Z ′
γ}|.

Substituting it into the expressions of P [f(X) = Y1] and P [f(X) = Y2] shows

P [f(X) = Y1] = P [f(X) = Y2].

So we can conclude that for any binary sequences of the same length, they have the same prob-

ability of being generated. Furthermore, we can conclude that the bits generated are independent

and unbiased.

This completes the proof.

2.3.4 Optimality

In this subsection, we show that the universal scheme keeps the optimality of original algorithms,

i.e., if the binary algorithm is asymptotically optimal, like Elias’s algorithm or Peres’s algorithm,

its generalized version is also asymptotically optimal. Here, we say an algorithm is asymptotically

optimal if and only if the number of random bits generated per input symbol is asymptotically equal

to the entropy of an input symbol.

Theorem 2.7. Given an m-sided die with probability distribution ρ = (p0, p1, ..., pm−1), let n be

the number of symbols (dice rolls) used in the generalized scheme of Ψ and let k be the number of

random bits generated. If Ψ is asymptotically optimal, then the generalized scheme of Ψ is also

asymptotically optimal, that means

lim
n→∞

E[k]

n
= H(ρ),
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where

H(ρ) = H(p0, p1, ..., pm−1) =

m−1∑
i=0

pi log2
1

pi

is the entropy of the m-sided die.

Proof. We prove this by induction. Using the same notations as above, we have the depth of the

binarization tree b = ⌈log2m⌉ − 1. If b = 0, i.e., m ≤ 2, the algorithm is exactly Ψ. Hence, it is

asymptotically optimal on efficiency. Now, assume that the conclusion holds for any integer b − 1,

we show that it also holds for the integer b.

Since the length-(b + 1) binary representations of {0, 1, ..., 2b − 1} start with 0, the probability

for a symbol starting with 0 is

q0 =

2b−1∑
i=0

pi.

In this case, the conditional probability distribution of these symbols is

{p0
q0
,
p1
q0
, ...,

p2b−1

q0
}.

Similarly, let

q1 =
m∑

i=2b

pi,

then the conditional probability distribution of the symbols starting with 1 is

{p2b
q1
,
p2b+1

q1
, ...,

pm−1

q1
}.

When n is large enough, the number of symbols starting with 0 approaches nq0 and the number

of symbols starting with 1 approaches nq1. According to our assumption for b− 1, the total number

of random bits generated approaches

nH(q0, q1) + nq0H(
p0
q0
,
p1
q0
, ...,

p2b−1

q0
)
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+nq1H(
p2b

q1
,
p2b+1

q1
, ...,

pm−1

q1
),

which equals

nq0 log2
1

q0
+ nq1 log2

1

q1
+ nq0

2b−1∑
i=0

pi
q0

log2
q0
pi

+nq1

m−1∑
i=2b

pi
q1

log2
q1
pi

= n
m−1∑
i=0

pi log2
1

pi

= nH(p0, p1, ..., pm−1).

This completes the proof.

2.4 Efficient Generation of k Random Bits

2.4.1 Motivation

Most existing works on random bits generation from biased coins aim at maximizing the expected

number of random bits generated from a fixed number of coin tosses. Falling into this category,

Peres’s scheme and Elias’s scheme are asymptotically optimal for generating random bits. However,

in these methods, the number of random bits generated is a random variable. In some occasions, we

prefer to generate a prescribed number of random bits, hence it motivates us an opposite question:

fixing the number of random bits to generate, i.e., k bits, how can we minimize the expected number

of coin tosses? This question is equally important as the original one, since in many applications a

prescribed number of random bits are required while the source is usually a stream of coin tosses

instead of a sequence of fixed length. But the existing study on this question is very limited.

To generate k random bits, we are always able to make use of the existing schemes with fixed

input length and variable output length like Peres’s scheme or Elias’s scheme. For example, we

can keep reading n tosses (H or T) for several times and concatenate their outputs until the total

number of random bits generated is slightly larger than k. However, if n is small, this approach is
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less information efficient. If n is large, this approach may generate too many extra random bits,

which can be treated as a waste. In this section, we propose an algorithm to generate exactly k

random bits efficiently. It is motivated by the Elias’s scheme. It can be proved that this algorithm

is asymptotically optimal, namely, the expected number of coin tosses required per random bit

generated is asymptotically equal to one over the entropy of the biased coin.

2.4.2 An Iterative Scheme

It is not easy to generate k random bits directly from a biased coin with very high information

efficiency. Our approach of achieving this goal is to generate random bits iteratively – we first

produce m ≤ k random bits, where m is a variable number that is equal to or close to k with very

high probability. In next step, instead of trying to generate k random bits, we try to generate k−m

random bits ... we repeat this procedure until generating total k random bits.

How can we generate m random bits from a biased coin such that m is variable number that

is equal to or very close to k? Our idea is to construct a group of disjoint prefix sets, denoted

by S1, S2, ..., Sw, such that (1) all the sequences in a prefix set Si with 1 ≤ i ≤ w have the same

probability of being generated, and (2) S = S1

∪
S2

∪
...
∪
Sw form a stopping set, namely, we can

always get a sequence in S (or with probability almost 1) when keeping reading tosses from a biased

coin. For example, we can let

S1 = {HH,HT},

S2 = {THH,TTT},

S3 = {THT,TTH}.

Then S = S1

∪
S2

∪
S3 forms a stopping set, which is complete and prefix-free.

In the scheme, we let all the sequences in Si for all 1 ≤ i ≤ w have the same probability, i.e.,

Si consists of sequences with the same number of H’s and T’s. We select criteria carefully such

that |Si| is slightly larger than 2k. Similarly as Elias’s original scheme, we assign output binary
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sequences to all the members in Si for all 1 ≤ i ≤ w. Let W be the number of members that were

not assigned yet in a prefix set, then 2j possible output binary sequences of length j are assigned to

2j distinct unassigned members, where j = k if W ≥ 2k and 2j ≤ W < 2j+1 if W < 2k. We repeat

the procedure above for the rest of the members that were not assigned.

Theorem 2.8. The above method generates m random bits for some m with 0 ≤ m ≤ k.

Proof. It is easy to see that the above method never generates a binary sequence longer than k. We

only need to prove that for any binary sequences Y, Y ′ ∈ {0, 1}m, they have the same probability of

being generated.

Let f denote the function corresponding to the above method. Then

P [f(X) = Y ] =
w∑
i=1

P [X ∈ Si]P [f(X) = Y |X ∈ Si].

Given X ∈ Si, we have P [f(X) = Y |X ∈ Si] = P [f(X) = Y ′|X ∈ Si], which supports our claim

that any two binary sequences of the same length have the same probability of being generated.

The next question is how to construct such prefix sets S1, S2, ..., Sw. Let us first consider the

construction of their union, i.e., the stopping set S. Given a biased coin, we design an algorithm

that reads coin tosses and stops the reading until it meets the first input sequence that satisfies

some criterion. For instance, let k1 be the number of H’s and k2 be the number of T’s in the current

input sequence, one possible choice is to read coin tosses until we get the first sequence such that(
k1 + k2
k1

)
≥ 2k. Such an input sequence is a member in the stopping set S. However, this criterion

is not the best one that we can have, since it will introduce too many iterations to generate k random

bits. To reduce the number of iterations, we hope that the size of each prefix set, saying Si, is slightly

larger than 2k. As a result, we use the following stopping set:

S = {the first sequence s.t.

(
k1 + k2
k1

)
≥ 2k(k1 + k2)

min(k1, k2)
}.

Later, we will show that the selection of such a stopping set can make the number of iterations very
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small.

Now we divide all the sequences in the stopping set S into different classes, i.e., the prefix sets

S1, S2, ..., Sw, such that each prefix set consists of the sequences with the same number of H’s and

T’s. Assume Sk1,k2 is a nonempty prefix set that consists of sequences with k1 H’s and k2 T’s, then

Sk1,k2 = Gk1,k2

∩
S,

where Gk1,k2 is the set consisting of all the sequences with k1 H’s and k2 T’s. According to the

stopping set constructed above, we have

Sk1,k2 = {x ∈ Gk1,k2 |
(
k1 + k2
k1

)
≥ 2k(k1 + k2)

min(k1, k2)
,

(
k1 + k2 − 1

k′1

)
<

2k(k1 + k2 − 1)

min(k′1, k
′
2)

},

where k′1 is the number of H’s in x without considering the last symbol and k′2 is the number of H’s

in x without considering the last symbol. So if the last symbol of x is H, then k′1 = k1 − 1, k′2 = k2;

if the last symbol of x is T, then k′1 = k1, k
′
2 = k2 − 1. According to the expression of Sk1,k2 , we see

that the sequences in a prefix set are not prefixes of sequences in another prefix set. Furthermore,

we can prove that the size of each prefix set is at least 2k.

Lemma 2.9. If Sk1,k2
̸= ϕ, then |Sk1,k2

| ≥ 2k.

Proof. Without loss of generality, we assume that k1 ≤ k2, hence,

(
k1 + k2
k1

)
≥ 2k(k1+k2)

k1
. It also

implies k1 ≥ 1. To prove |Sk1,k2 | ≥ 2k, we show that Sk1,k2 includes all the sequences x ∈ Gk1,k2

ending with H. If x ∈ Gk1,k2 ending with H does not belong to Sk1,k2 , then

(
k1 + k2 − 1

k′1

)
≥ 2k(k1 + k2 − 1)

k′1
.

From which, we can get (
k1 + k2 − 1

k1

)
≥ 2k(k1 + k2 − 1)

k1
.
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It further implies that all the sequences x ∈ Gk1,k2 ending with T are also not members in Sk1,k2 .

So Sk1,k2 is empty. It is a contradiction.

The number of sequences x ∈ Gk1,k2 ending with H is

(
k1 + k2 − 1

k1 − 1

)
=

(
k1 + k2
k1

)
k1

k1 + k2
≥ 2k.

So the size of Sk1,k2 is at least 2k if Sk1,k2 ̸= ϕ. This completes the proof.

Based on the construction of prefix sets, we can get an algorithm Φk for generating m random

bits with 0 ≤ m ≤ k, described as follows.

Algorithm Φk

Input: A stream of biased coin tosses.

Output: m bits with 0 ≤ m ≤ k.

(1) Reading coin tosses until there are k1 H’s and k2 T’s for some k1 and k2 such that

(
k1 + k2
k1

)
≥ 2k(k1 + k2)

min(k1, k2)
.

(2) Let X denote the current input sequence of coin tosses. If the last coin toss is H, we let

k′1 = k1 − 1, k′2 = k2; otherwise, we let k′1 = k1, k
′
2 = k2 − 1. We remove this coin toss from X if

(
k1 + k2 − 1

k′1

)
≥ 2k(k1 + k2 − 1)

min(k′1, k
′
2)

.

(3) Let ΨE denote the Elias’s function1 for generating random bits from a fixed number of coin

tosses. A fast computation of ΨE was provided by Ryabko and Matchikina in [99]. The output

of the algorithm Ψk is ΨE(X) or the last k bits of ΨE(X) if ΨE(X) is longer than k.

According to lemma 2.9, we can easily get the following conclusion.

1Here, an arbitrary algorithm for generating random bits from a fixed number of coin tosses works.



31

Corollary 2.10. The algorithm Φk generates m random bits for some m with 0 ≤ m ≤ k, and

m = k with probability at least 1/2.

Proof. The sequence generated by Φk is independent and unbiased. This conclusion is immediate

from lemma 2.9. Assume that the input sequence x ∈ Si for some i with 1 ≤ i ≤ w, then the

probability of m = k is

⌊ |Si|
2k

⌋2k

|Si|
,

which is at least 1/2 based on the fact that |Si| ≥ 2k. Since this conclusion is true for all Si with

1 ≤ i ≤ w, we can claim that m = k with probability at least 1/2.

Since the algorithm Φk generates m random bits for some m with 0 ≤ m ≤ k from an arbitrary

biased coin, we are able to generate k bits iteratively: After generating m random bits, we apply

the algorithm Φk−m for generating k − m bits. Repeating this procedure, the total number of

random bits generated will converge to k very quickly. We call this scheme as an iterative scheme

for generating k random bits.

To generate k random bits, we do not want to iterate Φk too many times. Fortunately, in the

following theorem, we show that in our scheme the expected number of iterations is upper bounded

by a constant 2.

Theorem 2.11. The expected number of iterations in the iterative scheme for generating k random

bits is at most 2.

Proof. According to corollary 2.10, Φk generates m = k random bits with probability at least 1/2.

Hence, the scheme stops at each iteration with probability more than 1/2. Following this fact, the

result in the theorem is immediate.

2.4.3 Optimality

In this subsection, we study the information efficiency of the iterative scheme and show that this

scheme is asymptotically optimal.
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Lemma 2.12. Given a biased coin with probability p being H, let n be the number of coin tosses

used by the algorithm Φk, then

lim
k→∞

E[n]

k
≤ 1

H(p)
.

Proof. We consider the probability of having an input sequence of length at least n, denote as Pn.

In this case, we can write n = k1 + k2, where k1 is the number of H’s and k2 is the number of T’s.

According to the construction of the stopping set,

(
n− 1

min(k1, k2)− 1

)
< 2k

n− 1

min(k1, k2)− 1
.

Or we can write it as (
n− 2

min(k1, k2)− 2

)
< 2k.

Hence, we get an upper bound for min(k1, k2), which is

tn = max{i ∈ {0, 1, ..., n}|
(
n− 2

i− 2

)
< 2k}. (2.1)

Note that if

(
n− 2
n
2 − 2

)
≥ 2k, then tn is a nondecreasing function of n.

According to the symmetry of our criteria, we can get

Pn ≤
tn∑
i=0

(pi(1− p)n−i + (1− p)ipn−i)

(
n

i

)
.

For convenience, we write

Qn =

tn∑
i=0

(pi(1− p)n−i + (1− p)ipn−i)

(
n

i

)
,

then Pn ≤ Qn and Qn is also a nondecreasing function of n.
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Now, we are ready to calculate the expected number of coin tosses required, which equals

E[n] =
∞∑

n=1

(Pn − Pn+1)n =
∞∑

n=1

Pn (2.2)

≤

k
H(p)

(1+ϵ)∑
n=1

Pn +
∞∑

n= k
H(p)

(1+ϵ)

Qn +
∞∑

n=2 k
H(p)

(1+ϵ)

Qn,

where ϵ > 0 is a small constant. In the rest, we study the upper bounds for all the three terms when

n is large enough.

For the first term, we have
k

H(p)
(1+ϵ)∑

n=1

Pn ≤ k

H(p)
(1 + ϵ). (2.3)

Now let us consider the second term

2 k
H(p)

(1+ϵ)∑
n= k

H(p)
(1+ϵ)

Qn ≤ k

H(p)
(1 + ϵ)Q k

H(p)
(1+ϵ).

Using the Stirling bounds on factorials yields

lim
n→∞

1

n
log2

(
n

ρn

)
= H(ρ),

where H is the binary entropy function. Hence, following (2.1), we can get

lim
n→∞

H(
tn
n
) = lim

n→∞

k

n
.

When n = k
H(p) (1 + ϵ), we can write

lim
n→∞

H(
tn
n
) =

H(p)

1 + ϵ
,

which implies that

lim
n→∞

tn
n

= p− ϵ1
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for some ϵ1 > 0. So there exists an N1 such that for n > N1,
nt

n ≤ p− ϵ1/2.

By the weak law for the binomial distribution, given any ϵ2 > 0 and δ > 0, there is an N2 such

that for n > N2, with probability at least 1 − δ there are i H’s among the n coin tosses such that

| in − p| ≤ ϵ2. Letting ϵ2 = ϵ1/2 and n = k
H(p) (1 + ϵ) gives

Qn ≤ δ,

for any δ > 0 when n > max(N1, N2).

So for any δ > 0, when k is large enough, we have

2 k
H(p)

(1+ϵ)∑
n= k

H(p)
(1+ϵ)

Qn ≤ k

H(p)
(1 + ϵ)δ. (2.4)

To calculate the third term, we notice that Qn decays very quickly as n increase when n ≥

2 k
H(p) (1 + ϵ). In this case,

Qn+1

Qn

=

∑tn+1

i=0 (pi(1− p)n+1−i + (1− p)ipn+1−i)

(
n+ 1

i

)
∑tn

i=0(p
i(1− p)n−i + (1− p)ipn−i)

(
n

i

)

≤

∑tn
i=0(p

i(1− p)n+1−i + (1− p)ipn+1−i)

(
n+ 1

i

)
∑tn

i=0(p
i(1− p)n−i + (1− p)ipn−i)

(
n

i

)

≤ tn
max
i=0

(pi(1− p)n+1−i + (1− p)ipn+1−i)

(
n+ 1

i

)
(pi(1− p)n−i + (1− p)ipn−i)

(
n

i

)
≤ (1− p)

tn
max
i=1

n+ 1

n+ 1− tn

≤ (1− p)n

n− tn
.
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When n ≥ 2 k
H(p) (1 + ϵ), we have

lim
n→∞

H(
tn
n
) = lim

n→∞

k

n
≤ H(p)

2(1 + ϵ)
.

This implies that when n is large enough, H( tnn ) ≤ H(p)
2 . Let us define a constant α such that α ≤ 1

2

and H(α) = H(p)
2 . Then for all n ≥ 2 k

H(p) (1 + ϵ), when k is large enough,

Qn+1

Qn
≤ 1− p

1− α
< 1.

Therefore, given any δ > 0, when k is large enough, the value of the third term

∞∑
n=2 k

H(p)
(1+ϵ)

Qn ≤ Q2 k
H(p)

(1+ϵ)

∞∑
i=0

(
1− p

1− α
)i

≤ Q k
H(p)

(1+ϵ)

1

1− 1−p
1−α

≤ 1− α

p− α
δ. (2.5)

Substituting (2.3), (2.4), and (2.5) into (2.2) yields that for any ϵ > 0 and δ > 0, if k is large

enough, we have

E[n] ≤ k

H(p)
(1 + ϵ)(1 + δ) +

1− α

p− α
δ,

with α < p.

Then it is easy to get that

lim
k→∞

E[n]

k
≤ 1

H(p)
.

This completes the proof.

Theorem 2.13. Given a biased coin with probability p being H, let n be the number of coin tosses

required to generate k random bits in the iterative scheme, then

lim
k→∞

E[n]

k
=

1

H(p)
.



36

Proof. First, we prove that limk→∞
E[n]
k ≥ 1

H(p) . Let X ∈ {0, 1}∗ be the input sequence, then

lim
k→∞

E[n]H(p)

H(X)
= 1.

Shannon’s theory tells us that it is impossible to extract more than H(X) random bits from X,

i.e., H(X) ≥ k. So

lim
k→∞

E[n]

k
≥ 1

H(p)
.

To get the conclusion in the theorem, we only need to show that

lim
k→∞

E[n]

k
≤ 1

H(p)
.

To distinguish the n in this theorem and the one in the previous theorem, we use n(k) denote the

number of coin tosses required to generate k random bits in the iterative scheme and let nΦ(k) denote

the number of coin tosses required by Φk. Let pm be the probability for Φk generating m random

bits with 0 ≤ m ≤ k. Then we have that

E[n(k)] = E[nΦ(k)] +
k∑

m=0

pmE[n(k−m)]. (2.6)

According to the algorithm, pk ≥ 1
2 and E[n(k−m)] ≤ E[n(k)]. Substituting them into the

equation above gives

E[n(k)] ≤ E[nΦ(k)] +
1

2
E[n(k)],

i.e., E[n(k)] ≤ 2E[nΦ(k)].

Now, we divide the second term in (2.6) into two parts such that

E[n(k)] ≤ E[nΦ(k)] +
k−ϵk∑
m=0

pmE[n(k−m)] +
k∑

m=k−ϵk

pmE[n(k−m)],
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for a constant ϵ > 0. In which,

k−ϵk∑
m=0

pmE[n(k−m)] ≤ (
k−ϵk∑
m=0

pm)2E[nΦ(k)],

k∑
m=k−ϵk

pmE[n(k−m)] ≤ 2E[nΦ(ϵk)].

Hence

E[n(k)] ≤ E[nΦ(k)] + (
k−ϵk∑
m=0

pm)2E[nΦ(k)] + 2E[nΦ(ϵk)]. (2.7)

Given k, all the possible input sequences are divided into w prefix sets S1, S2, ..., Sw, where w

can be an infinite number. Given an input sequence X ∈ Si for 1 ≤ i ≤ w, we are considering the

probability for Φk generating a sequence of length m.

In our algorithm, |Si| ≥ 2k. Assume

|Si| = αk2
k + αk−12

k−1 + ...+ α02
0,

where αk ≥ 1 and 0 ≤ α0, α1, ..., αk−1 ≤ 1. Given the condition X ∈ Si, we have

k−ϵk∑
m=0

pm =

∑k−ϵk
i=0 αi2

i∑k
i=0 αi2i

≤ 2k−ϵk+1

2k + 2k−ϵk+1
≤ 2k−ϵk+1

2k
.

So given any δ > 0, when k is large enough, we have

k−ϵk∑
m=0

pm ≤ δ. (2.8)

Although we reach this conclusion for X ∈ Si, this conclusion holds for any Si with 0 ≤ i ≤ w.

Hence, we are able to remove this constrain that X ∈ Si.

According to the previous lemma, for any δ > 0, when k is large enough, we have

E[nΦ(ϵk)]

ϵk
≤ 1

H(p)
+ δ, (2.9)
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E[nΦ(k)]

k
≤ 1

H(p)
+ δ. (2.10)

Substituting (2.8), (2.9), and (2.10) into (2.7) gives us

E[n(k)] ≤ k(
1

H(p)
+ δ)(1 + 2δ) + 2kϵ(

1

H(p)
+ δ).

From which, we obtain

lim
k→∞

E[n]

k
= lim

k→∞

E[n(k)]

k
≤ 1

H(p)
.

This completes the proof.

The theorem above shows that the iterative scheme is asymptotically optimal, i.e., the expected

number of coin tosses for generating k random bits approaches the information theoretic bound by

below when k becomes large.

2.5 Conclusion

In this chapter, we have presented a universal scheme that transforms an arbitrary algorithm for

2-faced coins to generate random bits from general m-sided dice, hence enabling the application

of existing algorithms to general sources. Although a similar question has been studied before, as

in [61], their solution can only be applied to a specified algorithm, i.e., Elias’s algorithm.

The second contribution of this chapter is an efficient algorithm for generating a prescribed

number of random bits from an arbitrary biased coin. In many applications, this is a natural way

of considering the problem of random bits generation from biased coins, but it is not well studied

in the literature. This problem is similar to the one studied in universal variable-to-fixed length

codes, which are used to parse an infinite sequence into variable-length phases. Each phase is then

encoded into a fixed number of bits. In [74], Lawrence devised a variable-to-fixed length code for

the class of binary memoryless sources (biased coins), which is based on Pascal’s triangle (so is

our algorithm). Tjalkens and Willems [114] modified Lawrence’s algorithm as a more natural and
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simple implementation, and they showed that the rate of the resulting code converges asymptotically

optimally fast to the source entropy. These universal variable-to-fixed length codes are probably

capable to generate random bits asymptotically in some (week) sense, namely, the random bits

generated in this way are not perfect, and they cannot satisfy the typical requirement based on

statistical distance (widely used in computer science).
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Chapter 3

Random Number Generation from
Markov Chains

This chapter studies the problem of efficiently generating random bits from Markov chains

and provides the first known algorithm that generates unbiased random bits from an arbi-

trary finite Markov chain, operates in expected linear time and achieves the information-

theoretic upper bound on efficiency.1

3.1 Introduction

In this chapter, we study the problem of generating random bits from an arbitrary and unknown

finite Markov chain (the transition matrix is unknown). The input to our problem is a sequence

of symbols that represent a random trajectory through the states of the Markov chain; given this

input sequence our algorithm generates an independent unbiased binary sequence called the output

sequence. This problem was first studied by Samuelson [101]. His approach was to focus on a single

state (ignoring the other states) treat the transitions out of this state as the input process, hence,

reducing the problem of correlated sources to the problem of a single ‘independent’ random source;

obviously, this method is not efficient. Elias [33] suggested to utilize the sequences related to all

states: Producing an ‘independent’ output sequence from the transitions out of every state and

then pasting (concatenating) the collection of output sequences to generate a long output sequence.

1 Some of the results presented in this chapter have been previously published in [138] and [139].
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However, neither Samuelson nor Elias proved that their methods work for arbitrary Markov chains,

namely, they did not prove that the transitions out of each state are independent. In fact, Blum [14]

probably realized it, as he mentioned that: (i) “Elias’s algorithm is excellent, but certain difficulties

arise in trying to use it (or the original von Neumann scheme) to generate bits in expected linear time

from a Markov chain,” and (ii) “Elias has suggested a way to use all the symbols produced by a MC

(Markov Chain). His algorithm approaches the maximum possible efficiency for a one-state MC. For

a multi-state MC, his algorithm produces arbitrarily long finite sequences. He does not, however,

show how to paste these finite sequences together to produce infinitely long independent unbiased

sequences.” Blum [14] derived a beautiful algorithm to generate random bits from a degree-2 Markov

chain in expected linear time by utilizing the von Neumann scheme for generating random bits from

biased coin flips. While his approach can be extended to arbitrary out-degrees (the general Markov

chain model used in this chapter), the information efficiency is still far from optimal due to the low

information efficiency of the von Neumann scheme.

We generalize Blum’s algorithm to arbitrary-degree finite Markov chains and combine it with

existing methods for efficient generation of unbiased bits from biased coins, such as Elias’s method.

As a result, we provide the first known algorithm that generates unbiased random bits from arbitrary

finite Markov chains, operates in expected linear time and achieves the information-theoretic upper

bound on efficiency. Specifically, we propose an algorithm (that we call algorithm A), that is a simple

modification of Elias’s suggestion to generate random bits; it operates on finite sequences and its

efficiency can asymptotically reach the information-theoretic upper bound for long input sequences.

In addition, we propose a second algorithm, called algorithm B, that is a combination of Blum’s

and Elias’s algorithms, it generates infinitely long sequences of random bits in expected linear time.

One of our key ideas for generating random bits is that we explore equal-probability sequences of

the same length. Hence, a natural question is: Can we improve the efficiency by utilizing as many

as possible equal-probability sequences? We provide a positive answer to this question and describe

algorithm C, that is the first known polynomial-time and optimal algorithm (it is optimal in terms

of information efficiency for an arbitrary input length) for random bit generation from finite Markov
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chains.

The remainder of this chapter is organized as follows. Section 3.2 introduces some existing works

in generating random bits from Markov chains and discusses the challenges. Section 3.3 presents our

main lemma that characterizes the exit sequences of Markov chains. Algorithm A is presented and

analyzed in section 3.4, it is related to Elias’s ideas for generating random bits from Markov chains.

Algorithm B is presented in section 3.5, it is a generalization of Blum’s algorithm. An optimal

algorithm, called algorithm C, is described in section 3.6. Finally, section 3.7 provides numerical

evaluations of our algorithms.

3.2 Preliminaries

3.2.1 Notations

For the convenience of descriptions, the following notations will be used in this chapter:

xa : the ath element of X

X[a] : same as xa, the ath element of X

X[a : b] : subsequence of X from the ath to bth element

Xa : X[1 : a]

X ∗ Y : the concatenation of X and Y ,

e.g., s1s2 ∗ s2s1 = s1s2s2s1

Y ≡ X : Y is a permutation of X,

e.g., s1s2s2s3 ≡ s3s2s2s1

Y
.
= X : Y is a permutation of X and y|Y | = x|X|

namely the last element is fixed,

e.g., s1s2s2s3
.
= s2s2s1s3 where s3 is fixed
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3.2.2 Exit Sequences

Our goal is to efficiently generate random bits from a Markov chain with unknown transition prob-

abilities. The model we study is that a Markov chain generates the sequence of states that it is

visiting and this sequence of states is the input sequence to our algorithm for generating random

bits. Specifically, we express an input sequence as X = x1x2...xN with xi ∈ {s1, s2, ..., sn}, where

{s1, s2, ..., sn} indicate the states of a Markov chain.

One idea is that for a given Markov chain, we can treat each state, say s, as a coin and consider

the ‘next states’ (the states the chain has transitioned to after being at state s) as the results of

a coin toss. Namely, we can generate a collection of sequences π(X) = [π1(X), π2(X), ..., πn(X)],

called exit sequences, where πi(X) is the sequence of states following si in X, namely,

πi(X) = {xj+1|xj = si, 1 ≤ j < N}.

For example, assume that the input sequence is

X = s1s4s2s1s3s2s3s1s1s2s3s4s1.

If we consider the states following s1 we get π1(X) as the set of states in boldface:

X = s1s4s2s1s3s2s3s1s1s2s3s4s1.

Hence, the exit sequences are:

π1(X) = s4s3s1s2;

π2(X) = s1s3s3;

π3(X) = s2s1s4;

π4(X) = s2s1.
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Lemma 3.1 (Uniqueness). An input sequence X can be uniquely determined by x1 and π(X).

Proof. Given x1 and π(X), according to the work of Blum in [14], x1x2...xN can uniquely be con-

structed in the following way: Initially, set the starting state as x1. Inductively, if xi = sk, then set

xi+1 as the first element in πk(X) and remove the first element of πk(X). Finally, we can uniquely

generate the sequence x1x2...xN .

Lemma 3.2 (Equal-probability). Two input sequences X = x1x2...xN and Y = y1y2...yN with

x1 = y1 have the same probability to be generated if πi(X) ≡ πi(Y ) for all 1 ≤ i ≤ n.

Proof. Note that the probability of generating X is

P [X] = P [x1]P [x2|x1]...P [xN |xN−1]

and the probability of generating Y is

P [Y ] = P [y1]P [y2|y1]...P [yN |yN−1].

By permutating the terms in the expression above, it is not hard to get that P [X] = P [Y ] if x1 = y1

and πi(X) ≡ πi(Y ) for all 1 ≤ i ≤ n. Basically, the exit sequences describe the edges that are used

in the trajectory in the Markov chain. The edges in the trajectories that correspond to X and Y

are identical, hence P [X] = P [Y ].

3.2.3 Samulson and Elias’s Methods

In [101], Samuelson considered a two-state Markov chain, and he pointed out that it may generate

unbiased random bits by applying the von Neumann scheme to the exit sequence of state s1. Later,

in [33], in order to increase the efficiency, Elias has suggested a scheme that uses all the symbols

produced by a Markov chain. His main idea was to create the final output sequence by concatenating

the output sequences that correspond to π1(X), π2(X), .... However, neither Samuelson nor Elias



45

Table 3.1. Probabilities of exit sequences

Input sequence Probability Ψ(π1(X)) Ψ(π1(X)) ∗Ψ(π2(X))

s1s1s1s1 (1− p1)
3 ϕ ϕ

s1s1s1s2 (1− p1)
2p1 0 0

s1s1s2s1 (1− p1)p1p2 0 0

s1s1s2s2 (1− p1)p1(1− p2) 0 0

s1s2s1s1 p1p2(1− p1) 1 1

s1s2s1s2 p21p2 ϕ ϕ

s1s2s2s1 p1(1− p2)p2 ϕ 1

s1s2s2s2 p1(1− p2)
2 ϕ ϕ

proved that their methods produce random output sequences that are independent and unbiased.

In fact, their proposed methods are not correct for some cases. To demonstrate it we consider:

(1) Ψ(π1(X)) as the final output. (2) Ψ(π1(X)) ∗ Ψ(π2(X)) ∗ ... as the final output. For example,

consider the two-state Markov chain in which P [s2|s1] = p1 and P [s1|s2] = p2, as shown in figure

3.1.

1
s

2
s

1
p

2
p

1
1 p-

2
1 p-

Figure 3.1. An example of Markov chain with two states.

Assume that an input sequence of length N = 4 is generated from this Markov chain and the

starting state is s1, then the probabilities of the possible input sequences and their corresponding

output sequences are given in table 3.1. In the table we can see that the probabilities to produce 0

or 1 are different for some p1 and p2 in both methods, presented in columns 3 and 4, respectively.

3.2.4 Blum’s Algorithm

In [14], Blum proposed a beautiful algorithm to generate an independent unbiased sequence of 0s

and 1s from any Markov chain by extending the von Neumann’s scheme. His algorithm can deal
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with infinitely long sequences and uses only constant space and expected linear time. His algorithm

can be described as follows.

Blum’s Algorithm

Input: A sequence (or a stream) x1x2... produced by a Markov chain, where xi ∈ {s1, s2, ..., sn}.

Output: A sequence (or a stream) Y of 0s and 1s.

Main Function:

Ei = ϕ (empty) for all 1 ≤ i ≤ n.

ki = 1 for all 1 ≤ i ≤ n.

c : the index of current state, namely, sc = x1.

while next input symbol is sj ( ̸= null) do

Ec = Ecsj (Add sj to Ec).

if |Ej | ≥ 2 then

Output 1 if Ej = susv with u > v;

Output 0 if Ej = susv with u < v.

Ej = ϕ.

kj = kj + 1.

end if

c = j.

end while

The beauty of this algorithm is its simplicity and elegance. It extends the original one-coin von

Neumann scheme to generate an independent sequence from any Markov chain in expected linear

time. Blum further demonstrated that the timing of announcing the random bits is crucial, namely,

the order of the output bits matters.
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3.3 Main Lemma

3.3.1 Description

The problem of generating random bits from an arbitrary Markov chain is challenging, as Blum said

in [14]: “Elias’s algorithm is excellent, but certain difficulties arise in trying to use it (or the original

von Neumann scheme) to generate random bits in expected linear time from a Markov chain.” It

seems that the exit sequence of a state is independent since each exit of the state will not affect the

other exits. However, this is not always true when the length of the input sequence is given, say N .

Let us still consider the example of the two-state Markov chain in figure 3.1. Assume the starting

state of this Markov chain is s1, if 1− p1 > 0, then with nonzero probability we have

π1(X) = s1s1...s1,

whose length is N − 1. But it is impossible to have

π1(X) = s2s2...s2

of length N − 1. That means π1(X) is not an independent sequence. The main reason is that

although each exit of a state will not affect the other exits, it will affect the length of the exit

sequence. In fact, π1(X) is an independent sequence if the length of π1(X) is given, instead of

giving the length of X.

In this chapter, we consider this problem from another perspective. According to lemma 3.2, we

know that permutating the exit sequences does not change the probability of a sequence, however,

the permuted sequence has to correspond to a trajectory in the Markov chain. The reason for

this contingency is that in some cases the permuted sequence does not correspond to a trajectory:

Consider the following example,

X = s1s4s2s1s3s2s3s1s1s2s3s4s1,
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and

π(X) = [s4s3s1s2, s1s3s3, s2s1s4, s2s1].

If we permute the last exit sequence s2s1 to s1s2, we cannot get a new sequence such that its starting

state is s1 and its exit sequences are

[s4s3s1s2, s1s3s3, s2s1s4, s1s2].

This can be verified by attempting to construct the sequence using Blum’s method (which is given

in the proof of lemma 3.1). Notice that if we permute the first exit sequence s4s3s1s2 into s1s2s3s4,

we can find such a new sequence, which is

Y = s1s1s2s1s3s2s3s1s4s2s3s4s1.

This observation motivated us to study the characterization of exit sequences that are feasible in

Markov chains (or finite state machines).

Definition 3.1 (Feasibility). Given a Markov chain, a starting state sα and a collection of sequences

Λ = [Λ1,Λ2, ...,Λn], we say that (sα,Λ) is feasible if and only if there exists a sequence X that

corresponds to a trajectory in the Markov chain such that x1 = sα and π(X) = Λ.

Based on the definition of feasibility, we present the main technical lemma of the chapter. Re-

peating the notation from the beginning of the chapter, we say that a sequence Y is a tail-fixed

permutation of X, denoted as Y
.
= X, if and only if (1) Y is a permutation of X, and (2) X and Y

have the same last element, namely, y|Y | = x|X|.

Lemma 3.3 (Main lemma: feasibility and equivalence of exit sequences). Given a starting state

sα and two collections of sequences Λ = [Λ1,Λ2, ...,Λn] and Γ = [Γ1,Γ2, ...,Γn] such that Λi
.
= Γi

(tail-fixed permutation) for all 1 ≤ i ≤ n. Then (sα,Λ) is feasible if and only if (sα,Γ) is feasible.

The proof of this main lemma will be given in the next section. According to the main lemma,



49

we have the following equivalent statement.

Lemma 3.4 (Feasible permutations of exit sequences). Given an input sequence X = x1x2...xN with

xN = sχ that produced from a Markov chain. Assume that [Λ1,Λ2, ...,Λn] is an arbitrary collection

of exit sequences that corresponds to the exit sequences of X as follows:

1. Λi is a permutation (≡) of πi(X), for i = χ.

2. Λi is a tail-fixed permutation (
.
=) of πi(X), for i ̸= χ.

Then there exists a feasible sequence X ′ = x′1x
′
2...x

′
N such that x′1 = x1 and π(X ′) = [Λ1,Λ2, ...,Λn].

For this X ′, we have x′N = xN .

One might reason that lemma 3.4 is stronger than the main lemma (Lemma 3.3). However, we

will show that these two lemmas are equivalent. It is obvious that if the statement in lemma 3.4

is true, then the main lemma is also true. Now we show that if the main lemma is true then the

statement in lemma 3.4 is also true.

Proof. Given X = x1x2...xN , let us add one more symbol sn+1 to the end of X (sn+1 is different

from all the states in X), then we can get a new sequence x1x2...xNsn+1, whose exit sequences are

[π1(X), π2(X), ..., πχ(X)sn+1, ..., πn(X), ϕ].

According to the main lemma, we know that there exists another sequence x′1x
′
2...x

′
Nx

′
N+1 such

that its exit sequences are

[Λ1,Λ2, ...,Λχsn+1, ...,Λn, ϕ],

and x′1 = x1. Definitely, the last symbol of this sequence is sn+1, i.e., x
′
N+1 = sn+1. As a result, we

have x′N = sχ.

Now, by removing the last element from x′1x
′
2...x

′
Nx

′
N+1, we can get a new sequence x = x′1x

′
2...x

′
N

such that its exit sequences are

[Λ1,Λ2, ...,Λχ, ...,Λn],
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and x′1 = x1. We also have x′N = sχ.

This completes the proof.

We demonstrate the result above by considering the example at the beginning of this section.

Let

X = s1s4s2s1s3s2s3s1s1s2s3s4s1,

with χ = 1 and its exit sequences are given by

[s4s3s1s2, s1s3s3, s2s1s4, s2s1].

After permutating all the exit sequences (for i ̸= 1, we keep the last element of the ith sequence

fixed), we get a new group of exit sequences,

[s1s2s3s4, s3s1s3, s1s2s4, s2s1].

Based on these new exit sequences, we can generate a new input sequence,

X ′ = s1s1s2s3s1s3s2s1s4s2s3s4s1.

This accords with the statements above.

3.3.2 Proof of the Main Lemma

Lemma 4 (Main lemma: feasibility and equivalence of exit sequences). Given a starting state sα

and two collections of sequences Λ = [Λ1,Λ2, ...,Λn] and Γ = [Γ1,Γ2, ...,Γn] such that Λi
.
= Γi

(tail-fixed permutation) for all 1 ≤ i ≤ n. Then (sα,Λ) is feasible if and only if (sα,Γ) is feasible.

In the rest of the appendix we will prove the main lemma. To illustrate the claim in the lemma,

we express sα and Λ by a directed graph that has labels on the vertices and edges, we call this graph

a sequence graph. For example, when sα = s1 and Λ = [s4s3s1s2, s1s3s3, s2s1s4, s2s1], we have the
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directed graph in figure 3.2.

Let V denote the vertex set, then

V = {s0, s1, s2, ..., sn},

and the edge set is

E = {(si,Λi[k])}
∪

{(s0, sα)}.

For each edge (si,Λi[k]), the label of this edge is k. For the edge (s0, sα), the label is 1. Namely,

the label set of the outgoing edges of each state is {1, 2, ...}.
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Figure 3.2. An example of a sequence graph G.

Given the labeling of the directed graph as defined above, we say that it contains a complete walk

if there is a path in the graph that visits all the edges, without visiting an edge twice, in the following

way: (1) Start from s0. (2) At each vertex, we choose an unvisited edge with the minimal label to

follow. Obviously, the labeling corresponding to (sα,Λ) is a complete walk if and only if (sα,Λ) is

feasible. In this case, for short, we also say that (sα,Λ) is a complete walk. Before continuing to

prove the main lemma, we first give lemma 3.5 and lemma 3.6.
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Lemma 3.5. Assume (sα,Λ) with Λ = [Λ1,Λ2, ...,Λχ, ...,Λn] is a complete walk, which ends at

state sχ. Then (sα,Γ) with Γ = [Λ1, ...,Γχ, ...,Λn] is also a complete walk ending at sχ, if Λχ ≡ Γχ

(permutation).

Proof. (sα,Λ) and (sα,Γ) correspond to different labelings on the same directed graph G, denoted

by L1 and L2. Since L1 is a complete walk, it can travel all the edges in G one by one, denoted as

(si1 , sj1), (si2 , sj2), ..., (siN , sjN ),

where si1 = s0 and sjN = sχ. We call {1, 2, ..., N} as the indexes of the edges.

Based on L2, let us have a walk on G starting from s0 until there is no unvisited outgoing edges

to select. In this walk, assume the following edges have been visited:

(siw1
, sjw1

), (siw2
, sjw2

), ..., (siwM
, sjwM

),

where w1, w2, ..., wN are distinct indexes chosen from {1, 2, ..., N} and siw1
= s0. In order to prove

that L2 is a complete walk, we need to show that (1) sjwM
= sχ and (2) M = N .

First, let us prove that sjwM
= sχ. In G, let N

(out)
i denote the number of outgoing edges of si

and let N
(in)
i denote the number of incoming edges of si, then we have that


N

(in)
0 = 0, N

(out)
0 = 1,

N
(in)
χ = N

(out)
χ + 1,

N
(in)
i = N

(out)
i for i ̸= 0, i ̸= χ.

Based on these relations, we know that once we have a walk starting from s0 in G, this walk will

finally end at state sχ. That is because we can always get out of si due to N
(in)
i = N

(out)
i if i ̸= χ, 0.

Now, we prove that M = N . This can be proved by contradiction. Assume M ̸= N , then we

define

V = {w1, w2, ..., wM},
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V = {1, 2, ..., N}/{w1, w2, ..., wM},

where V corresponds to the visited edges based on L2 and V corresponds to the unvisited edges

based on L2. Let v = min(V ), then (siv , sjv ) is the unvisited edge with the minimal index. Let

l = iv, then (siv , sjv ) is an outgoing edge of sl. Here l ̸= χ, because all the outgoing edges of sχ

have been visited. Assume the number of visited incoming edges of sl is M
(in)
l and the number of

visited outgoing edges of sl is M
(out)
l , then

M
(in)
l =M

(out)
l ,

see figure 3.3 as an example, in which the solid arrows indicate visited edges, and the dashed arrows

indicate unvisited edges..

)(out

lN

)(in

lN

)(out

lM

)(in

lM

),(
vv ji ss

),(
uu ji ss

Figure 3.3. An illustration of the incoming and outgoing edges of sl.

Note that the labels of the outgoing edges of sl are the same for L1 and L2, since l ̸= χ, 0.

Therefore, based on L1, before visiting edge (siv , sjv ), there must be M
(out)
l outgoing edges of sl

have been visited. As a result, based on L1, there must be M
(out)
l + 1 = M

(in)
l + 1 incoming edges

of sl have been visited before visiting (siv , sjv ). Among all these M
(in)
l + 1 incoming edges, there

exists at least one edge (siu , sju) such that u ∈ V , since only M
(in)
l incoming edges of sl have been
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visited based on L2.

According to our assumption, both u, v ∈ V and v is the minimal one, so u > v. On the

other hand, we know that (siu , sju) is visited before (siv , sjv ) based on L1, so u < v. Here, the

contradiction happens. Therefore, M = N .

This completes the proof.

Here, let us give an example of the lemma above. We know that, when sα = s1 and

Λ = [s4s3s1s2, s1s3s3, s2s1s4, s2s1],

(sα,Λ) is feasible. The labeling on a directed graph corresponding to (sα,Λ) is given in figure 3.2,

which is a complete walk starting at state s0 and ending at state s1. The path of the walk is

s0s1s4s2s1s3s2s3s1s1s2s3s4s1.

By permutating the labels of the outgoing edges of s1, we can have the graph as shown in figure

3.4. The new labeling on G is also a complete walk ending at state s1, and its path is

s0s1s1s2s1s3s2s3s1s4s2s3s4s1.

Based on lemma 3.5, we have the following result

Lemma 3.6. Given a starting state sα and two collections of sequences Λ = [Λ1,Λ2, ...,Λk, ...,Λn]

and Γ = [Λ1, ...,Γk, ...,Λn] such that Γk
.
= Λk (tail-fixed permutation). Then (sα,Λ) and (sα,Γ)

have the same feasibility.

Proof. We prove that if (sα,Λ) is feasible, then (sα,Γ) is also feasible. If (sα,Λ) is feasible, there

exists a sequence X such that sα = x1 and Λ = π(X). Suppose its last element is xN = sχ.

When k = χ, according to lemma 3.5, we know that (sα,Γ) is feasible.

When k ̸= χ, we assume that Λk = πk(X) = xk1xk2 ...xkw . We consider the subsequence
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Figure 3.4. The sequence graph G with new labels.

X = x1x2...xkw−1 of X. Then πk(X) = Λ
|Λk|−1
k and the last element of X is sk. According to

lemma 3.5, we can get that there exists a sequence x′1x
′
2...x

′
kw−1 with x′1 = x1 and x′kw−1 = xkw−1

such that

π(x′1x
′
2...x

′
kw−1) = [π1(X), ...,Γ

|Γk|−1
k , πk+1(X), ..., πn(X)],

since Γ
|Γk|−1
k ≡ Λ

|Λk|−1
k .

Let x′kw
x′kw+1...x

′
N = xkwxkw+1...xN , i.e., concatenating xkwxkw+1...xN to the end of x′1x

′
2...x

′
kw−1,

we can generate a sequence x′1x
′
2...x

′
N such that its exit sequence of state sk is

Γ
|Γk|−1
k ∗ xkw = Γk,

and its exit sequence of state si with i ̸= k is Λi = πi(X).

So if (sα,Λ) is feasible, then (sα,Γ) is also feasible. Similarly, if (sα,Γ) is feasible, then (sα,Λ)

is feasible. As a result, (sα,Λ) and (sα,Γ) have the same feasibility.

According to the lemma above, we know that

(sα, [Λ1,Λ2, ...,Λn]) and (sα, [Γ1,Λ2, ...,Λn]) have the same feasibility,
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(sα, [Γ1,Λ2, ...,Λn]) and (sα, [Γ1,Γ2, ...,Λn]) have the same feasibility,

... ,

(sα, [Γ1,Γ2, ...,Γn−1,Λn]) and (sα, [Γ1,Γ2, ...,Γn−1,Γn]) have the same feasibility.

So the statement in the main lemma is true.

3.4 Algorithm A: Modification of Elias’s Suggestion

Elias suggested to generate random bits from an arbitrary Markov chain by concatenating the

outputs of different exit sequences. In the above section, we showed that direct concatenation

cannot always work. This motivates us to derive algorithm A, which is a simple modification of

Elias’s suggestion and is able to generate random bits from any Markov chain efficiently.

Algorithm A

Input: A sequence X = x1x2...xN produced by a Markov chain, where xi ∈ S = {s1, s2, ..., sn}.

Output: A sequence Y of 0′s and 1′s.

Main Function:

Suppose xN = sχ.

for i := 1 to n do

if i = χ then

Output Ψ(πi(X)).

else

Output Ψ(πi(X)|πi(X)|−1)

end if

end for

Comment: (1) Ψ(X) can be any scheme that generates random bits from biased coins. For

example, we can use the Elias function. (2) When i = χ, we can also output Ψ(πi(X)|πi(X)|−1) for

simplicity, but the efficiency may be reduced a little.
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The only difference between algorithm A and direct concatenation is that: Algorithm A ignores

the last symbols of some exit sequences. Let us go back to the example of a two-state Markov chain

with P [s2|s1] = p1 and P [s1|s2] = p2 in figure 3.1, which demonstrates that direct concatenation

does not always work well. Here, still assuming that an input sequence with length N = 4 is

generated from this Markov chain with starting state s1, then the probability of each possible input

sequence and its corresponding output sequence (based on algorithm A) are given by the following.

Input sequence Probability Output sequence

s1s1s1s1 (1− p1)
3 ϕ

s1s1s1s2 (1− p1)
2p1 ϕ

s1s1s2s1 (1− p1)p1p2 0

s1s1s2s2 (1− p1)p1(1− p2) ϕ

s1s2s1s1 p1p2(1− p1) 1

s1s2s1s2 p21p2 ϕ

s1s2s2s1 p1(1− p2)p2 ϕ

s1s2s2s2 p1(1− p2)
2 ϕ

We can see that when the input sequence length N = 4, a bit 0 and a bit 1 have the same

probability of being generated and no longer sequences are generated. In this case, the output

sequence is independent and unbiased.

In order to prove that all the sequences generated by algorithm A are independent and unbiased,

we need to show that for any sequences Y and Y ′ of the same length, they have the same probability

of being generated.

Theorem 3.7 (Algorithm A). Let the sequence generated by a Markov chain be used as input to

algorithm A, then the output of algorithm A is an independent unbiased sequence.

Proof. Let us first divide all the possible sequences in {s1, s2, ..., sn}N into classes, and use G to

denote the set of the classes. Two sequences X and X ′ are in the same class if and only if

1. x′1 = x1 and x′N = xN = sχ for some χ.
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2. If i = χ, πi(X
′) ≡ πi(X).

3. If i ̸= χ, πi(X
′)
.
= πi(X).

Let us use ΨA to denote algorithm A. For Y ∈ {0, 1}∗, let BY be the set of sequences X of length

N such that ΨA(X) = Y . We show that for any S ∈ G, |S
∩
BY | = |S

∩
BY ′ | whenever |Y | = |Y ′|.

If S is empty, this conclusion is trivial. In the following, we only consider the case that S is not

empty.

Now, given a class S, if i = χ let us define Si as the set consisting of all the permutations of πi(X)

for X ∈ S, and if i ̸= χ let us define Si as the set consisting of all the permutations of πi(X)|πi(X)|−1

for X ∈ S. For all 1 ≤ i ≤ n and Yi ∈ {0, 1}∗, we continue to define

Si(Yi) = {Λi ∈ Si|Ψ(Λi) = Yi},

which is the subset of Si consisting of all sequences yielding Yi. Based on lemma 2.1, we know that

|Si(Yi)| = |Si(Y
′
i )| whenever |Yi| = |Y ′

i |. This implies that |Si(Yi)| is a function of |Yi|, which can

be written as Mi(|Yi|).

For any partition of Y , namely Y1, Y2, ..., Yn such that Y1 ∗Y2 ∗ ...∗Yn = Y , we have the following

conclusion: ∀Λ1 ∈ S1(Y1),Λ2 ∈ S2(Y2), ...,Λn ∈ Sn(Yn), we can always find a sequence X ∈ S
∩
BY

such that πi(X) = Λi for i = χ and πi(X)|πi(X)|−1 = Λi for all i ̸= χ. This conclusion is immediate

from lemma 3.4. As a result, we have

|S
∩
BY | =

∑
Y1∗Y2∗...∗Yn=Y

n∏
i=1

|Si(Yi)|.

Let l1, l2, ..., ln be a group of nonnegative integers partitioning |Y |, then the formula above can be

rewritten as

|S
∩
BY | =

∑
l1+...+ln=|Y |

n∏
i=1

Mi(li).
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Similarly, we also have

|S
∩
BY ′ | =

∑
l1+...+ln=|Y ′|

n∏
i=1

Mi(li),

which tells us that |S
∩
BY | = |S

∩
BY ′ | if |Y | = |Y ′|.

Note that all the sequences in the same class S have the same probability of being generated. So

when |Y | = |Y ′|, the probability of generating Y is

P [X ∈ BY ]

=
∑
S∈G

P [S]
∑
X∈S

P [X ∈ BY |X ∈ S]

=
∑
S∈G

P [S]
∑
X∈S

|S
∩
BY |

|S|

=
∑
S∈G

P [S]
∑
X∈S

|S
∩
BY ′ |

|S|

= P [X ∈ BY ′ ],

which implies that output sequence is independent and unbiased.

Theorem 3.8 (Efficiency). Let X be a sequence of length N generated by a Markov chain, which

is used as input to algorithm A. Let Ψ in algorithm A be Elias’s function. Suppose the length of its

output sequence is M , then the limiting efficiency ηN = E[M ]
N as N → ∞ realizes the upper bound

H(X)
N .

Proof. Here, the upper bound H(X)
N is provided by Elias [33]. We can use the same argument in

Elias’s paper [33] to prove this theorem.

For all 1 ≤ i ≤ n, let Xi denote the next state following si in the Markov chain. Then Xi is

a random variable on {s1, s2, ..., sn} with distribution {pi1, pi2, ..., pin}, where pij with 1 ≤ i, j ≤ n

is the transition probability from state si to state sj . The entropy of Xi is denoted as H(Xi). Let

U = (u1, u2, . . . , un) denote the stationary distribution of the Markov chain, then we have [27]

lim
N→∞

H(X)

N
=

n∑
i=1

uiH(Xi).
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When N → ∞, there exists an ϵN which → 0, such that with probability 1 − ϵN , |πi(X)| >

(ui − ϵN )N for all 1 ≤ i ≤ n. Using algorithm A, with probability 1 − ϵN , the length M of the

output sequence is bounded below by

n∑
i=1

(1− ϵN )(|πi(X)| − 1)ηi,

where ηi is the efficiency of the Ψ when the input is πi(X) or πi(X)|πi(X)|−1. According to theorem

2 in Elias’s paper [33], we know that as |πi(X)| → ∞, ηi → H(Xi). So with probability 1− ϵN , the

length M of the output sequence is bounded from below by

N∑
i=1

(1− ϵN )((ui − ϵN )N − 1)(1− ϵN )H(Xi).

Then we have

lim
N→∞

E[M ]

N

≥ lim
N→∞

[
∑N

i=1(1− ϵN )3((ui − ϵN )N − 1)H(Xi)]

N

= lim
N→∞

H(X)

N
.

At the same time, E[M ]
N is upper bounded by H(X)

N . So we can get

lim
N→∞

E[M ]

N
= lim

N→∞

H(X)

N
,

which completes the proof.

Given an input sequence, it is efficient to generate independent unbiased sequences using algo-

rithm A. However, it has some limitations: (1) The complete input sequence has to be stored. (2)

For a long input sequence it is computationally intensive as it depends on the input length. (3) The

method works for finite-length sequences and does not lend itself to stream processing. In order to

address these limitations we propose two variants of algorithm A.
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In the first variant of algorithm A, instead of applying Ψ directly to Λi = πi(X) for i = χ (or

Λi = πi(X)|πi(X)|−1 for i ̸= χ), we first split Λi into several segments with lengths ki1, ki2, ..., then

apply Ψ to all of the segments separately. It can be proved that this variant of algorithm A can

generate independent unbiased sequences from an arbitrary Markov chain, as long as ki1, ki2, ... do

not depend on the order of elements in each exit sequence. For example, we can split Λi into two

segments of lengths ⌊ |Λi|
2 ⌋ and ⌈ |Λi|

2 ⌉, we can also split it into three segments of lengths (a, a, |Λi|−2a)

.... Generally, the shorter each segment is, the faster we can obtain the final output. But at the

same time, we may have to sacrifice a little information efficiency.

The second variant of algorithm A is based on the following idea: for a given sequence from a

Markov chain, we can split it into some shorter sequences such that they are independent of each

other, therefore we can apply algorithm A to all of the sequences and then concatenate their output

sequences together as the final one. In order to do this, given a sequence X = x1x2..., we can use

x1 = sα as a special state to it. For example, in practice, we can set a constant k, if there exists a

minimal integer i such that xi = sα and i > k, then we can split X into two sequences x1x2...xi and

xixi+1... (note that both of the sequences have the element xi). For the second sequence xixi+1...,

we can repeat the same procedure. Iteratively, we can split a sequence X into several sequences

such that they are independent of each other. These sequences, with the exception of the last one,

start and end with sα, and their lengths are usually slightly longer than k.

3.5 Algorithm B: Generalization of Blum’s Algorithm

In [14], Blum proposed a beautiful algorithm to generate an independent unbiased sequence of 0s

and 1s from any Markov chain by extending the von Neumann’s scheme. His algorithm can deal with

infinitely long sequences and uses only constant space and expected linear time. The only drawback

of his algorithm is that its efficiency is still far from the information-theoretic upper bound, due to

the limitation (compared to the Elias algorithm) of the von Neumann’s scheme. In this section, we

generalize Blum’s algorithm by replacing von Neumann’s scheme with Elias’s. As a result, we get

algorithm B: It maintains some good properties of Blum’s algorithm and its efficiency approaches
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the information-theoretic upper bound.

Algorithm B

Input: A sequence (or a stream) x1x2... produced by a Markov chain, where xi ∈ {s1, s2, ..., sn}.

Parameter: n positive integer functions (window size) ϖi(k) with k ≥ 1 for all 1 ≤ i ≤ n.

Output: A sequence (or a stream) Y of 0s and 1s.

Main Function:

Ei = ϕ (empty) for all 1 ≤ i ≤ n.

ki = 1 for all 1 ≤ i ≤ n.

c : the index of current state, namely, sc = x1.

while next input symbol is sj ( ̸= null) do

Ec = Ecsj (Add sj to Ec).

if |Ej | ≥ ϖj(kj) then

Output Ψ(Ej).

Ej = ϕ.

kj = kj + 1.

end if

c = j.

end while

In the algorithm above, we apply function Ψ on Ej to generate random bits if and only if the

window for Ej is completely filled and the Markov chain is currently at state sj .

For example, we set ϖi(k) = 4 for all 1 ≤ i ≤ n and for all k ≥ 1 and assume that the input

sequence is

X = s1s1s1s2s2s2s1s2s2.
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After reading the second to last (8th) symbol s2, we have

E1 = s1s1s2s2, E2 = s2s2s1.

In this case, |E1| ≥ 4 so the window for E1 is full, but we do not apply Ψ to E1 because the current

state of the Markov chain is s2, not s1.

By reading the last (9th) symbol s2, we get

E1 = s1s1s2s2, E2 = s2s2s1s2.

Since the current state of the Markov chain is s2 and |E2| ≥ 4, we produce Ψ(E2 = s2s2s1s2) and

reset E2 as ϕ.

In the example above, treatingX as input to algorithm B, we get the output sequence Ψ(s2s2s1s2).

The algorithm does not output Ψ(E1 = s1s1s2s2) until the Markov chain reaches state s1 again.

Timing is crucial!

Note that Blum’s algorithm is a special case of algorithm B by setting the window size functions

ϖi(k) = 2 for all 1 ≤ i ≤ n and k ∈ {1, 2, ...}. Namely, algorithm B is a generalization of Blum’s

algorithm, the key is that when we increase the windows sizes, we can apply more efficient schemes

(compared to the von Neumann’s scheme) for Ψ. Assume a sequence of symbols X = x1x2...xN

with xN = sχ have been read by the algorithm above, we want to show that for any N , the output

sequence is always independent and unbiased. Unfortunately, Blum’s proof for the case of ϖi(k) = 2

cannot be applied to our proposed scheme.

For all i with 1 ≤ i ≤ n, we can write

πi(X) = Fi1Fi2...FimiEi,
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where Fij with 1 ≤ j ≤ mi are the segments used to generate outputs. For all i, j, we have

|Fij | = ϖi(j),

and 
0 ≤ |Ei| < ϖi(mi + 1) if i = χ,

0 < |Ei| ≤ ϖi(mi + 1) otherwise.

See figure 3.5 for simple illustration.

11F 12F 13F 1E

2E

3E

21F 22F

31F 32F 33F

)(1 Xp

)(2 Xp

)(3 Xp

Figure 3.5. The simplified expressions for the exit sequences of X.

Theorem 3.9 (Algorithm B). Let the sequence generated by a Markov chain be used as input to

algorithm B, then algorithm B generates an independent unbiased sequence of bits in expected linear

time.

Proof. In the following proof, we use the same idea as in the proof for algorithm A.

Let us first divide all the possible input sequences in {s1, s2, ..., sn}N into classes, and use G to

denote the set consisting of all the classes. Two sequences X and X ′ are in the same class if and

only if

1. x1 = x′1 and xN = x′N .

2. For all i with 1 ≤ i ≤ n,

πi(X) = Fi1Fi2...FimiEi,

πi(X
′) = F ′

i1F
′
i2...F

′
imi

E′
i,

where Fij and F ′
ij are the segments used to generate outputs.
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3. For all i, j, Fij ≡ F ′
ij .

4. For all i, Ei = E′
i.

Let us use ΨB to denote algorithm B. For Y ∈ {0, 1}∗, let BY be the set of sequences X of length

N such that ΨB(X) = Y . We show that for any S ∈ G, |S
∩
BY | = |S

∩
BY ′ | whenever |Y | = |Y ′|.

If S is empty, this conclusion is trivial. In the following, we only consider the case that S is not

empty.

Now, given a class S, let us define Sij as the set consisting of all the permutations of Fij for

X ∈ S. Given Yij ∈ {0, 1}∗, we continue to define

Sij(Yij) = {Λij ∈ Sij |Ψ(Λij) = Yij}

for all 1 ≤ i ≤ n and 1 ≤ j ≤ mi, which is the subset of Sij consisting of all sequences yielding Yij .

According to lemma 2.1, we know that |Sij(Yij)| = |Sij(Y
′
ij)| whenever |Yij | = |Y ′

ij |. This implies

that |Sij(Yij)| is a function of |Yij |, which can be written as Mij(|Yij |).

Let l11, l12, ..., l1m1
, l21..., lnmn

be nonnegative integers such that their sum is |Y |, we want to

prove that

|S
∩
BY | =

∑
l11+...+lnmn=|Y |

n∏
i=1

mi∏
j=1

Mij(lij).

The proof is by induction. Let w =
∑n

i=1mi. First, the conclusion holds for w = 1. Assume the

conclusion holds for w > 1, we want to prove that the conclusion also holds for w + 1.

Note that for all 1 ≤ i ≤ n, if j1 < j2, then Fij1 generates an output before Fij2 in algorithm

B. So given an input sequence X ∈ S, the last segment that generates an output (the output can

be an empty string) is Fimi for some i with 1 ≤ i ≤ n. Now, we show that this i is fixed for all

the sequences in S, i.e., the position of the last segment generating an output keeps unchanged. To

prove this, given a sequence X ∈ S, let us see the first a symbols of X, i.e., Xa, such that the last

segment Fimi generates an output just after reading xa when the input sequence is X. Based on

our algorithm, Xa has the following properties.



66

1. The last symbol xa = si.

2. πi(X
a) = Fi1Fi2...Fimi .

3. πj(X
a) = Fj1Fj2...Fjmj Ẽj for j ̸= i, where |Ẽj | > 0.

Now, let us permute each segment of F11, F12, ..., Fnmn to F ′
11, F

′
12, ..., F

′
nmn

, then we get another

sequence X ′ ∈ S. According to lemma 3.4, if we consider the first a symbols of X ′, i.e., X ′a, it has

the similar properties as Xa:

1. The last symbol x′a = si.

2. πi(X
′a) = F ′

i1F
′
i2...F

′
imi

.

3. πj(X
′a) = F ′

j1F
′
j2...F

′
jmj

Ẽj for j ̸= i, where |Ẽj | > 0.

This implies that when the input sequence is X ′, F ′
imi

generates an output just after reading x′a and

it is the last one. So we can conclude that for all the sequences in S, their last segments generating

outputs are at the same position.

Let us fix the last segment Fimi and assume Fimi generates the last limi bits of Y . We want

to know how many sequences in S
∩
BY have Fimi as their last segments that generate outputs.

In order to get the answer, we concatenate Fimi with Ei as the new Ei. As a result, we have∑n
i=1mi − 1 = w segments to generate the first |Y | − limi bits of Y . Based on our assumption, the

number of such sequences will be

∑
l11+...+li(mi−1)+...=|Y |−limi

1

Mimi(limi)

n∏
k=1

mi∏
j=1

Mkj(lkj),

where l11, ..., li(mi−1), l(i+1)1..., lnmn
are nonnegative integers. For each limi

, there are Mimi
(limi

)

different choices for Fimi
. Therefore, |S

∩
BY | can be obtained by multiplying Mimi

(limi
) by the

number above and summing them up over limi . Namely, we can get the conclusion above.

According to this conclusion, we know that if |Y | = |Y ′|, then |S
∩
BY | = |S

∩
BY ′ |. Using the

same argument as in Theorem 3.7 we complete the proof of the theorem.
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Normally, the window size functions ϖi(k) for 1 ≤ i ≤ n can be any positive integer functions.

Here, we fix these window size functions as a constant, namely, ϖ. By increasing the value of ϖ,

we can increase the efficiency of the scheme, but at the same time it may cost more storage space

and need more waiting time. It is helpful to analyze the relationship between scheme efficiency and

window size ϖ.

Theorem 3.10 (Efficiency). Let X be a sequence of length N generated by a Markov chain with

transition matrix P , which is used as input to algorithm B with constant window size ϖ. Then as

the length of the sequence goes to infinity, the limiting efficiency of algorithm B is

η(ϖ) =
n∑

i=1

uiηi(ϖ),

where U = (u1, u2, ..., un) is the stationary distribution of this Markov chain, and ηi(ϖ) is the

efficiency of Ψ when the input sequence of length ϖ is generated by a n-face coin with distribution

(pi1, pi2, ..., pin).

Proof. When N → ∞, there exists an ϵN which → 0, such that with probability 1−ϵN , (ui−ϵN )N <

|πi(X)| < (ui + ϵN )N for all 1 ≤ i ≤ n.

The efficiency of algorithm B can be written as η(ϖ), which satisfies

∑n
i=1⌊

|πi(X)|−1
ϖ ⌋ηi(ϖ)ϖ

N
≤ η(ϖ) ≤

∑n
i=1⌊

|πi(X)|
ϖ ⌋ηi(ϖ)ϖ

N
.

With probability 1− ϵN , we have

∑n
i=1(

(ui−ϵN )N
ϖ − 1)ηi(ϖ)ϖ

N
≤ η(ϖ) ≤

∑n
i=1

(ui−ϵN )N
ϖ ηi(ϖ)ϖ

N
.

So when N → ∞, we have that

η(ϖ) =
n∑

i=1

uiηi(ϖ).

This completes the proof.
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Let us define α(N) =
∑
nk2

nk , where
∑

2nk is the standard binary expansion of N . Assume Ψ

is the Elias function, then

ηi(ϖ) =
1

ϖ

∑
k1+...+kn=ϖ

α(
ϖ!

k1!k2!...kn!
)pk1

i1 p
k2
i2 ...p

kn
in .

Based on this formula, we can numerically study the relationship between the limiting efficiency

and the window size (see section 3.7). In fact, when the window size becomes large, the limiting

efficiency (n→ ∞) approaches the information-theoretic upper bound.

3.6 Algorithm C: An Optimal Algorithm

Both algorithm A and algorithm B are asymptotically optimal, but when the length of the input

sequence is finite they may not be optimal. In this section, we try to construct an optimal algorithm,

called algorithm C, such that its information efficiency is maximized when the length of the input

sequence is finite. Before presenting this algorithm, following the idea of Pae and Loui [88], we first

discuss the equivalent condition for a function f to generate random bits from an arbitrary Markov

chain, and then present the sufficient condition for f to be optimal.

Lemma 3.11 (Equivalent condition). Let K = {kij} be an n × n nonnegative integer matrix with∑n
i=1

∑n
j=1 kij = N − 1. We define S(α,K) as

S(α,K) = {X ∈ {s1, s2, ..., sn}N |kj(πi(X)) = kij , x1 = sα},

where kj(X) is the number of sj in X. A function f : {s1, s2, ..., sn}N → {0, 1}∗ can generate

random bits from an arbitrary Markov chain, if and only if for any (α,K) and two binary sequences

Y and Y ′ with |Y | = |Y ′|,

|S(α,K)

∩
BY | = |S(α,K)

∩
BY ′ |,

where BY = {X|X ∈ {s1, s2, ..., sn}N , f(X) = Y } is the set of sequences of length N that yield Y .
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Proof. It is easy to see that if |S(α,K)

∩
BY | = |S(α,K)

∩
BY ′ | for all (α,K) and |Y | = |Y ′|, then Y

and Y ′ have the same probability to be generated. In this case, f can generate random bits from

an arbitrary Markov chain. In the rest, we only need to prove the inverse claim.

If f can generate random bits from an arbitrary Markov chain, then P [f(X) = Y ] = P [f(X) =

Y ′] for any two binary sequences Y and Y ′ of the same length. Here, let pij be the transition

probability from state si to state sj for all 1 ≤ i, j ≤ n, we can write

P [f(X) = Y ] =
∑

α,K∈G

|S(α,K)

∩
BY |ϕK(p11, p12, ..., pnn)P (x1 = sα),

where

G = {K|kij ∈ {0}
∪

Z+,
∑
i,j

kij = N − 1},

and

ϕK(p11, p12, ..., pnn) =

n∏
i=1

n∏
j=1

p
kij

ij .

Similarly,

P [f(X) = Y ′] =
∑

α,K∈G

|S(α,K)

∩
BY ′ |ϕK(p11, p12, ..., pnn)P (x1 = sα).

As a result,

∑
α,K∈G

(|S(α,K)

∩
BY ′ | − |S(α,K)

∩
BY |)ϕK(p11, ..., pnn)× P (x1 = sα) = 0.

Since P (x1 = sα) can be any value in [0, 1], for all 1 ≤ α ≤ n we have

∑
K∈G

(|S(α,K)

∩
BY ′ | − |S(α,K)

∩
BY |)ϕK(p11, ..., pnn) = 0.

It can be proved that
∪

K∈G{ϕK(p11, p12, ..., pnn)} are linear independent in the vector space of
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functions on the transition probabilities, namely

{(p11, p12, ..., pnn)|pij ∈ [0, 1],
n∑

j=1

pij = 1}.

Based on this fact, we can conclude that |S(α,K)

∩
BY | = |S(α,K)

∩
BY ′ | for all (α,K) if |Y | = |Y ′|.

Let us define α(N) =
∑
nk2

nk , where
∑

2nk is the standard binary expansion of N , then we

have the sufficient condition for an optimal function .

Lemma 3.12 (Sufficient condition for an optimal function). Let f∗ be a function that generates

random bits from an arbitrary Markov chain with unknown transition probabilities. If for any α and

any n × n nonnegative integer matrix K with
∑n

i=1

∑n
j=1 kij = N − 1, the following equation is

satisfied, ∑
X∈S(α,K)

|f∗(X)| = α(|S(α,K)|),

then f∗ generates independent unbiased random bits with optimal information efficiency. Note that

|f∗(X)| is the length of f∗(x) and |S(α,K)| is the size of S(α,K).

Proof. Let h denote an arbitrary function that is able to generate random bits from any Markov

chain. According to lemma 2.9 in [88], we know that

∑
X∈S(α,K)

|h(X)| ≤ α(|S(α,K)|).

Then the average output length of h is

E(|h(X)|) =
1

N

∑
(α,K)

∑
X∈S(α,K)

|h(X)|ϕ(K)P [x1 = sα]

≤ 1

N

∑
(α,K)

α(|S(α,K)|)ϕ(K)P [x1 = sα]

=
1

N

∑
(α,K)

∑
X∈S(α,K)

|f∗(X)|ϕ(K)P [x1 = sα]

= E(|f∗(X)|).
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So f∗ is the optimal one. This completes the proof.

Here, we construct the following algorithm (Algorithm C) which satisfies all the conditions in

lemma 3.11 and lemma 3.12. As a result, it can generate unbiased random bits from an arbitrary

Markov chain with optimal information efficiency.

Algorithm C

Input: A sequence X = x1x2..., xN produced by a Markov chain, where xi ∈ S = {s1, s2, ..., sn}.

Output: A sequence Y of 0′s and 1′s.

Main Function:

1) Get the matrix K = {kij} with

kij = kj(πi(X)).

2) Define S(X) as

S(X) = {X ′|kj(πi(X ′)) = kij∀i, j;x′1 = x1},

then compute |S(X)|.

3) Compute the rank r(X) of X in S(X) with respect to a given order. The rank with respect

to a lexicographic order will be given later.

4) According to |S(X)| and r(X), determine the output sequence. Let
∑

k 2
nk be the standard

binary expansion of |S(X)| with n1 > n2 > ... and assume the starting value of r(X) is 0. If

r(X) < 2n1 , the output is the n1 digit binary representation of r(x). If
∑i

k=1 2
nk ≤ r(x) <∑i+1

k=1 2
nk , the output is the ni+1 digit binary representation of r(x).

Comment: The fast calculations of |S(X)| and r(x) will be given in the rest of this section.

In algorithm A, when we use Elias’s function as Ψ, the limiting efficiency ηN = E[M ]
N (as N → ∞)

realizes the bound H(X)
N . Algorithm C is optimal, so it has the same or higher efficiency. Therefore,

the limiting efficiency of algorithm C as N → ∞ also realizes the bound H(X)
N .
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In algorithm C, for an input sequence X with xN = sχ, we can rank it with respect to the

lexicographic order of θ(X) and σ(X). Here, we define

θ(X) = (π1(X)|π1(X)|, . . . , πn(X)|πn(X)|),

which is the vector of the last symbols of πi(X) for 1 ≤ i ≤ n. And σ(X) is the complement of θ(X)

in π(X), namely,

σ(X) = (π1(X)|π1(X)|−1, . . . , πn(X)|πn(X)|−1).

For example, when the input sequence is

X = s1s4s2s1s3s2s3s1s1s2s3s4s1,

its exit sequences are

π(X) = [s4s3s1s2, s1s3s3, s2s1s4, s2s1].

Then for this input sequence X, we have that

θ(X) = [s2, s3, s4, s1],

σ(X) = [s4s2s1, s1s3, s2s1, s2].

Based on the lexicographic order defined above, both |S(X)| and r(X) can be obtained using a

brute-force search. However, this approach in not computationally efficient. Here, we describe an

efficient algorithm for computing |S(X)| and r(X) when n is a small constant, such that algorithm C

is computable in O(N log3N log logN) time. This method is inspired by the algorithm for computing

the Elias function that is described in [99]. However, when n is not small, the complexity of

computing |S(X)| (or r(x)) has an exponential dependence on n, which will make this algorithm

much slower in computation than the previous algorithms.
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Lemma 3.13. Let

Z = (

n∏
i=1

(ki1 + ki2 + ...+ kin)!

ki1!ki2!...kin!
),

and let N =
∑n

i=1

∑n
j=1 kij, then Z is computable in O(N log3N log logN) time (not related with

n).

Proof. It is known that given two numbers of length n bits, their multiplication or division is

computable in O(n log n log log n) time based on Schönhage-Strassen algorithm [4]. We can calculate

Z based on this fast multiplication.

For simplification, we denote ki =
∑n

j=1 kij . Note that we can write Z as a multiplication of N

terms, namely

k1
1
,
k1
2
, ...,

k1
k11

,
k1
1
,
k1
2
...,

kn
knn

,

which are denoted as

ρ01, ρ
0
2, ..., ρ

0
N−1, ρ

0
N .

It is easy to see that the notation of every ρ0i used 2 log2N bits (log2N for the numerator and logN

for the denominator). The total time to compute all of them is much less than O(N log3N log logN).

Based on these notations, we write Z as

Z = ρ01ρ
0
2...ρ

0
N−1ρ

0
N .

Suppose that log2N is an integer. Otherwise, we can add trivial terms to the formula above to make

log2N be an integer. In order to calculate Z quickly, the following calculations are performed:

ρsi = ρs−1
2i−1ρ

s−1
2i ,

s = 1, 2, ..., log2N ; i = 1, 2, ..., 2−sN.
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Then we are able to compute Z iteratively and finally get

Z = ρ
log2 N
1 .

To calculate ρ1i for i = 1, 2, ..., N/2, it takes 2(N/2) multiplications of numbers with length log2N

bits. Similarly, to calculate ρsi for i = 1, 2, ..., N/2, it takes 2(N/2s) multiplications of numbers with

length 2s log2N bits. So the time complexity of computing Z is

log2 N∑
s=1

2(N/2s)O(2s log2N log(2s log2N) log log(2s log2N)).

This value is not greater than

O(N log2N log(N logN) log log(N logN)),

which yields the result in the lemma.

Lemma 3.14. Let n be a small constant and N be the input length, then |S(X)| in algorithm C is

computable in O(N log3N log logN) time.

Proof. The idea to compute |S(X)| in algorithm C is that we can divide S(X) into different classes,

denoted by S(X, θ) for different θ such that

S(X, θ) = {X ′|∀i, j, kj(πi(X ′)) = kij , θ(X
′) = θ},

where kij = kj(πi(X)) is the number of sj ’s in πi(X) for all 1 ≤ i, j ≤ n. θ(X) is the vector of the

last symbols of π(X) defined above. As a result, we have |S(X)| =
∑

θ |S(X, θ)|. Although it is not

easy to calculate |S(X)| directly, but it is much easier to compute |S(X, θ)| for a given θ.

For a given θ = (θ1, θ2, ..., θn), we need first determine whether S(X, θ) is empty or not. In order

to do this, we quickly construct a collection of exit sequences Λ = [Λ1,Λ2, ...,Λn] by moving the first

θi in πi(X) to the end for all 1 ≤ i ≤ n. According to the main lemma, we know that S(X, θ) is
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empty if and only if πi(X) does not include θi for some i or (x1,Λ) is not feasible.

If S(X, θ) is not empty, then (x1,Λ) is feasible. In this case, based on the main lemma, we have

|S(X, θ)| =
n∏

i=1

(ki1 + ki2 + ...+ kin − 1)!

ki1!...(kiθi − 1)!...kin!

= (

n∏
i=1

(ki1 + ki2 + ...+ kin)!

ki1!ki2!...kin!
)(

n∏
i=1

kiθi
(ki1 + ki2 + ...+ kin)

).

Here, we let

Z = (
n∏

i=1

(ki1 + ki2 + ...+ kin)!

ki1!ki2!...kin!
).

Then we can get

|S(X)| =
∑
θ

|S(X, θ)| = Z(
∑
θ

n∏
i=1

kiθi
(ki1 + ki2 + ...+ kin)

).

According to lemma 3.13, Z is computable in O(N log3N log logN) time. So if n is a small

constant, then |S(X)| is also computable in O(N log3N log logN) time. However, when n is not

small, we have to enumerate all the possible combinations for θ with O(nn) time, which is not

computationally efficient.

Lemma 3.15. Let n be a small constant and N be the input length, then r(X) in algorithm C is

computable in O(N log3N log logN) time.

Proof. Based on some calculations in the lemma above, we can try to obtain r(X) when X is ranked

with respect to the lexicographic order of θ(X) and σ(X). Let r(X, θ(X)) denote the rank of X in

S(X, θ(X)), then we have that

r(X) =
∑

θ<θ(X)

|S(X, θ)|+ r(X, θ(X)),

where< is based on the lexicographic order. In the formula, when n is a small constant,
∑

θ<θ(X) |S(X, θ)|
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can be obtained in O(N log3N log logN) time by computing

Z

∑
θ<θ(X):|S(X,θ)|>0

∏n
i=1 kiθi∏n

i=1(ki1 + ki2 + ...+ kin)
,

where Z is defined in the last lemma and the second term can be calculated fast when n is a small

constant. (However, n cannot be big, since the complexity of computing the second term has an

exponential dependence on n.)

So far, we only need to compute r(X, θ(X)), with respect to the lexicography order of σ(X).

Here, we write σ(X) as the concatenation of a group of sequences, namely

σ(X) = σ1(X) ∗ σ2(X) ∗ ... ∗ σn(X),

such that for all 1 ≤ i ≤ n σi(X) = πi(X)|πi(X)|−1.

There areM = (N−1)−n symbols in σ(X). Let ri(X) be the number of sequences in S(X, θ(X))

such that their first M − i symbols are σ(X)[1,M − i] and their M − i + 1th symbols are smaller

than σ(X)[M − i+ 1]. Then we can get that

r(X, θ(X)) =

M∑
i=1

ri(X).

Let us assume that σ(X)[M−i+1] = swi for some wi, and it is the uith symbol in σvi(X). For sim-

plicity, we denote σvi(X)[ui, |σvi(X)|] as ζi. For example, when n = 3 and [σ1(X), σ2(X), σ3(X)] =

[s1s2, s2s3, s1s1s1], we have

ζ1 = s1, ζ2 = s1s1, ζ3 = s1s1s1, ζ4 = s3, ζ5 = s2s3, ....

To calculate ri(X), we can count all the sequences generated by permuting the symbols of

ζi, σvi+1(X), ..., σn(X) such that the M − i + 1th symbol of the new sequence is smaller than swi .
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Then we can get

ri(X) =
∑
j<wi

(|ζi| − 1)!

k1(ζi)!...(kj(ζi)− 1)!...kn(ζi)!

n∏
i=vi+1

|σi(X)|!
k1(σi(X))!k2(σi(X))!...kn(σi(X))!

,

where kj(X) counts the number of si’s in X.

Let us define the values

ρ0i−1 =
|ζi|

kwi(ζi)
,

for all 1 ≤ i ≤M . In this expression, kwi
(ζi) is the number of swi

’s in ζi, and swi
is the first symbol

of ζi.

It is easy to show that for 1 ≤ i ≤M

ρ0i−1ρ
0
i−2....ρ

0
2ρ

0
1 =

|ζi|!
k1(ζi)!...kj(ζi)!...kn(ζi)!

n∏
i=v+1

|σi(X)|!
k1(σi(X))!k2(σi(X))!...kn(σi(X))!

.

If we also define the values

λ0i =

∑
j<wi

kj(ζi)

|ζi|
,

for all 1 ≤ i ≤M , then we have

ri(X) = λ0i ρ
0
i−1ρ

0
i−2...ρ

0
1,

and

r(X, θ(X)) =
M∑
i=1

λ0i ρ
0
i−1ρ

0
i−2...ρ

0
2ρ

0
1.

Suppose that log2M is an integer. Otherwise, we can add trivial terms to the formula above

to make log2M an integer. In order to quickly calculate r(X, θ(X)), the following calculations are

performed for s from 1 to log2M :

ρsi = ρs−1
2i ρs−1

2i−1, i = 1, 2, ..., 2−sM − 1,

λsi = λs−1
2i−1 + λs−1

2i ρs−1
2i−1, i = 1, 2, ..., 2−sM.
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By computing all ρsi and λsi for s from 1 to log2M iteratively, we can get that

r(X, θ(X)) = λ
log2 M
1 .

Now, we use the same idea in [99] to analyze the computational complexity. Note that every

ρ0i and λ0i can be represented using 2 log2M bits (log2M for the numerator and logM for the

denominator). And we can calculate all of them quickly. To calculate ρ1i for i = 1, 2, ...,M/2 − 1,

it takes at most 2(M/2) multiplications of numbers with length log2M bits. To calculate λ1i for

i = 1, 2, ...,M/2, it takes 3(M/2) multiplications of numbers with length log2M bits. That is because

we can write λ1i as a
b + c

d = ad+bc
bd for some integers a, b, c, d with length log2M bits. Similarly, to

calculate all ρsi and λsi for some s, it takes at most 5(M/2s) multiplications of numbers with length

2s log2M bits. As a result, the time complexity of computing Z is

log2 M∑
s=1

5(M/2s)O(2s log2M log(2s log2M) log log(2s log2M)),

which is computable in O(M log3M log logM) time. As a result, for a small constant n, r(X) is

computable in O(N log3N log logN) time.

Based on the discussion above, we know that algorithm C is computable in O(N log3N log logN)

time when n is a small constant. However, when n is not a constant, this algorithm is not compu-

tationally efficient since its time complexity depends exponentially on n.

3.7 Numerical Results

In this section, we describe numerical results related to the implementations of algorithm A, algo-

rithm B, and algorithm C. We use the Elias function for Ψ.

In the first experiment, we use the following randomly generated transition matrix for a Markov
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Table 3.2. The probability of each possible output sequence and the expected output length

Output Probability Probability Probability

Algorithm A Algorithm B Algorithm C

with ϖ = 4

Λ 0.0224191 0.1094849 0.0208336

0 0.0260692 0.0215901 0.0200917

1 0.0260692 0.0215901 0.0200917

00 0.0298179 0.1011625 0.0206147

10 0.0298179 0.1011625 0.0206147

01 0.0298179 0.1011625 0.0206147

11 0.0298179 0.1011625 0.0206147

000 0.0244406 0.0242258 0.0171941

100 0.0244406 0.0242258 0.0171941

. . . . . . . . . . . .

011111 0.0018831 1.39E-5 0.0029596

111111 0.0018831 1.39E-5 0.0029596

0000000 1.305E-4 6.056E-4

1000000 1.305E-4 6.056E-4

. . . . . .

0111111 1.305E-4 6.056E-4

1111111 1.305E-4 6.056E-4

00000000 1.44E-5

10000000 1.44E-5

. . . . . .

01111111 1.44E-5

11111111 1.44E-5

Expected Length 3.829 2.494 4.355

chain with three states.

P =


0.300987 0.468876 0.230135

0.462996 0.480767 0.056236

0.42424 0.032404 0.543355


Consider a sequence of length 12 that is generated by the Markov chain defined above and assume

that s1 is the first state of this sequence. Namely, there are 311 = 177147 possible input sequences.
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Figure 3.6. The limiting efficiency of algorithm B varies with the value of window size ϖ.

For each possible input sequence, we can compute its generating probability and the corresponding

output sequences using our three algorithms. Table 3.2 presents the results of calculating the prob-

abilities of all possible output sequences for the three algorithms. Note that the results show that

indeed the outputs of the algorithms are independent unbiased sequences. Also, algorithm C has the

highest information efficiency (it is optimal), and algorithm A has a higher information efficiency

than algorithm B (with window size 4).

In the second calculation, we want to test the influence of window size ϖ (assume ϖi(k) = ϖ for

1 ≤ i ≤ n) on the efficiency of algorithm B. Since the efficiency depends on the transition matrix of

the Markov chain we decided to evaluate of the efficiency related to the uniform transition matrix,

namely all the entries are 1
n , where n is the number of states. We assume that n is infinitely large.

In this case, the stationary distribution of the Markov chain is { 1
n ,

1
n , ...,

1
n}. Figure 3.6 shows that
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when ϖ = 2 (Blum’s Algorithm), the limiting efficiencies for n = (2, 3, 5) are ( 14 ,
1
3 ,

2
5 ), respectively.

When ϖ = 15, their corresponding efficiencies are (0.7228, 1.1342, 1.5827). So if the input sequence

is long enough, by changing ϖ from 2 to 15, the efficiency can increase 189% for n = 2, 240%

for n = 3 and 296% for n = 4. When ϖ is small, we can increase the efficiency of algorithm B

significantly by increasing the window size ϖ. When ϖ becomes larger, the efficiency of algorithm B

will converge to the information-theoretical upper bound, namely, log2 n. Note that 3 is not a good

value for the window size in the algorithm. That is because the Elias function is not very efficient

when the length of the input sequence is 3. Let us consider a biased coin with two states s1, s2. If

the input sequence is s1s1s1 or s2s2s2, the Elias function will generate nothing. For all other cases,

it has only 2/3 chance to generate one bit and 1/3 chance to generate nothing. As a result, the

efficiency is even worse than the efficiency when the length of the input sequence equals 2.

3.8 Conclusion

We considered the classical problem of generating independent unbiased bits from an arbitrary

Markov chain with unknown transition probabilities. Our main contribution is the first known

algorithm with expected linear-time complexity that achieves the information-theoretic upper bound

on efficiency.

In information theory, it was discovered that optimal source codes can be used as universal

random bit generators from arbitrary stationary ergodic random sources [126] [51] (The Markov

chains studied in this chapter are special cases of stationary ergodic sources). When the input

sequence is generated from a stationary ergodic process and it is long enough, one can obtain an

output sequence that behaves like truly random bits in the sense of normalized divergence. However,

in some cases, the definition of normalized divergence is not strong enough. For example, suppose

Y is a sequence of unbiased random bits in the sense of normalized divergence, and 1∗Y is Y with a

1 concatenated at the beginning. If the sequence Y is long enough, the sequence 1 ∗ Y is a sequence

of unbiased random bits in the sense of normalized divergence. However the sequence 1 ∗ Y might

not be useful in applications that are sensitive to the randomness of the first bit.
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Chapter 4

Streaming Algorithms for Random
Number Generation

This chapter introduces an algorithm that generates random bit streams from biased coins,

uses bounded space and runs in expected linear time. As the size of the allotted space

increases, the algorithm approaches the information-theoretic upper bound on efficiency.

4.1 Introduction

Von Neumann’s algorithm (see chapter 2) is not optimal in generating random bits from a biased coin,

in terms of the number of random bits that are generated. This problem was solved in [33,88,90,99].

Specifically, given a fixed number of biased coin tosses with unknown probability, it is well-known

how to generate random bits with asymptotically optimal efficiency; that is, it is known how to

generate random bits in a way such that the expected number of unbiased random bits generated

per coin toss is asymptotically equal to the entropy of the biased coin. However, these solutions,

including Elias’s algorithm and Peres’s algorithm, can generate random bits only after receiving the

complete input sequence (or a fixed number of input bits), and the number of random bits generated

is a random variable.

We consider the setup of generating a “stream” of random bits; that is, whenever random bits

are required, the algorithm reads new coin tosses and generates random bits dynamically. Our new

streaming algorithm is more efficient (in the number of input bits, memory and time) for producing
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the required number of random bits and is a better choice for implementation in practical systems.

We notice that von Neumann scheme is the one which is able to generate a stream of random bits,

but its efficiency is far from optimal. Our goal is to modify this scheme such that it can achieve the

information-theoretic upper bound on efficiency. Specifically, we would like to construct a function

f : {H,T}∗ → {0, 1}∗ which satisfies the following conditions:

• f generates a stream. For any two sequences of coin tosses x, y ∈ {H,T}∗, f(x) is a prefix of

f(xy).

• f generates random bits. Let Xk ∈ {0, 1}∗ be the sequence of coin tosses inducing k bits; that

is, |f(Xk)| ≥ k but for any strict prefix X of Xk, |f(X)| ≤ k. Then the first k bits of f(Xk)

are independent and unbiased.

• f has asymptotically optimal efficiency. That is, for any k > 0,

E[|Xk|]
k

→ 1

H(p)

as k → ∞, where H(p) is the entropy of the biased coin [27].

We note that the von Neumann scheme uses only 3 states, i.e., a symbol in {ϕ,H,T}, for storing

state information. For example, the output bit is 1 if and only if the current state is H and the

input symbol is T. In this case, the new state is ϕ. Similarly, the output bit is 0 if and only if the

current state is T and the input symbol is H. In this case, the new state is ϕ. Our approach for

generalizing von Neumann’s scheme is by increasing the memory (or state) of our algorithm such

that we do not lose information that might be useful for generating future random bits. We represent

the state information as a binary tree, called status tree, in which each node is labeled by a symbol

in {ϕ,H,T, 0, 1}. When a source symbol (a coin toss) is received, we modify the status tree based

on certain simple rules and generate random bits in a dynamic way. This is the key idea in our

algorithm; we call this approach the random-stream algorithm. In some sense, the random-stream

algorithm is the streaming version of Peres’s algorithm. We show that this algorithm satisfies all
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three conditions above, namely, it can generate a stream of random bits with asymptotically optimal

efficiency. In practice, we can reduce the space size by limiting the depth of the status tree. We will

demonstrate that as the depth of the status tree increases, the efficiency of the algorithm quickly

converges to the information-theoretic upper bound.

The rest of the chapter is organized as follows. Section 4.2 presents our key result, the random-

stream algorithm that generates random bit streams from arbitrary biased coins and achieves the

information-theoretic upper bound on efficiency. In section 4.3, we generalize the random-stream

algorithm to generate random bit streams from a source of a larger alphabet. An extension for

Markov chains is provided in section 4.4, followed by the concluding remarks.

4.2 The Random-Stream Algorithm

4.2.1 Description

Many algorithms have been proposed for efficiently generating random bits from a fixed number of

coins tosses, including Elias’s algorithm and Peres’s algorithm. However, in these algorithms, the

input bits can be processed only after all of them have been received, and the number of random bits

generated cannot be controlled. In this section, we focus on deriving a new algorithm, the random-

stream algorithm, that generates a stream of random bits from an arbitrary biased-coin source and

achieves the information-theoretic upper bound on efficiency. Given an application that requires

random bits, the random-stream algorithm can generate random bits dynamically based on requests

from the application.

While von Neumann’s scheme can generate a stream of random bits from an arbitrary biased coin,

its efficiency is far from being optimal. The main reason is that it uses minimal state information,

recorded by a symbol of alphabet size three in {ϕ,H,T}. The key idea in our algorithm is to create

a binary tree for storing the state information, called a status tree. A node in the status tree stores

a symbol in {ϕ,H,T, 0, 1}. The following procedure shows how the status tree is created and is

dynamically updated in response to arriving input bits. At the beginning, the tree has only a single
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root node labeled as ϕ. When reading a coin toss from the source, we modify the status tree based

on certain rules. For each node in the status tree, if it receives a message (H or T), we do operations

on the node. Meanwhile, this node may pass some new messages to its children. Iteratively, we can

process the status tree until no more messages are generated. Specifically, let u be a node in the

tree. Assume the label of u is x ∈ {ϕ,H,T, 1, 0} and it receives a symbol y ∈ {H,T} from its parent

node (or from the source if u is the root node). Depending on the values of x and y, we do the

following operations on node u.

1. When x = ϕ, set x = y.

2. When x = 1 or 0, output x and set x = y.

3. When x = H or T, we first check whether u has children. If it does not have, we create two

children with label ϕ for it. Let ul and ur denote the two children of u.

• If xy = HH, we set x = ϕ, then pass a symbol T to ul and a symbol H to ur.

• If xy = TT, we set x = ϕ, then pass a symbol T to ul and a symbol T to ur.

• If xy = HT, we set x = 1, then pass a symbol H to ul.

• If xy = TH, we set x = 0, then pass a symbol H to ul.

We see that the node u passes a symbol x+ y mod 2 to its left child and if x = y it passes a

symbol x to its right child.

Note that the timing is crucial that we output a node’s label (when it is 1 or 0) only after it

receives the next symbol from its parent or from the source. This is different from von Neumann’s

scheme where a 1 or a 0 is generated immediately without waiting for the next symbol. If we only

consider the output of the root node in the status tree, then it is similar to von Neumann’s scheme.

And the other nodes correspond to the information discarded by von Neumann’s scheme. In some

sense, the random-stream algorithm can be treated as a “stream” version of Peres’s algorithm. The

following example is constructed for the purpose of demonstration.
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Figure 4.1. An instance for generating 2 random bits using the random-stream algorithm.

Example 4.1. Assume we have a biased coin and our randomized application requires 2 random

bits. Figure 4.1 illustrates how the random-stream algorithm works when the incoming stream is

HTTTHT... In this figure, we can see the changes of the status tree and the messages (symbols)

passed throughout the tree for each step. We see that the output stream is 11...

Lemma 4.1. Let X be the current input sequence and let T be the current status tree. Given T

and the bits generated by each node in T , we can reconstruct X uniquely.

Proof. Let us prove this lemma by induction. If the maximum depth of the status tree is 0, it has

only a single node. In this case, X is exactly the label on the single node. Hence the conclusion is

trivial. Now we show that if the conclusion holds for all status trees with maximum depth at most

k, then it also holds for all status trees with maximum depth k + 1.

Given a status tree T with maximum depth k+1, we let Y ∈ {0, 1}∗ denote the binary sequence

generated by the root node, and L,R ∈ {H,T}∗ are the sequences of symbols received by its left

child and right child. If the label of the root node is in {0, 1}, we add it to Y . According to the
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random-stream algorithm, it is easy to get that

|L| = |Y |+ |R|.

Based on our assumption, L,R can be constructed from the left and right subtrees and the bits

generated by each node in the subtree since their depths are at most k. We show that once L,R, Y

satisfy the equality above, the input sequence X can be uniquely constructed from L,R, Y and α,

where α is the label of the root node. The procedure is as follows: Let us start from an empty string

for X and read symbols from L sequentially. If a symbol read from L is H, we read a bit from Y . If

this bit is 1 we add HT to X, otherwise we add TH to X. If a symbol read from L is T, we read a

symbol (H or T) from R. If this symbol is H we add HH to X, otherwise we add TT to X.

After reading all the elements in L,R and Y , the length of the resulting input sequence is 2|L|.

Now, we add α to the resulting input sequence if α ∈ {H,T}. This leads to the final sequence X,

which is unique.

Example 4.2. Let us consider the status tree in figure 4.1(f). And we know that the root node

generates 1 and the first node in the second level generates 1. We can have the following conclusions

iteratively.

• In the third level, the symbols received by the node with label H are H, and the node with label

ϕ does not receive any symbols.

• In the second level, the symbols received by the node with label 1 are HTH, and the symbols

received by the node with label T are T.

• For the root node, the symbols received are HTTTHT, which accords with example 4.1.

Let f : {H,T}∗ → {0, 1}∗ be the function of the random-stream algorithm. We show that this

function satisfies all the three conditions described in the introduction. It is easy to see that the

first condition holds, i.e., for any two sequences x, y ∈ {H,T}∗, f(x) is a prefix of f(xy), hence it

generates streams. The following two theorems indicate that f also satisfies the other two conditions.
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Theorem 4.2. Given a source of biased coin with unknown probability, the random-stream algorithm

generates a stream of random bits, i.e., for any k > 0, if we stop running the algorithm after

generating k bits then these k bits are independent and unbiased.

Let SY with Y ∈ {0, 1}k denote the set consisting of all the binary sequences yielding Y . Here,

we say that a binary sequence X yields Y if and only if X[1 : |X| − 1] (the prefix of X with

length |X| − 1) generates a sequence shorter than Y and X generates a sequence with Y as a prefix

(including Y itself). To prove that the algorithm can generate random-bit streams, we show that for

any distinct binary sequences Y1, Y2 ∈ {0, 1}k, the elements in SY1 and those in SY2 are one-to-one

mapping. The detailed proof is given in subsection 4.2.2.

Theorem 4.3. Given a biased coin with probability p being H, let n be the number of coin tosses

required for generating k random bits in the random-stream algorithm, then

lim
k→∞

E[n]

k
=

1

H(p)
.

The proof of theorem 4.3 is based on the fact that the random-stream algorithm is as efficient

as Peres’s algorithm. The difference is that in Peres’s algorithm the input length is fixed and the

output length is variable. But in the random-stream algorithm the output length is fixed and the

input length is variable. So the key of the proof is to connect these two cases. The detailed proof is

given in subsection 4.2.3.

So far, we can conclude that the random-stream algorithm can generate a stream of random bits

from an arbitrary biased coin with asymptotically optimal efficiency. However, the size of the binary

tree increases as the number of input coin tosses increases. The longest path of the tree is the left-

most path, in which each node passes one message to the next node when it receives two messages

from its previous node. Hence, the maximum depth of the tree is log2 n for n input bits. This linear

increase in space is a practical challenge. Our observation is that we can control the size of the

space by limiting the maximum depth of the tree – if a node’s depth reaches a certain threshold,

it will stop creating new leaves. We can prove that this method correctly generates a stream of
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random bits from an arbitrary biased coin. We call this method the random-stream algorithm with

maximum depth d.

Theorem 4.4. Given a source of a biased coin with unknown probability, the random-stream al-

gorithm with maximum depth d generates a stream of random bits, i.e., for any k > 0, if we stop

running the algorithm after generating k bits then these k bits are independent and unbiased.

The proof of theorem 4.4 is a simple modification of the proof of theorem 4.2, given in subsection

4.2.4. In order to save memory space, we need to reduce the efficiency. Fortunately, as the maximum

depth increases, the efficiency of this method can quickly converge to the theoretical limit.

Example 4.3. When the maximum depth of the tree is 0 (it has only the root node), then the

algorithm is approximately von Neumann’s scheme. The expected number of coin tosses required per

random bit is

1

pq

asymptotically, where q = 1− p and p is the probability for the biased coin being H.

Example 4.4. When the maximum depth of the tree is 1, the expected number of coin tosses required

per random bit is

1

pq + 1
2 (p

2 + q2)(2pq) + 1
2 (p

2 + q2) p2q2

(p2+q2)2

asymptotically, where q = 1− p and p is the probability for the biased coin being H.

Generally, if the maximum depth of the tree is d, then we can calculate the efficiency of the

random-stream algorithm by iteration in the following way:

Theorem 4.5. When the maximum depth of the tree is d and the probability of the biased coin is p

of being H, the expected number of coin tosses required per random bit is

1

ρd(p)
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Table 4.1. The expected number of coin tosses required per random bit for different probability p
and different maximum depths

maximum depth p=0.1 p=0.2 p=0.3 p=0.4 p=0.5

0 11.1111 6.2500 4.7619 4.1667 4.0000

1 5.9263 3.4768 2.7040 2.3799 2.2857

2 4.2857 2.5816 2.0299 1.7990 1.7297

3 3.5102 2.1484 1.7061 1.5190 1.4629

4 3.0655 1.9023 1.5207 1.3596 1.3111

5 2.7876 1.7480 1.4047 1.2598 1.2165

7 2.4764 1.5745 1.2748 1.1485 1.1113

10 2.2732 1.4619 1.1910 1.0772 1.0441

15 2.1662 1.4033 1.1478 1.0408 1.0101

∞ 2.1322 1.3852 1.1347 1.0299 1.0000

asymptotically, where ρd(p) can be obtained by iterating

ρd(p) = pq +
1

2
ρd−1(p

2 + q2) +
1

2
(p2 + q2)ρd−1(

p2

p2 + q2
) (4.1)

with q = 1− p and ρ0(p) = pq.

Theorem 4.5 shows that the efficiency of a random-stream algorithm with maximum depth d can

be easily calculated by iteration. One thing that we can claim is,

lim
d→∞

ρd(p) = H(p).

However, it is difficult to get an explicit expression for ρd(p) when d is finite. As d increases, the

convergence rate of ρd(p) depends on the value of p. The following extreme case implies that ρd(p)

can converge to H(p) very quickly.

Example 4.5. Let us consider the case that p = 1
2 . According to equation (4.1), we have

ρd(
1

2
) =

1

4
+

1

2
ρd−1(

1

2
) +

1

4
ρd−1(

1

2
),
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Figure 4.2. The efficiency for different probability p and different maximum depths.

where ρ0(
1
2 ) =

1
4 . Based on this iterative relation, it can be obtained that

ρd(
1

2
) = 1− (

3

4
)d+1.

So when p = 1
2 , ρd(p) can converge to H(p) = 1 very quickly as d increases.

In table 4.1, we tabulate the expected number of coin tosses required per random bit in the

random-stream algorithm with different maximum depths. We see that as the maximum depth in-

creases, the efficiency of the random-stream algorithm approaches the theoretical limitation quickly.

Let us consider the case of p = 0.3 as an example. If the maximum depth is 0, the random-stream

algorithm is as efficient as von Neumann’s scheme, which requires expected 4.76 coin tosses to gener-

ate one random bit. If the maximum depth is 7, it requires only expected 1.27 coin tosses to generate

one random bit. That is very close to the theoretical limitation 1.13. However, the space cost of

the algorithm has an exponential dependence on the maximum depth. That requires us to balance

the efficiency and the space cost in real applications. Specifically, if we define efficiency as the ratio
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Table 4.2. The expected time for processing a single input coin toss for different probability p and
different maximum depths

maximum depth p=0.1 p=0.2 p=0.3 p=0.4 p=0.5

0 1.0000 1.0000 1.0000 1.0000 1.0000

1 1.9100 1.8400 1.7900 1.7600 1.7500

2 2.7413 2.5524 2.4202 2.3398 2.3125

3 3.5079 3.1650 2.9275 2.7840 2.7344

4 4.2230 3.6996 3.3414 3.1256 3.0508

5 4.8968 4.1739 3.6838 3.3901 3.2881

7 6.1540 4.9940 4.2188 3.7587 3.5995

10 7.9002 6.0309 4.8001 4.0783 3.8311

15 10.6458 7.5383 5.5215 4.3539 3.9599

between the theoretical lower bound and the real value of the expected number of coin tosses, then

figure 4.2 shows the relation between the efficiency and the maximum depth for different probability

p.

Another property that we consider is the expected time for processing a single coin toss. Assume

that it takes a single unit of time to process a message received at a node, then the expected time

is exactly the expected number of messages that have been generated in the status tree (including

the input coin toss itself). Table 4.2 shows the expected time for processing a single input bit when

the input is infinitely long, implying the computational efficiency of the random-stream algorithm

with limited depth. It can be proved that for an input generated by an arbitrary biased coin the

expected time for processing a single coin toss is upper bounded by the maximum depth plus one

(it is not a tight bound).

4.2.2 Proof of Theorem 4.2

In this subsection, we prove Theorem 4.2.

Lemma 4.6. Let T be the status tree induced by XA ∈ {H,T}∗, and let k1, k2, ..., k|T | be the number

of bits generated by the nodes in T , where |T | is the number of nodes in T . Then for any yi ∈ {0, 1}ki

with 1 ≤ i ≤ |T |, there exists an unique sequence XB ∈ {H,T}∗ such that it induces the same status
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tree T , and the bits generated by the ith node in T is yi. For such a sequence XB, it is a permutation

of XA with the same last element.

Proof. To prove this conclusion, we can apply the idea of Lemma 4.1. It is obviously that if the

maximum depth of T is zero, then the conclusion is trivial. Assume that the conclusion holds for

any status tree with maximum depth at most k, then we show that it also holds for any status tree

with maximum depth k + 1.

Given a status tree T with maximum depth k + 1, we use YA ∈ {0, 1}∗ to denote the binary

sequence generated by the root node based on XA, and LA, RA to denote the sequences of symbols

received by its left child and right child. According to our assumption, by flipping the bits generated

by the left subtree, we can construct an unique sequence LB ∈ {H,T}∗ uniquely such that LB is a

permutation of LA with the same last element. Similarly, for the right subtree, we have RB ∈ {H,T}∗

uniquely such that RB is a permutation of RA with the same last element.

Assume that by flipping the bits generated by the root node, we get a binary sequence YB such

that |YB| = |YA| (If the label α ∈ {0, 1}, we add it to YA and YB), then

|LB | = |YB |+ |RB |,

which implies that we can construct XB from LB , RB , YB and the label α on the root node uniquely

(according to the proof of the above lemma). Since the length of XB is uniquely determined by |LB|

and α, we can also conclude that XA and XB have the same length.

To see that XB is a permutation of XA, we show that XB has the same number of H’s as XA.

Given a sequence X ∈ {H,T}∗, let wH(X) denote the number of H’s in X. It is not hard to see that

wH(XA) = wH(LA) + wH(RA) + wH(α),

wH(XB) = wH(LB) + wH(RB) + wH(α),

where wH(LA) = wH(LB) and wH(RA) = wH(RB) due to our assumption. Hence wH(XA) =
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Figure 4.3. An example for demonstrating lemma 4.6, where the input sequence for (a) is HTTTHT,
and the input sequence for (b) is TTHTHT.

wH(XB) and XB is a permutation of XA.

Finally, we would like to see that XA and XB have the same last element. That is because if

α ∈ {H,T}, then both XA and XB end with α. If α ∈ {ϕ, 0, 1}, the last element of XB depends on

the last element of LB , the last element of RB , and α. Our assumption gives that LB has the same

element as LA and RB has the same element as RA. So we can conclude that XA and XB have the

same last element.

Example 4.6. The status tree of a sequence HTTTHT is given by figure 4.3(a). If we flip the second

bit 1 into 0, see figure 4.3(b), we can construct a sequence of coin tosses , which is TTHTHT.

Now, we define an equivalence relation on {H,T}∗.

Definition 4.1. Let TA be the status tree of XA and TB be the status tree of XB. Two sequences

XA, XB ∈ {H,T}∗ are equivalent denoted by XA ≡ XB if and only if TA = TB, and for each pair of

nodes (u, v) with u ∈ TA and v ∈ TB at the same position they generate the same number of bits.

Let SY with Y ∈ {0, 1}k denote the set consisting of all the binary sequences yielding Y . Here,

we say that a binary sequence X yields Y if and only if X[1 : |X| − 1] generates a sequence shorter

than Y and X generates a sequence with Y as a prefix (including Y itself). Namely, let f be the
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function of the random-stream algorithm, them

|f(X[1 : |X| − 1])| < |Y |, f(X) = Y∆ with ∆ ∈ {0, 1}∗.

To prove that the algorithm can generate random-bit streams, we show that for any distinct binary

sequences Y1, Y2 ∈ {0, 1}k, the elements in SY1 and those in SY2 are one-to-one mapping.

Lemma 4.7. Let f be the function of the random-stream algorithm. For any distinct binary se-

quences Y1, Y2 ∈ {0, 1}k, if XA ∈ SY1 , there are exactly one sequence XB ∈ SY2 such that

• XB ≡ XA.

• f(XA) = Y1∆ and f(XB) = Y2∆ for some binary sequence ∆ ∈ {0, 1}∗.

Proof. Let us prove this conclusion by induction. Here, we use X ′
A to denote the prefix of XA of

length |XA| − 1 and use β to denote the last symbol of XA. So XA = X ′
Aβ.

When k = 1, if XA ∈ S0, we can write f(XA) as 0∆ for some ∆ ∈ {0, 1}∗. In this case, we

assume that the status tree of X ′
A is T ′

A, and in which node u generates the first bit 0 when reading

the symbol β. If we flip the label of u from 0 to 1, we get another status tree, denoted by T ′
B.

Using the same argument as lemma 4.1, we are able to construct a sequence X ′
B such that its status

tree is T ′
B and it does not generate any bits. Concatenating X ′

B with β results in a new sequence

XB , i.e., XB = X ′
Bβ, such that XB ≡ XA and f(XB) = 1∆. Similarly, for any sequence XB that

yields 1, i.e., XB ∈ S1, if f(XB) = 1∆, we can find a sequence XA ∈ S0 such that XA ≡ XB and

f(XA) = 0∆. So we can say that the elements in S0 and S1 are one-to-one mapping.

Now we assume that all the elements in SY1 and SY2 are one-to-one mapping for all Y1, Y2 ∈

{0, 1}k, then we show that this conclusion also holds for any Y1, Y2 ∈ {0, 1}k+1. Two cases need to

be considered.

1) Y1, Y2 end with the same bit. Without loss of generality, we assume this bit is 0, then we can

write Y1 = Y ′
10 and Y2 = Y ′

20. If XA ∈ SY ′
1
, then we can write f(XA) = Y ′

1∆
′ in which the first bit

of ∆′ is 0. According to our assumption, there exists a sequence XB ∈ SY ′
2
such that XB ≡ XA and
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f(XB) = Y ′
2∆

′. In this case, if we write f(XA) = Y1∆ = Y ′
10∆, then f(XB) = Y ′

2∆
′ = Y ′

20∆ = Y2∆.

So such a sequence XB satisfies our requirements.

If XA /∈ SY ′
1
, that means Y ′

1 has been generated before reading the symbol β. Let us consider

a prefix of XA, denote by XA, such that it yields Y ′
1 . In this case, f(X ′

A) = Y ′
1 and we can

write XA = XAZ. According to our assumption, there exists exactly one sequence XB such that

XB ≡ XA and f(X ′
B) = Y ′

2 . Since XA and XB induce the same status tree, if we construct a

sequence XB = XBZ, then XB ≡ XA and XB generates the same bits as XA when reading symbols

from Z. It is easy to see that such a sequence XB satisfies our requirements.

Since this result is also true for the inverse case, if Y1, Y2 end with same bit the elements in SY1

and SY2 are one-to-one mapping.

2) Let us consider the case that Y1, Y2 end with different bits. Without loss of generality, we

assume that Y1 = Y ′
10 and Y2 = Y ′

21. According to the argument above, the elements in S00...00 and

SY ′
10

are one-to-one mapping; and the elements in S00..01 and SY ′
21

are one-to-one mapping. So our

task is to prove that the elements in S00..00 and S00...01 are one-to-one mapping. For any sequence

XA ∈ S00...00, let X
′
A be its prefix of length |XA| − 1. Here, X ′

A generates only zeros whose length

is at most k. Let T ′
A denote the status tree of X ′

A and let u be the node in T ′
A that generates the

k + 1th bit (zero) when reading the symbol β. Then we can construct a new sequence X ′
B with

status tree T ′
B such that

• T ′
B and T ′

A are the same except the label of u is 0 and the label of the node at the same position

in T ′
B is 1.

• For each node u in T ′
A, let v be its corresponding node at the same position in T ′

B , then u and

v generate the same bits.

The construction of X ′
B follows the proof of lemma 4.6. If we construct a sequence XB = X ′

Bβ, it

is not hard to show that XB satisfies our requirements, i.e.,

• XB ≡ XA;

• X ′
B generates less than k + 1 bits, i.e., |f(X ′

B)| ≤ k;
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• If f(XA) = 0k0∆, then f(XB) = 0k1∆, where 0k is for k zeros.

Also based on the inverse argument, we see that the elements in S00..00 and S00...01 are one-to-one

mapping. So if Y1, Y2 end with different bits, the elements in SY1
and SY2

are one-to-one mapping.

Finally, we can conclude that the elements in SY1
and SY2

are one-to-one mapping for any

Y1, Y2 ∈ {0, 1}k with k > 0.

Theorem 4.2. Given a source of biased coin with unknown probability, the random-stream algorithm

generates a stream of random bits, i.e., for any k > 0, if we stop running the algorithm after

generating k bits then these k bits are independent and unbiased.

Proof. According to lemma 4.7, for any Y1, Y2 ∈ {0, 1}k, the elements in SY1 and SY2 are one-to-one

mapping. If two sequences are one-to-one mapping, they have to be equivalent, which implies that

their probabilities of being generated are the same. Hence, the probability of generating a sequence

in SY1 is equal to that of generating a sequence in SY2 . It implies that Y1 and Y2 have the same

probability of being generated for a fixed number k. Since this is true for any Y1, Y2 ∈ {0, 1}k, the

probability of generating an arbitrary binary sequence Y ∈ {0, 1}k is 2−k. Finally, we have the

statement in the theorem.

4.2.3 Proof of Theorem 4.3

Lemma 4.8. Given a stream of biased coin tosses, where the probability of generating H is p, we

run the random-stream algorithm until the number of coin tosses reaches l. In this case, let m be

the number of random bits generated, then for any ϵ, δ > 0, if l is large enough, we have that

P [
m− lH(p)

lH(p)
< −ϵ] < δ,

where

H(p) = −p log2 p− (1− p) log2(1− p)

is the entropy of the biased coin.
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Proof. If we consider the case of fixed input length, then the random-stream algorithm is as efficient

as Peres’s algorithm asymptotically. Using the same proof given in [90] for Peres’s algorithm, we

can get

lim
l→∞

E[m]

l
= H(p).

Given a sequence of coin tosses of length l, we want to prove that for any ϵ > 0,

lim
l→∞

P [
m− E[m]

E[m]
< −ϵ] = 0.

To prove this result, we assume that this limitation holds for ϵ = ϵ1, i.e., for any δ > 0, if l is

large enough, then

P [
m− E[m]

E[m]
< −ϵ1] < δ.

Under this assumption, we show that there always exists ϵ2 < ϵ1 such that the limitation also holds

for ϵ = ϵ2. Hence, the value of ϵ can be arbitrarily small.

In the random-stream algorithm, l is the number of symbols (coin tosses) received by the root.

Let m1 be the number of random bits generated by the root, m(l) be the number of random bits

generated by its left subtree and m(r) be the number of random bits generated by its right subtree.

Then it is easy to get

m = m1 +m(l) +m(r).

Since the m1 random bits generated by the root node are independent, we can always make l

large enough such that

P [
m1 − E[m1]

E[m1]
< −ϵ1/2] < δ/3.

At the same time, by making l large enough, we can make both m(l) and m(r) large enough such

that (based on our assumption)

P [
m(l) − E[m(l)]

E[m(l)]
< −ϵ1] < δ/3
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and

P [
m(r) − E[m(r)]

E[m(r)]
< −ϵ1] < δ/3.

Based on the three inequalities above, we can get

P [m− E[m] ≤ −ϵ1(
E[m1]

2
+ E[m(l)] + E[m(r)])] < δ.

If we set

ϵ2 = ϵ1

E[m1]
2 + E[m(l)] + E[m(r)]

E[m1 +m(l) +m(r)]
,

then

P [
m− E[m]

E[m]
< −ϵ2] < δ.

Given the probability p of the coin, when l is large,

E[m1] = Θ(E[m]), E[m(l)] = Θ(E[m]), E[m(r)] = Θ(E[m]),

which implies that ϵ2 < ϵ1.

So we can conclude that for any ϵ > 0, δ > 0, if l is large enough then

P [
m− E[m]

E[m]
< −ϵ] < δ.

And based on the fact that E[m] → lH(p), we get the result in the lemma.

Theorem 4.3. Given a biased coin with probability p being H, let n be the number of coin tosses

required for generating k random bits in the random-stream algorithm, then

lim
k→∞

E[n]

k
=

1

H(p)
.

Proof. For any ϵ, δ > 0, we set l = k
H(p) (1 + ϵ), according to the conclusion of the previous lemma,
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with probability at least 1− δ, the output length is at least k if the input length l is fixed and large

enough. In another word, if the output length is k, which is fixed, then with probability at least

1− δ, the input length n ≤ l.

So with probability less than δ, we require more than l coin tosses. The worst case is that we

did not generate any bits for the first l coin tosses. In this case, we need to generate k more random

bits. As a result, the expected number of coin tosses required is at most l + E[n].

Based on the analysis above, we derive

E[n] ≤ (1− δ)l + (δ)(l + E[n]),

then

E[n] ≤ l

1− δ
=

k

H(p)

(1 + ϵ)

(1− δ)
.

Since ϵ, δ can be arbitrarily small when l (or k) is large enough

lim
k→∞

E[n]

k
≤ 1

H(p)
.

Based on Shannon’s theory [27], it is impossible to generate k random bits from a source with

expected entropy less than k. Hence

lim
k→∞

E[nH(p)] ≥ k,

i.e.,

lim
k→∞

E[n]

k
≥ 1

H(p)
.

Finally, we get the conclusion in the theorem. This completes the proof.
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4.2.4 Proof of Theorem 4.4

The proof of theorem 4.4 is very similar as the proof of theorem 4.2. Let SY with Y ∈ {0, 1}k denote

the set consisting of all the binary sequences yielding Y in the random-stream algorithm with limited

maximum depth. Then for any distinct binary sequences Y1, Y2 ∈ {0, 1}k, the elements in SY1 and

those in SY2 are one-to-one mapping. Specifically, we can get the following lemma.

Lemma 4.9. Let f be the function of the random-stream algorithm with maximum depth d. For

any distinct binary sequences Y1, Y2 ∈ {0, 1}k, if XA ∈ SY1 , there exists one sequence XB ∈ SY2

such that

• XA ≡ XB.

• Let TA be the status tree of XA and TB be the status tree of XB. For any node u with depth

larger than d in TA, let v be its corresponding node in TB at the same position, then u and v

generate the same bits.

• f(XA) = Y1∆ and f(XB) = Y2∆ for some binary sequence ∆ ∈ {0, 1}∗.

Proof. The proof of this lemma is a simple modification of that for lemma 4.7, which is by induction.

A simple sketch is given as follows.

First, similar as the proof for lemma 4.7, it can be proved that: when k = 1, for any sequence

XA ∈ S0, there exists one sequence XB ∈ S1 such that XA, XB satisfy the conditions in the lemma,

and vice versa. So we can say that the elements in S0 and S1 are one-to-one mapping. Then we

assume that all the elements in SY1 and SY2 are one-to-one mapping for all Y1, Y2 ∈ {0, 1}k, then we

show that this conclusion also holds for any Y1, Y2 ∈ {0, 1}k+1. Two cases need to be considered.

1) Y1, Y2 end with the same bit. Without loss of generality, we assume this bit is 0, then we can

write Y1 = Y ′
10 and Y2 = Y ′

20.

If XA ∈ SY ′
1
, then according to our assumption, it is easy to prove the conclusion, i.e., there

exists a sequence XB satisfies the conditions.

If XA /∈ SY ′
1
, then we can write XA = XAZ and XA ∈ SY ′

1
. According to our assumption, for

the sequence XA, we can find its mapping XB such that (1) XA ≡ XB; (2) XA, XB induce the
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same status tree and their corresponding nodes with depth larger than d generate the same bits;

and (3) f(XA) = Y ′
1 and f(XB) = Y ′

2 . If we construct a sequence XB = XBZ, it will satisfy all the

conditions in the lemma.

Since this result is also true for the inverse case, if Y1, Y2 end with same bit, the elements in SY1

and SY2 are one-to-one mapping.

2) Y1, Y2 end with different bits. Without loss of generality, we assume that Y1 = Y ′
10 and

Y2 = Y ′
21. According to the argument above, the elements in S0k0 and SY1 are one-to-one mapping;

and the elements in S0k1 and SY2 are one-to-one mapping. So we only need to prove that the elements

in S0k0 and S0k1 are one-to-one mapping. In this case, for any XA ∈ S0k−10, let XA = X ′
Aβ with

a single symbol β. Then X ′
A generates only zeros whose length is at most k. Let T ′

A denote the

status tree of X ′
A and let u be the node in T ′

A that generates the k + 1th bit (zero) when reading

the symbol β. Note that the depth of u is at most d. In this case, we can construct a new sequence

X ′
B with status tree T ′

B such that

• T ′
B and T ′

A are the same except the label of u is 0 and the label of the node at the same position

in T ′
B is 1.

• For each node u in T ′
A, let v be its corresponding node at the same position in T ′

B , then u and

v generate the same bits.

Then we can prove that the sequence XB = X ′
Bβ satisfies our all our conditions in the lemma. Also

based on the inverse argument, we can claim that the elements in S0k0 and S0k1 are one-to-one

mapping.

Finally, we can conclude that the elements in SY1 and SY2 are one-to-one mapping for any

Y1, Y2 ∈ {0, 1}k with k > 0.

From the above lemma, it is easy to get theorem 4.4.

Theorem 4.4. Given a source of biased coin with unknown probability, the random-stream algorithm

with maximum depth d generates a stream of random bits, i.e., for any k > 0, if we stop running

the algorithm after generating k bits then these k bits are independent and unbiased.
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Proof. We can apply the same procedure of proving theorem 4.3.

4.2.5 Proof of Theorem 4.5

Similar to the proof of Theorem 4.3, we first consider the case that the input length is fixed.

Lemma 4.10. Given a stream of biased coin tosses, where the probability of generating H is p, we

run the random-stream algorithm with maximum depth d until the number of coin tosses reaches l.

In this case, let m be the number of random bits generated, then for any ϵ, δ > 0, if l is large enough,

we have that

P [
m− lρd(p)

lρd(p)
< −ϵ] < δ,

where ρd(p) is given in (4.1).

Proof. Let ρd(p) be the asymptotic expected number of random bits generated per coin toss when

the random-stream algorithm has maximum depth d and the probability of the biased coin is p.

Then

lim
l→∞

E[m]

l
= ρd(p).

When the fixed input length l is large enough, the random-stream algorithm generates approximately

lρd(p) random bits, which are generated by the root node, the left subtree (subtree rooted at root’s

left child) and the right subtree (subtree rooted at the root’s right child). Considering the root node,

it generates approximately lpq random bits with q = 1− p. At the same time, the root node passes

approximately l
2 messages (H or T) to its left child, where the messages are independent and the

probability of H is p2 + q2; and the root node passes approximately l
2 (p

2 + q2) messages (H or T) to

its right child, where the messages are independent and the probability of H is p2

p2+q2 . As a result,

according to the definition of ρd, the left subtree generates approximately l
2ρd−1(p

2 + q2) random

bits, and the right subtree generates approximately l
2 (p

2 + q2)ρd−1(
p2

p2+q2 ) random bits. As l → ∞,

we have

lim
l→∞

lρd(p)

lpq + l
2ρd−1(p2 + q2) + l

2 (p
2 + q2)ρd−1(

p2

p2+q2 )
= 1.
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It yields

ρd(p) = pq +
1

2
ρd−1(p

2 + q2) +
1

2
(p2 + q2)ρd−1(

p2

p2 + q2
).

So we can calculate ρd(p) by iteration. When d = 0, the status tree has the single root node, and it

is easy to get ρ0(p) = pq.

Then, following the proof of lemma 4.8, for any ϵ, δ > 0, if l is large enough, we have that

P [
m− E[m]

E[m]
< −ϵ] < δ.

So we can get the conclusion in the lemma. This completes the proof.

From the above lemma, we can get theorem 4.5, that is,

Theorem 4.5. When the maximum depth of the tree is d and the probability of the biased coin is

p of being H, the expected number of coin tosses required per random bit is

1

ρd(p)

asymptotically, where ρd(p) can be obtained by iterating

ρd(p) = pq +
1

2
ρd−1(p

2 + q2) +
1

2
(p2 + q2)ρd−1(

p2

p2 + q2
)

with q = 1− p and ρ0(p) = pq.

Proof. We can apply the same procedure of proving theorem 4.2 except we apply lemma 4.10 instead

of lemma 4.8.
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4.3 Generalized Random-Stream Algorithm

4.3.1 Preliminary

In chapter 2, we introduced a universal scheme for transforming an arbitrary algorithm for generating

random bits from a sequence of biased coin tosses to manage the general source of an m-sided die.

This scheme works when the input is a sequence of fixed length; in this section, we study how to

modify this scheme to generate random-bit streams from m-sided dice. For sake of completeness we

describe the original scheme here.

The main idea of the scheme is to convert a sequence with alphabet larger than two, written as

X = x1x2...xn ∈ {0, 1, ...,m− 1}n,

into multiple binary sequences. To do this, we create a binary tree, called a binarization tree, in

which each node is labeled with a binary sequence of H and T. Given the binary representations of

xi for all 1 ≤ i ≤ n, the path of each node in the tree indicates a prefix, and the binary sequence

labeled at this node consists of all the bits (H or T) following the prefix in the binary representations

of x1, x2, ..., xn (if it exists). Fig. 2.1 is an instance of binarization tree when the input sequence

is X = 012112210, produced by a 3-sided die. To see this, we write each symbol (die roll) into a

binary representation of length two, hence X can be represented as

TT,TH,HT,TH,TH,HT,HT,TH,TT.

Only collecting the first bits of all the symbols yields an independent binary sequence

Xϕ = TTHTTHHTT,

which is labeled on the root node; Collecting the second bits following T, we get another independent
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binary sequence

XT = THHHHT,

which is labeled on the left child of the root node.

The universal scheme says that we can ‘treat’ each binary sequence labeled on the binarization

tree as a sequence of biased coin tosses: Let Ψ be any algorithm that can generate random bits from

an arbitrary biased coin, then applying Ψ to each of the sequences labeled on the binarization tree

and concatenating their outputs together results in an independent and unbiased sequence, namely,

a sequence of random bits.

Specifically, given the number of sides m of a loaded die, the depth of the binarization tree is

b = ⌈log2m⌉ − 1. Let Υb denote the set consisting of all the binary sequences of length at most b,

i.e.,

Υb = {ϕ, T, H, TT, TH, HT, HH, ..., HHH...HH}.

Given X ∈ {0, 1, ...,m− 1}n, let Xγ denote the binary sequence labeled on a node corresponding to

a prefix γ in the binarization tree, then we get a group of binary sequences

Xϕ, XT, XH, XTT, XTH, XHT, XHH, ...

For any function Ψ that generates random bits from a fixed number of coin tosses, we can generate

random bits from X by calculating

Ψ(Xϕ) + Ψ(XT) + Ψ(XH) + Ψ(XTT) + Ψ(XTH) + ...,

where A+B is the concatenation of A and B.

So in the above example, the output of X = 012112210 is Ψ(Xϕ) + Ψ(XT), i.e.,

Ψ(TTHTTHHTT) + Ψ(THHHHT).
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This conclusion is simple, but not obvious, since the binary sequences labeled on the same binariza-

tion tree are correlated with each other.

4.3.2 Generalized Random-Stream Algorithm

We want to generalize the random-stream algorithm to generate random-bit streams from an m-

sided die. Using the similar idea as above, we convert the input stream into multiple binary streams,

where each binary stream corresponds to a node in the binalization tree. We apply the random-

stream algorithm to all these binary streams individually, and for each stream we create a status

tree for storing state information. When we read a dice roll of m faces from the source, we pass

all the log2m bits of its binary representation to ⌈log2m⌉ different streams that corresponds to a

path in the binalization tree. Then we process all these ⌈log2m⌉ streams from top to bottom along

that path. In this way, a single binary stream is produced. While each node in the binalization tree

generates a random-bit stream, the resulting single stream is a mixture of these random-bit streams.

But it is not obvious whether the resulting stream is a random-bit stream or not, since the values

of the bits generated affect their orders.

The following example is constructed for demonstrating this algorithm.

Let us consider a stream of symbols generated from a 3-sided die,

012112210...

Instead of storing a binary sequence at each node in the binalization tree, we associate each node

with a status tree corresponding to a random-stream algorithm. Here, we get two nontrivial binary

streams

TTHTTHHTT..., THHHHT...

corresponding to prefix ϕ and T respectively, figure 4.4 demonstrates how the status trees change

when we read symbols one by one. For instance, when the 4th symbol 1(TH) is read, it passes T

to the root node (corresponding to the prefix ϕ) and passes H to the left child of the root node
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Figure 4.4. The changes of status trees in the generalized random-stream algorithm when the input
stream is 012112210....

(corresponding to the prefix T) of the binalization tree. Based on the rules of the random-stream

algorithm, we modify the status trees associated with these two nodes. During this process, a bit 0



109

is generated.

Finally, this scheme generates a stream of bits 010..., where the first bit is generated after reading

the 4th symbol, the second bit is generated after reading the 5th symbol, ... We call this scheme as

the generalized random-stream algorithm. As we expected, this algorithm can generate a stream of

random bits from an arbitrary loaded die with m ≥ 2 faces.

Theorem 4.11. Given a loaded die with m ≥ 2 faces, if we stop running the generalized random-

stream algorithm after generating k bits, then these k bits are independent and unbiased.

The proof of the above theorem is given in subsection 4.3.3.

Since the random-stream algorithm is as efficient as Peres’s algorithm asymptotically, we can

prove that the generalized random-stream algorithm is also asymptotically optimal.

Theorem 4.12. Given an m-sided die with probability distribution ρ = (p0, p1, ..., pm−1), let n be

the number of symbols (dice rolls) used in the generalized random-stream algorithm and let k be the

number of random bits generated, then

lim
k→∞

E[n]

k
=

1

H(p0, p1, ..., pm−1)
,

where

H(p0, p1, ..., pm−1) =

m−1∑
i=0

pi log2
1

pi

is the entropy of the m-sided die.

Proof. First, according to Shannon’s theory, it is easy to get that

lim
k→∞

E[n]

k
≥ 1

H(p0, p1, ..., pm−1)
.

Now, we let n = k
H(p0,p1,...,pm−1)

(1 + ϵ) with an arbitrary ϵ > 0. Following the proof of theorem

2.7 in chapter 2, it can be shown that when k is large enough, the algorithm generates more than

k random bits with probability at least 1 − δ with any δ > 0. Then using the same argument in
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theorem 4.3, we can get

lim
k→∞

E[n]

k
≤ 1

H(p0, p1, ..., pm−1)

1 + ϵ

1− δ
,

for any ϵ, δ > 0.

Hence, we can get the conclusion in the theorem.

Of source, we can limit the depths of all the status trees for saving space, with proof emitted.

It can be seen that given a loaded die of m faces, the space usage is proportional to m and the

expected computational time is proportional to logm.

4.3.3 Proof of Theorem 4.11

Here, we want to prove that the generalized random-stream algorithm generates a stream of random

bits from an arbitrary m-sided die. Similar as above, we let SY with Y ∈ {0, 1}k denote the set

consisting of all the sequences yielding Y . Here, we say that a sequence X yields Y if and only if

X[1 : |X| − 1] generates a sequence shorter than Y and X generates a sequence with Y as a prefix

(including Y itself). We would like to show that the elements in SY1 and those in SY2 are one-to-one

mapping if Y1 and Y2 have the same length.

Definition 4.2. Two sequences XA, XB ∈ {0, 1, ...,m− 1}∗ with m > 2 are equivalent, denoted by

XA ≡ XB, if and only XA
γ ≡ XB

γ for all γ ∈ Υb, where X
A
γ is the binary sequence labeled on a node

corresponding to a prefix γ in the binalization tree induced by XA, and the equivalence of XA
γ and

XB
γ was given in definition 4.1.

Lemma 4.13. Let f be the function of the generalized random-stream algorithm, and let XA be a

sequence produced by an m-sided die. For any distinct sequences Y1, Y2 ∈ {0, 1}k, if XA ∈ SY1 , there

are exactly one sequence XB ∈ SY2
such that

• XB ≡ XA.

• f(XA) = Y1∆ and f(XB) = Y2∆ for some binary sequence ∆.
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Proof. The idea of the proof is to combine the proof of lemma 4.7 with the result in lemma 2.4 in

chapter 2.

Let us prove this conclusion by induction. Here, we use X ′
A to denote the prefix of XA of length

|XA| − 1 and use β to denote the last symbol of XA. So XA = X ′
Aβ. X

A
γ is the binary sequence

labeled on a node corresponding to a prefix γ in the binalization tree induced by X ′
A, and the status

tree of XA
γ

′
with γ ∈ Υb is denoted as T A

γ .

When k = 1, if XA ∈ S0, we can write f(XA) as 0∆. In this case, let u in T A
θ with θ ∈ Υb be

the node that generates the first bit 0. If we flip the label of u from 0 to 1, we get another status

tree T B
θ . Using the same argument in lemma 4.6, we are able to construct a sequence XB

θ such that

its status tree is T B
θ and it does not generate any bits. Here, XB

θ is a permutation of XA
θ . From

XA
ϕ , X

A
T , ..., X

B
θ , ..., we can construct a sequence X ′

B uniquely following the procedure in lemma 2.4

in chapter 2. Concatenating X ′
B with β results in a new sequence XB, i.e., XB = X ′

Bβ such that

XB ≡ XA and f(XB) = 1∆. Inversely, we can get the same result. It shows that the elements in

S0 and S1 are one-to-one mapping.

Now we assume that the conclusion holds for all Y1, Y2 ∈ {0, 1}k, then we show that it also holds

for any Y1, Y2 ∈ {0, 1}k+1. Two cases need to be considered.

1) Y1, Y2 end with the same bit. Without loss of generality, we assume that this bit is 0, then

we can write Y1 = Y ′
10 and Y2 = Y ′

20. If XA yields Y1, based on our assumption, it is easy to see

that there exists a sequence XB satisfies our requirements. If XA does not yield Y1, that means Y ′
1

has been generated before reading the symbol β. Let us consider a prefix of XA, denote by XA,

such that it yields Y ′
1 . In this case, f(X ′

A) = Y ′
1 and we can write XA = X ′

AZ. According to our

assumption, there exists exactly one sequence XB such that XB ≡ XA and f(X ′
B) = Y ′

2 . Since XA

and XB lead to the same binalization tree (all the status trees at the same positions are the same),

if we construct a sequence XB = XBZ, then XB ≡ XA and XB generates the same bits as XA when

reading symbols from Z. It is easy to see that such a sequence XB satisfies our requirements.

Since this result is also true for the inverse case, if Y1, Y2 ∈ {0, 1}k+1 end with the same bit, the

elements in SY1 and SY2 are one-to-one mapping.
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2) Let us consider the case that Y1, Y2 end with different bits. Without loss of generality, we

assume that Y1 = Y ′
10 and Y2 = Y ′

21. According to the argument above, the elements in S00...00

and SY ′
10

are one-to-one mapping; the elements in S00..01 and SY ′
21

are one-to-one mapping. So our

task is to prove that the elements in S00..00 and S00...01 are one-to-one mapping. For any sequence

XA ∈ S00...00, let X
′
A be its prefix of length |XA|− 1. Here, X ′

A generates only zeros whose length is

at most k. Let T A
θ denote one of the status trees such that u ∈ TA

θ is the node that generates that

k+1th bit (zero) when reading the symbol β. Then we can construct a new sequence X ′
B such that

• Let {XB
γ } with γ ∈ Υb be the binary sequences induced by X ′

B , and let T B
γ be the status tree

of XB
γ . The binalization trees of X ′

A and X ′
B are the same (all the status trees at the same

positions are the same), except the label of u is 0 and the label of its corresponding node v in

T B
θ is 1.

• Each node u in T B
γ generates the same bits as its corresponding node v in T A

γ for all γ ∈ Υb.

The construction of X ′
B follows the proof of lemma 4.1 and then lemma 2.4 in chapter 2. If we

construct a sequence XB = X ′
Bβ, it is not hard to show that XB satisfies our requirements, i.e.,

• XB ≡ XA;

• X ′
B generates less than k + 1 bits, i.e., |f(X ′

B)| ≤ k;

• If f(XA) = Y1∆ = Y ′
10∆, then f(XB) = Y ′

21∆ = Y2∆.

Also based on the inverse argument, we see that the elements in S00..00 and S00...01 are one-to-one

mapping.

Finally, we can conclude that the elements in SY1 and SY2 are one-to-one mapping for any

Y1, Y2 ∈ {0, 1}k with k > 0.

Based on the above result and the argument for theorem 4.2, we can easily prove theorem 4.11.

Theorem 4.11. Given a loaded die with m ≥ 2 faces, if we stop running the generalized random-

stream algorithm after generating k bits, then these k bits are independent and unbiased.
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4.4 Extension for Markov Chains

In this section, we study how to efficiently generate random-bit streams from Markov chains. The

nonstream case was studied by Samuelson [101], Blum [14] and later generalized by Zhou and Bruck,

see chapter 3. Here, using the techniques developed in chapter 3, and applying the techniques

introduced in this chapter, we are able to generate random-bit streams from Markov chains. We

present the algorithm briefly.

For a given Markov chain, it generates a stream of states, denoted by x1x2x3... ∈ {s1, s2, ..., sm}∗.

We can treat each state, say s, as a die and consider the ‘next states’ (the states the chain has

transitioned to after being at state s) as the results of a die roll, called the exit of s. For all

s ∈ {s1, s2, ..., sm}, if we only consider the exits of s, they form a stream. So we have total m

streams corresponding to the exits of s1, s2, ..., sm respectively. For example, assume the input is

X = s1s4s2s1s3s2s3s1s1s2s3s4s1...

If we consider the states following s1, we get a stream as the set of states in boldface:

X = s1s4s2s1s3s2s3s1s1s2s3s4s1...

Hence the four streams are

s4s3s1s2..., s1s3s3..., s2s1s4..., s2s1...

The generalized random-stream algorithm is applied to each stream separately for generating

random-bit streams. Here, when we get an exit of a state s, we should not directly pass it to the

generalized random-stream algorithm that corresponds to the state s. Instead, it waits until we

get the next exit of the state s. In another word, we keep the current exit in pending. In the

above example, after we read s1s4s2s1s3s2s3s1s1s2s3s4s1, s4s3s1 has been passed to the generalized

random-stream algorithm corresponding to s1, s1s3 has been passed to the generalized random-
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stream algorithm corresponding to s2,...the most recent exit of each state, namely s2, s3, s4, s1 are

in pending. Finally, we mix all the bits generated from different streams based on their natural

generating order. As a result, we get a stream of random bits from an arbitrary Markov chain, and

it achieves the information-theoretic upper bound on efficiency.

Now, we call this algorithm the random-stream algorithm for Markov chains, and we describe it

as follows.

Input: A stream X = x1x2x3... produced by a Markov chain, where xi ∈ S = {s1, s2, ..., sm}.

Output: A stream of 0′s and 1′s.

Main Function:

Let Φi be the generalized random-stream algorithm for the exits of si for 1 ≤ i ≤ m, and θi be

the pending exit of si for 1 ≤ i ≤ m.

Set θi = ϕ for 1 ≤ i ≤ m.

for each symbol xj read from the Markov chain do

if xj−1 = si then

if θi ̸= ϕ then

Input θi to Φi for processing.

end if

Set θi = xj .

end if

end for

Theorem 4.14. Given a source of a Markov chain with unknown transition probabilities, the

random-stream algorithm for Markov chains generates a stream of random bits, i.e., for any k > 0, if

we stop running the algorithm after generating k bits then these k bits are independent and unbiased.

The proof of the above theorem is a simple extension of the proof for theorem 4.11. Let SY

denote the set of input sequences that yield a binary sequence Y . Our main idea is still to prove

that all the elements in SY1 and SY2 are one-to-one mapping for all Y1, Y2 ∈ {0, 1}k with k > 0. The
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detailed proof is a little complex, but it is not difficult; we only need to follow the proof of theorem

4.11 and combine it with the following result from chapter 3. Here, we omit the detailed proof.

Lemma 4.15. Given an input sequence X = x1x2...xN ∈ {s1, s2, ..., sm}N that produced from

a Markov chain, let πi(X) be the exit sequence of si (the symbols following si) for 1 ≤ i ≤ m.

Assume that [Λ1,Λ2, ...,Λn] is an arbitrary collection of exit sequences such that Λi and πi(X) are

permutations and they have the same last element for all 1 ≤ i ≤ m. Then there exists a sequence

X ′ = x′1x
′
2...x

′
N ∈ {s1, s2, ..., sm}N such that x′1 = x1 and πi(X

′) = Λi for all 1 ≤ i ≤ m. For this

X ′, we have x′N = xN .

4.5 Conclusion

In this chapter, we addressed the problem of generating random-bit streams from i.i.d. sources with

unknown distributions. First, we considered the case of biased coins and derived a simple algorithm

to generate random-bit streams. This algorithm achieves the information-theoretic upper bound on

efficiency. We showed that this algorithm can be generalized to generate random-bit streams from

an arbitrary m-sided die with m > 2, and its information efficiency is also asymptotically optimal.

Furthermore, we demonstrated that by applying the (generalized) random-stream algorithm, we can

generate random-bit streams from an arbitrary Markov chain very efficiently.
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Part II

Randomness Extraction
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Chapter 5

Linear Transformations for
Extracting Randomness

This chapter studies linear transformations for randomness extraction and shows that sparse

random matrices are very powerful for extracting randomness from many noisy sources,

which are very attractive in the practical use of high-speed random number generators due

to their simplicity.1

5.1 Introduction

Randomness plays an important role in many fields, including complexity theory, cryptography, in-

formation theory and optimization. There are many randomized algorithms that are faster, more

space efficient or simpler than any known deterministic algorithms [86]; hence, how to generate

random numbers becomes an essential question in computer science. Pseudo-random numbers have

been studied, but they cannot perfectly simulate truly random bits or have security issues in some

applications. These problems motivate people to extract random bits from natural sources directly.

In this chapter, we study linear transformation for randomness extraction. This approach is at-

tractive due to its computational simplicity and information efficiency. Specifically, given an input

binary sequence X of length n generated from an imperfect source, we construct an n ×m binary

1 Some of the results presented in this chapter have been previously published in [140].
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matrix M called a transformation matrix such that the output sequence

Y = XM

is very close to the uniform distribution on {0, 1}m. Statistical distance [105] is commonly used to

measure the distance between two distributions in randomness extraction. We say Y ∈ {0, 1}m is

ϵ-close to the uniform distribution Um on {0, 1}m if and only if

1

2

∑
y∈{0,1}m

|P [Y = y]− 2−m| ≤ ϵ, (5.1)

where ϵ > 0 can be arbitrarily small. This condition guarantees that in any probabilistic application,

if we replace truly random bits with the sequence Y , the additional error probability caused by the

replacement is at most ϵ.

The classical question in random number generation considers ideal sources, like biased coins or

Markov chains, as described in chapters 2, 3, 4. Although it is known how to extract random bits

optimally from biased coins or Markov chains, these models are too narrow to describe real sources

that suffer noise and disturbance. During last two decades, research has been focused on a general

source model called k-sources [149], in which each possible sequence has probability at most 2−k

of being generated. This model can cover a very wide range of natural random sources, but it was

shown that it is impossible to derive a single function that extracts even a single bit of randomness

from such a source. This observation led to the introduction of seeded extractors, which use a small

number of truly random bits as the seed (catalyst). When simulating a probabilistic algorithm, one

can simply eliminate the requirement of truly random bits by enumerating all possible strings for

the seed and taking a majority vote. There are a variety of very efficient constructions of seeded

extractors, summarized in [32, 87, 105]. Although seeded extractors are information-efficient and

applicable to most natural sources, they are not computationally fast when simulating probabilistic

algorithms. Recently, there is renewed interest in designing seedless extractors, called deterministic

extractors. Several specific classes of sources have been studied, including independent sources, which
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can be divided into several independent parts consisting of certain amounts of randomness [9,95–97];

bit-fixing sources, where some bits in a binary sequence are truly random and the remaining bits

are fixed [23, 41, 64]; and samplable sources, where the source is generated by a process that has a

bounded amount of computational resources like space [63,116].

Unlike prior works on deterministic extractors, we take both simplicity and efficiency into con-

sideration. Simplicity is certainly an important issue; for example, it motivates the use of von

Neumann’s scheme [128] in Intel’s random number generator (RNG) [62] rather than some other

more sophisticated extractors. However, von Neumann’s scheme is far from optimal in its efficiency,

and it only works for ideal biased coins. Recently, in order to support future generations of hard-

ware security in systems operating at ultrafast bit rates, many high-speed random number generators

based on chaotic semiconductor lasers have been developed [118]. They can generate random bits

at rates as high as 12.5− 400 Gbit/s [5,65,98]; hence, the simplicity of post-processing is becoming

more important. These challenges motivate us to develop extractors that can extract randomness

from natural sources in a manner that reaches the theoretical upper bound on efficiency without

compromising simplicity. In particular, we focus on linear constructions; that is, we apply linear

transformations for randomness extraction.

Our main contribution is to show that linear transformations based on sparse random matri-

ces are asymptotically optimal for extracting randomness from independent sources and bit-fixing

sources, and they are efficient (although not necessarily optimal) for extracting randomness from

hidden Markov sources. We further show that these conclusions hold if we apply any invertible

linear mapping on the sources. In fact, many natural sources for the purpose of high-speed random

number generation are qualified to fit one of the above models or their mixture, making the con-

struction based on sparse random matrices very attractive in practical use. The resulting extractors

are not seeded extractors, which consume truly random bits whenever extracting randomness. They

are, in some sense, probabilistic constructions of deterministic extractors. In addition, we explore

explicit constructions of transformation matrices. We show that the generator matrices of primi-

tive BCH codes are good choices, but linear transformations based on such matrices require more
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computational time due to their high densities.

The remainder of this chapter is organized as follows. In section 5.2 we give an intuitive overview

of linear transformations for randomness extraction and present some general properties. In section

5.3, we introduce the source models to be addressed in this chapter and briefly describe our main

results. The detailed discussions for each source model, including independent sources, hidden

Markov sources, bit-fixing sources and linear-subspace sources, are given in section 5.4, section 5.5,

section 5.6 and section 5.7, respectively. In section 5.8, we briefly describe implementation issues

followed by concluding remarks in section 5.9.

5.2 Linear Transformations

Let us start from a simple and fundamental question in random number generation: given a set of

coin tosses x1, x2, ..., xn with P [xi = 1] ∈ [ 12 − δ, 12 + δ], how can we simulate a single coin toss such

that is as unbiased as possible? This question has been well studied and it is known that binary

sum operation is optimal among all the methods, i.e., we generate a bit z which is

z = x1 + x2 + ...+ xn mod 2.

The following lemma shows that binary sum operation can decrease the bias of the resulting coin

toss exponentially.

Lemma 5.1. [73] Let x1, x2, ..., xn be n independent bits and the bias of xi is δi, namely,

δi = |P [xi = 1]− 1

2
|

for 1 ≤ i ≤ n, then the bias of z = x1 + x2 + ...+ xn mod 2 is upper bounded by

∏n
i=1(2δi)

2
.
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A generalization of the above question is that: given n independent bits, how do we generate

m < n random bits such that their statistical distance to the truly random bits is as small as

possible? One way is to divide all the n independent bits into m nonoverlap groups, denoted by

S1, S2, ..., Sm, such that
∪m

i=1 Si = {x1, x2, ..., xn}. For 1 ≤ i ≤ m, the ith output bit, denoted by

yi, is produced by summing up the bits in Si and modulo two. However, this method is not very

efficient. By allowing overlaps between different groups, the efficiency can be significantly improved.

In this case, although we have sacrificed a little independence of the output bits, but the bias of each

bit has been reduced a lot. An equivalent way of presenting this method is to use a binary matrix,

denoted by M , such that Mij = 1 if and only if xi ∈ Sj , otherwise, Mij = 0. As a result, the output

of this method is Y = XM for a given input sequence X. This is an intuitive understanding why

linear transformations can be used in random extraction from weak random sources, in particular,

from independent sources.

In this chapter, we study linear transformations for extracting randomness from a few types

of random sources. Given a source X ∈ {0, 1}n, we design a transformation matrix M such that

the output Y = XM is arbitrarily close to truly random bits. Here, we use the statistical distance

between Y and the uniform distribution over {0, 1}m to measure the goodness of the output sequence

Y , defined by

ρ(Y ) =
1

2

∑
y∈{0,1}m

|P [Y = y]− 2−m|. (5.2)

It indicates the maximum error probability introduced by replacing truly random bits with the

sequence Y in any randomized algorithm.

Given a random source X and a matrix M , the following lemma shows an upper bound of

ρ(XM).

Lemma 5.2. Let X = x1x2...xn be a binary sequence generated from an arbitrary random source

and let M be an n×m binary matrix with m ≤ n. Then given Y = XM , we have

ρ(Y ) ≤
∑

u∈{0,1}m,u ̸=0

|PX [XMuT = 1]− 1

2
|.
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Proof. Similar as the idea in [73], for all y ∈ {0, 1}m, we define function h as h(y) = P (Y = y). For

this function, its Fourier transform is denoted by Fh, then

∀y ∈ {0, 1}m, h(y) = 2−m
∑

u∈{0,1}m

Fh(u)(−1)y·u,

and

∀u ∈ {0, 1}m, Fh(u) =
∑

y∈{0,1}m

h(y)(−1)y·u.

When u = 0, we have

|Fh(u)| =
∑

y∈{0,1}m

h(y) = 1.

When u ̸= 0, we have

|Fh(u)| = |
∑

y∈{0,1}m

h(y)(−1)y·u|

= |
∑

y·u=0

h(y)−
∑

y·u=1

h(y)|

= |1− 2
∑

y·u=1

h(y)|

= 2|P [XMuT = 1]− 1

2
|. (5.3)

Substituting (5.3) into (5.2) leads to

ρ(Y ) =
1

2

∑
y∈{0,1}m

|2−m
∑

u∈{0,1}m

Fh(u)(−1)y·u − 2−m|

≤ 1

2

∑
y∈{0,1}m

2−m
∑
u̸=0

|Fh(u)|

=
1

2

∑
u̸=0

|Fh(u)|

≤
∑
u̸=0

|P [XMuT = 1]− 1

2
|. (5.4)

This completes the proof.

There are some related works focusing on the constructions of linear transformations for the
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purpose of randomness extraction. In [72], Lacharme studied linear correctors, and his goal is to

generate a random sequence Y of length m such that

max
y∈{0,1}m

|P [Y = y]− 2−m| ≤ ϵ

for a specified small constant ϵ. At almost the same time as our work, in [1], Abbe uses polar

codes to construct deterministic extractors. His idea is that given an independent sequence X and

let X ′ = XGn with Gn = [
1 0

1 1

]
⊕

log2 n, then a subset of components in X ′ are roughly i.i.d.

uniform and the remaining components are roughly deterministic. It was proved that this approach

can generate a random sequence Y of length m and with entropy at least m(1− ϵ). In both of the

works above, the random bits generated are ‘weaker’ than the requirement of statistical distance.

For instance, let Y be a random sequence of length m, and assume P [Y = y] with y ∈ {0, 1}m is

either 2−(m−1) or 0. In this case, as m→ ∞, we have

max
y∈{0,1}m

|P [Y = y]− 2−m| → 0;

1− H(Y )

m
=

1

m
→ 0.

That means this sequence Y satisfies the requirement of randomness in both of the works. But if

we consider the statistical distance of Y to the uniform distribution on {0, 1}m, it is

ρ(Y ) =
1

2

∑
y∈{0,1}m

|P [Y = y]− 2−m| = 1

4
.

That does not satisfy our requirement of randomness in the sense of statistical distance. From this

point, we generate random bits with higher requirement on quality than the above works.

In the rest of this chapter, we investigate those random sources on {0, 1}n such that by applying

linear transformations we can get a random sequence Y with ρ(Y ) → 0 as n→ ∞.
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5.3 Source Models and Main Results

In this section, we introduce a few types of random sources including independent sources, hidden

Markov sources, bit-fixing sources, and linear-subspace sources, and we summarize our main results

for each type of sources. Two constructions of linear transformations will be presented and analyzed.

The first construction is based on sparse random matrices. We say a random matrix with each entry

being one with probability p is sparse if and only if p is small and p = w( logn
n ) that means p > k

lognn

for any fixed k > 0 when the source length n→ ∞. The second construction is explicit – it is based

on the generator matrices of linear codes with binomial weight distributions. The drawback of this

construction is that it requires more computations than the first one.

Given a source X, let Hmin(X) denote its min-entropy, defined by

Hmin(X) = min
x∈{0,1}n

log2
1

P [X = x]
. (5.5)

For many sources, such as independent sources and bit-fixing sources, the number of randomness

that can be extracted using deterministic extractors is upper bounded by the min-entropy of the

source asymptotically. Note that this is not always true for some special sources when the input

sequence is infinitely long. For example, we consider a source on {0, 1}n such that there is one

assignment with probability 2−
n
2 and all the other assignments have probability either 2−n or 0. For

this source, its min-entropy is n
2 , but as n→ ∞, this source itself is arbitrarily close to the uniform

distribution on {0, 1}n.

5.3.1 Independent Sources

Independent sources, where the bits generated are independent of each other, have been studied by

Santha and Vazirani [102], Varirani [123], P. Lacharme [72], etc. We consider a general model of

independent sources, namely, let X = x1x2...xn ∈ {0, 1}n be a binary sequence generated from such

a source, then x1, x2, ..., xn are independent of each other, and all their probabilities are unknown

and may be different. We assume that this source contains a certain amount of randomness, i.e., its
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min-entropy Hmin(X) is known.

Theorem 5.3. Let X = x1x2...xn ∈ {0, 1}n be an independent sequence and let M be an n × m

binary random matrix in which each entry is 1 with probability p = w( logn
n ) ≤ 1

2 . Assume Y = XM .

If m
Hmin(X) < 1, as n→ ∞, ρ(Y ) converges to 0 in probability, i.e.,

ρ(Y )
p→ 0.

It shows that linear transformations based on sparse random matrices are asymptotically optimal

for extracting randomness from independent sources. To consider explicit constructions, we focus

on a type of independent sources X = x1x2...xn ∈ {0, 1}n such that the probability of xi for all

1 ≤ i ≤ n is slightly unpredictable, i.e.,

pi = P [xi = 1] ∈ [
1

2
− e

2
,
1

2
+
e

2
],

with a constant e. For such a source, it is possible to have min-entropy n log2
2

1+e . The following

result shows that we can have an explicit construction that can extract as many as n log2
2

1+e random

bits from X asymptotically.

Theorem 5.4. Let C be a linear code with dimension m and codeword length n. Assume its weight

distribution is binomial and its generator matrix is G. Let X = x1x2...xn ∈ {0, 1}n be an independent

source such that P [xi = 1] ∈ [ 12 −e/2,
1
2 +e/2] for all 1 ≤ i ≤ n, and let Y = XGT . If m

n log2
2

1+e

< 1,

as n→ ∞, we have

ρ(Y ) → 0.

This result shows that if we can construct a linear code with binomial weight distribution, it can

extract as many as n log2
2

1+e random bits asymptotically. It is known that primitive BCH codes

have approximately binomial weight distribution. Hence, they are good candidates for extracting

randomness from independent sources with bounded bias.
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5.3.2 Hidden Markov Sources

A more-useful but less-studied model is a hidden Markov source. It is a good description of many

natural sources for the purpose of high-speed random number generation, such as those based on

thermal noise or clock drift. Given a binary sequence X = x1x2...xn ∈ {0, 1}n produced by such a

source, we let θi be the complete information about the system at time i with 1 ≤ i ≤ n. Examples

of this system information include the value of the noise signal, the temperature, the environmental

effects, the bit generated at time i, etc. So the bit generated at time i, i.e., xi, is just a function of

θi. We say that this source has the hidden Markov property if and only if for all 1 < i ≤ n,

P [xi|θi−1, xi−1, xi−2, ..., x1] = P [xi|θi−1].

That means the bit generated at time i only depends on the complete system information at time

i− 1.

To analyze the performance of linear transformations on hidden Markov sources, we assume

that the external noise of the sources is bounded, hence, we assume that for any three time points

1 ≤ i1 < i2 < i3 < n,

P [xi2 = 1|θi1 , θi3 ] ∈ [
1

2
− e

2
,
1

2
+
e

2
] (5.6)

with a constant e.

Theorem 5.5. Let X = x1x2...xn be a binary sequence generated from a hidden Markov source

described above. Let M be an n ×m binary random matrix in which the probability of each entry

being 1 is p = w( logn
n ) ≤ 1

2 . Assume Y = XM . If m
n log2

2
1+

√
e

< 1, as n becomes large enough, we

have that ρ(Y ) converges to 0 in probability, i.e.,

ρ(Y )
p→ 0.

The following theorem implies that we can also use the generator matrices of primitive BCH

codes for extracting randomness from hidden Markov sources, due to their approximately binomial
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weight distributions.

Theorem 5.6. Let C be a linear binary code with dimension m and codeword length n. Assume its

weight distribution is binomial and its generator matrix is G. Let X = x1x2...xn be a binary sequence

generated from a hidden Markov source described above, and let Y = XGT . If m
n log2

2
1+

√
e

< 1, as

n→ ∞, we have

ρ(Y ) → 0.

Although our constructions of linear transformations are not able to extract randomness opti-

mally from hidden Markov sources, they have good capabilities of tolerating local correlations. The

gap between their information efficiency and the optimality is reasonable small for hidden Markov

sources, especially considering their constructive simplicity and the fact that most of physical sources

for high-speed random number generation are roughly independent and with a very small amount

of correlations.

5.3.3 Bit-Fixing Sources

Bit-fixing sources were first studied by Cohen and Wigderson [23]. In an oblivious bit-fixing source

X of length n, k bits in X are unbiased and independent, and the remaining n−k bits are fixed. We

also have nonoblivious bit-fixing sources, in which the remaining n − k bits linearly depend on the

k independent and unbiased bits. Such sources were originally studied in the context of collective

coin flipping [11]. Here, we say a bit-fixing source for the general nonoblivious case.

Theorem 5.7. Let X = x1x2...xn ∈ {0, 1}n be a bit-fixing source in which k bits are unbiased and

independent. Let M be an n×m binary random matrix in which the probability for each entry being

1 is p = w( logn
n ) ≤ 1

2 . Assume Y = XM . If m
k < 1, as n becomes large enough, we have that

ρ(Y ) = 0 with almost probability 1, i.e.,

PM [ρ(Y ) = 0] → 1.
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So sparse random matrices are asymptotically optimal to extract randomness from bit-fixing

sources. Unfortunately, for bit-fixing sources, it is possible to find an efficient and explicit construc-

tion of linear transformations.

5.3.4 Linear-Subspace Sources

We generalize the sources described above in the following way: Assume X ∈ {0, 1}n is a raw

sequence that can be written as ZA, where Z ∈ {0, 1}k with k < n is an independent sequence or a

hidden Markov sequence, and A is an k × n unknown matrix with full rank, i.e., it is an invertible

matrix. Instances of such sources include sparse images studied in compressive sensing. We call

such sources as linear-subspace sources, namely, they are obtained by mapping simpler sources into

a subspace of higher dimensions. We demonstrate that linear transforms based on sparse random

matrices can work on linear-subspace sources, and any linear invertible operation on the sources

does not affect the asymptotic performance. Specifically, we have the following theorem.

Theorem 5.8. Let X = x1x2...xn ∈ {0, 1}n be a source such that X = ZA in which Z is an

independent sequence and A is an unknown k × n full-rank matrix. Let M be an n × m random

matrix such that each entry of M is 1 with probability p = w( logn
n ) ≤ 1

2 . Assume Y = XM . If

m
Hmin(X) < 1, as n→ ∞, ρ(Y ) converges to 0 in probability, i.e.,

ρ(Y )
p→ 0.

A similar result holds if Z is a hidden Markov sequence. In this case, we only need to replace

Hmin(X) with k log2
1

1+
√
e
, where k is the length of Z and e is defined in equation (5.6).

5.3.5 Comments

Compared to k-sources, the models that we study in this chapter are more specific. Perhaps, they

are not perfect to describe some sources like users’ operating behaviors or English articles. But for

most natural sources that are used for building high-speed random number generators, they are very
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good descriptions. Based on these models, we can explore simpler and more practical algorithms

than those designed for general k-sources. In the following sections, we will present our technical

results in detail for different types of sources respectively.

5.4 Independent Sources

In this section, we study a general independent source X = x1x2...xn ∈ {0, 1}n, in which all the bits

x1, x2, ..., xn are independent of each other and the probability of xi with 1 ≤ i ≤ n can be arbitrary

value, i.e., pi ∈ [0, 1]. We can consider this source as a biased coin with the existence of external

adversaries.

Lemma 5.9. Given a deterministic extractor f : {0, 1}n → {0, 1}m, as n→ ∞, we have ρ(f(X)) →

0 for an arbitrary independent source X only if

m

Hmin(X)
≤ 1,

where Hmin(X) is the min-entropy of X.

Proof. To prove this theorem, we only need to consider a source X = x1x2...xn ∈ {0, 1}n such that

P [xi = 1] =
1

2
,∀1 ≤ i ≤ Hmin(X),

and

P [xi = 1] = 0, ∀Hmin(X) < i ≤ n.

From such a source X, if m > Hmin(X), it is easy to see that ρ(f(X)) > 0 for all n > 0.

Let us first consider a simple random matrix in which each entry is 1 or 0 with probability 1/2

that we call a uniform random matrix. Given an independent input sequence X ∈ {0, 1}n and an

n ×m uniform random matrix M , let Y = MX ∈ {0, 1}m be the output sequence. The following

lemma provides the upper bound of E[ρ(Y )].
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Lemma 5.10. Let X = x1x2...xn be an independent sequence and M be an n×m uniform random

matrix. Then given Y = XM , we have

EM [ρ(Y )] ≤ 2m−Hmin(X)−1 .

Proof. Let pi denote the probability of xi and let δi be the bias of xi, then δi = |pi − 1
2 |.

According to lemma 5.1, when u ̸= 0, we have

|PX [XMuT = 1]− 1

2
| ≤

∏n
i=1(2δi)

(MuT )i

2
, (5.7)

where (MuT )i is the ith element of the vector MuT .

Substituting (5.7) into lemma 5.2 yields

ρ(Y ) ≤ 1

2

∑
u̸=0

n∏
i=1

(2δi)
(MuT )i . (5.8)

Now, we calculate the expectation of ρ(Y ), which is

EM [ρ(Y )] ≤ 1

2
EM [

∑
u̸=0

n∏
i=1

(2δi)
(MuT )i ]

=
1

2

∑
u̸=0

∑
v∈{0,1}n

PM [MuT = vT ]
n∏

i=1

(2δi)
vi . (5.9)

Since M is a uniform random matrix (each entry is either 0 or 1 with probability 1/2), if u ̸= 0,

MuT is a random vector of length n in which each element is 0 or 1 with probability 1/2. So for

any u ̸= 0,

PM [MuT = vT ] = 2−n.
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As a result,

EM [ρ(Y )] ≤ 2m−n−1
∑

v∈{0,1}n

n∏
i=1

(2δi)
vi

= 2m−1
n∏

i=1

(
1

2
+ δi).

For the independent sequence X, its min-entropy can be written as

Hmin(X) = log2
1∏n

i=1 max(pi, 1− pi)

= log2
1∏n

i=1(
1
2 + δi)

.

So

EM [ρ(Y )] ≤ 2m−Hmin(X)−1.

This completes the proof.

Example 5.1. Let us consider an independent source X = x1x2...x512 ∈ {0, 1}512 in which

pi ∈ [
1

2
− i

1024
,
1

2
+

i

1024
]

for all 1 ≤ i ≤ 512.

For this source, its min-entropy is

Hmin(X) ≥ −
512∑
i=1

log2(
1

2
+

i

1024
) = 226.16.

If we use a 512 × 180 random matrix in which each entry is 0 or 1 with probability 1/2, then

according to the above lemma,

E[ρ(Y )] ≤ 2−47.16 ≤ 6.4× 10−15.
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That means that the output sequence is very close to the uniform distribution in the sense of statistical

distance.

When n is large enough, we have the following corollary, showing that uniform random matrices

are capable to extract as many as Hmin(X) random bits from an independent source X asymptoti-

cally with almost probability one. Since Hmin(X) is the theoretical upper bound, such an extractor

is asymptotically optimal on efficiency.

Corollary 5.11. Let X ∈ {0, 1}n be an independent sequence and let M be an n × m uniform

random matrix. Assume Y = XM . If m
Hmin(X) < 1, as n → ∞, ρ(Y ) converges to 0 in probability,

i.e.,

ρ(Y )
p→ 0.

The above corollary shows that when the length of the input sequence n is large, we can extract

random bits very efficiently from an independent source by simply constructing a uniform random

matrix. We need to distinguish this method from those of seeded extractors that use some additional

random bits whenever extracting randomness. In our method, the matrix is randomly generated

but the extraction itself is still deterministic, that means we can use the same matrix to extract

randomness for any number of times without reconstructing it. From this point, our method is a

‘probabilistic construction of deterministic extractors’.

Although linear transformations based on uniform random matrices are very efficient for ex-

tracting randomness from independent sources, they are not computationally fast due to the high

density. It is natural to ask whether it is possible to decrease the density of 1s in the matrices

without affecting the performance too much. Motivated by this question, we study a sparse random

matrix M in which each entry is 1 with probability p = w( logn
n ) ≪ 1

2 , where p = w( logn
n ) means

that p > k logn
n for any fixed k when n → ∞. Surprisingly, such a sparse matrix has almost the

same performance as that of a uniform random matrix, namely, it can extract as many as Hmin(X)

random bits when the input sequence is long enough.



133

Lemma 5.12. Let p = w( logn
n ) ≤ 1

2 and let

fn(p) =

log 1
ϵ

2p∑
j=1

(
m

j

)
(
1

2
(1 + (1− 2p)j))n

with ϵ > 0 and m = Θ(n). As n→ ∞, we have

fn(p) → 0.

Proof. Since m = Θ(n), we can write m = cn with a constant c.

Let us introduce a function F (j), defined by

F (j) = mj2−n(1 + (1− 2p)j)n

= cjnj2−n(1 + (1− 2p)j)n.

Then

fn(p) ≤

log 1
ϵ

2p∑
j=1

F (j).

First, if p = 1
2 , as n→ ∞, we have

fn(p) ≤

log 1
ϵ

2p∑
j=1

cjnj2−n

≤
log 1

ϵ

2p
2log2(cn)

log 1
ϵ

2p 2−n

≤
log 1

ϵ

2p
2

2n log2(cn)

w(log n)
log 1

ϵ−n

=
log 1

ϵ

2p
2−Θ(n)

→ 0.

If p < 1
2 , we show that F (j) decreases as j increases for 1 ≤ j ≤ log 1

ϵ

2p when n is large enough.
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To see this, we show that its derivative F ′(j) < 0 when for n→ ∞.

F ′(j) = cjnj log(cn)2−n(1 + (1− 2p)j)n

+cjnj2−nn(1 + (1− 2p)j)n−1(1− 2p)j log(1− 2p)

≤ cjnj2−nn log(cn)2−n(1 + (1− 2p)j)n[1 +
(1− 2p)j log(1− 2p)n

2 log(cn)
].

So we only need to prove that

1 +
(1− 2p)j log(1− 2p)n

2 log(cn)
< 0

for n→ ∞.

Since p ≤ α < 1
2 for a constant α, we have

(1− 2p)−
1
2p ≤ β = (1− 2α)−

1
2α ,

where β is a constant.

We can also have

log(1− 2p) ≤ −2p.

Hence,

1 +
(1− 2p)j log(1− 2p)n

2 log(cn)

≤ 1 +
(1− 2p)

log 1
ϵ

2p log(1− 2p)n

2 log(cn)

≤ 1− βlog ϵ2pn

2 log(cn)

= 1−
βlog ϵ2w( logn

n )

2 log(cn)

< 0.

So when p < 1
2 and n→ ∞, F (j) decreases as j increases for 1 ≤ j ≤ log 1

ϵ

2p . As a result, when n



135

is large enough, we have

fn(p) ≤

log 1
ϵ

2p∑
j=1

F (j)

≤
log 1

ϵ

2p
F (1)

≤
log 1

ϵ

2p
cn(1− p)n

≤ (cn)2(1− p)n.

Since

log fn(p) ≤ 2 log c+ 2 log n+ n log(1− p)

≤ 2 log c+ 2 log n− np

2

→ −∞,

we can conclude that

fn(p) → 0

as n→ ∞.

This completes the proof.

Based on the above lemma, we get the following theorem.

Theorem 5.3. Let X = x1x2...xn ∈ {0, 1}n be an independent sequence and let M be an n ×m

binary random matrix in which each entry is 1 with probability p = w( logn
n ) ≤ 1

2 . Assume Y = XM .

If m
Hmin(X) < 1, as n→ ∞, ρ(Y ) converges to 0 in probability, i.e.,

ρ(Y )
p→ 0.
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Proof. Let us use the same denotations as above. From equation (5.9) we have

EM [ρ(Y )] ≤ 1

2

∑
u̸=0

∑
v∈{0,1}n

PM [MuT = vT ]
n∏

i=1

(2δi)
vi .

Since M is a random matrix in which each entry is 1 with probability p, for a fixed vector u ̸= 0

with ∥u∥ = j, MuT is a random vector where all the entries are independent and each entry is 1

with probability pj . Here, according to lemma 5.1, we have

pj ∈ [
1

2
(1− (1− 2p)j),

1

2
(1 + (1− 2p)j)].

There are totally

(
m

j

)
vectors for u with ∥u∥ = j, hence, we get

EM [ρ(Y )] ≤ 1

2

m∑
j=1

(
m

j

) ∑
v∈{0,1}n

(
1

2
(1 + (1− 2p)j))n

n∏
i=1

(2δi)
vi

=
1

2

m∑
j=1

(
m

j

)
(1 + (1− 2p)j)n

n∏
i=1

(
1

2
+ δi).

Now, we divide the upper bound of EM [ρ(Y )] into two terms. To do this, we let

γ1 =

log 1
ϵ

2p∑
j=1

(
m

j

)
(1 + (1− 2p)j)n

n∏
i=1

(
1

2
+ δi),

γ2 =
m∑

j=
log 1

ϵ
2p

(
m

j

)
(1 + (1− 2p)j)n

n∏
i=1

(
1

2
+ δi),

where ϵ can be arbitrarily small, then

EM [ρ(Y )] ≤ γ1
2

+
γ2
2
.

According to lemma 5.12, we can get that as n → ∞, if p = w( logn
n ) ≤ 1

2 , then γ1 → 0. So we
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only need to consider the second term, that is

γ2 ≤
m∑

j=
log 1

ϵ
2p

(
m

j

)
(1 + (1− 2p)

log 1
ϵ

2p )n
n∏

i=1

(
1

2
+ δi).

Since (1− 2p)−
1
2p ≥ e, we can get

(1− 2p)
log 1

ϵ
2p ≤ ϵ.

As a result,

γ2 ≤
m∑

j=
log 1

ϵ
2p

(
m

j

)
(1 + ϵ)n

n∏
i=1

(
1

2
+ δi)

≤ 2m(1 + ϵ)n
n∏

i=1

(
1

2
+ δi)

≤ 2m−n log2(1+ϵ)−Hmin(X).

Since ϵ can be arbitrary small, if m
Hmin(X) < 1, as n→ ∞, it has

γ2 → 0.

We can conclude that if m
Hmin(X) < 1, EM [ρ(Y )] can be arbitrarily small as n → ∞. It implies

that ρ(Y )
p→ 0 as n→ ∞.

This completes the proof.

For practical use, we can set some constraints on each column of the sparse random matrices. For

example, we can let the number of ones in each column be a constant k. We may also use pseudo-

random bits instead of truly random bits. In coding theory, many good codes are constructed based

on randomly generated matrices. Such examples include LDPC (low-density parity-check) codes,

network coding and compressive sensing. While these codes have very good performances, efficient

decoding algorithms are needed to recover the original messages. Compared to those applications,
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randomness extraction is a one-way process that we do not need to reconstruct input sequences (we

also cannot do this due to the entropy loss). This feature makes linear transformations based on

random matrices very attractive in the applications of randomness extraction.

In the rest of this section, we study deterministic approaches for constructing linear transforma-

tions. Here, we focus on a type of independent sources that have been studied in [72, 102,123], and

we call them independent sources with bounded bias. Let X = x1x2...xn ∈ {0, 1}n be an indepen-

dent sequence generated from such a source, then the probability of xi for all 1 ≤ i ≤ n is slightly

unpredictable, namely,

pi = P [xi = 1] ∈ [
1

2
− e

2
,
1

2
+
e

2
]

for a constant e with 0 < e < 1.

The following theorem shows that if the weight distribution of a linear code is binomial, then the

transpose of its generator matrix is a good candidate for extracting randomness from independent

sources with bounded bias.

Theorem 5.4. Let C be a linear code with dimension m and codeword length n. Assume its

weight distribution is binomial and its generator matrix is G. Let X = x1x2...xn ∈ {0, 1}n be an

independent source such that P [xi = 1] ∈ [ 12 − e/2, 12 + e/2] for all 1 ≤ i ≤ n, and let Y = XGT . If

m
n log2

2
1+e

< 1, as n→ ∞, we have

ρ(Y ) → 0.

Proof. Following equation (5.8) in the proof of theorem 5.10, we get

ρ(Y ) ≤ 1

2

∑
u̸=0

ew((uG)T )

=
1

2

n∑
i=1

2m

(
n

i

)
2n

ei

≤ 2m−n−1(1 + e)n.
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Then it is easy to see that if m
n log2

2
1+e

< 1, as n→ ∞, we have

ρ(Y ) → 0.

This completes the proof.

According to the theorem above, as n becomes large enough, we can extract as many as n log2(
2

1+e )

random bits based on the generator matrix of a linear code with binomial weight distribution. Note

that the min-entropy of the source is possible to be

Hmin(X) = n log2(
2

1 + e
),

which can be achieved when pi =
1
2 + e

2 for all 1 ≤ i ≤ n. Hence, this construction is as efficient as

that based on random matrices, both asymptotically optimal.

It turns out that the generator matrices of primitive BCH codes are good candidates. For

a primitive BCH code of length 2k − 1, it is known that the weight distribution of the code is

approximately binomial, see theorem 21 and 23 in [78]. Namely, the number bi of codewords of

weight i is

bi = a

(
2k − 1

i

)
(1 + Ei),

where a is a constant, and the error term Ei tends to zero as k grows.

We see that for the uniform random matrices (with each entry being 0 or 1 with probability

1/2), their weight distributions are binomial in expectation; for sparse random matrices and prim-

itive binary BCH codes, their weight distributions are approximately binomial. Binomial weight

distribution is one of important features for ‘good’ matrices, based on which one can extract ran-

domness efficiently from independent sources.
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5.5 Hidden Markov Sources

A generalized model of an independent source are a hidden Markov source. Given a hidden Markov

source X = x1x2...xn ∈ {0, 1}n, let θi be the complete information about the system at time i

with 1 ≤ i ≤ n. Examples of this system information include the value of the noise signal, the

temperature, the environmental effects, the bit generated at time i, etc. So the bit generated at

time i, i.e., xi, is just a function of θi. We say that a source has hidden Markov property if and only

if for all 1 < i ≤ n,

P [xi|θi−1, xi−1, xi−2, ..., x1] = P [xi|θi−1].

That means the bit generated at time i only depends on the complete system information at time

i − 1. Apparently, such sources are good descriptions of many natural sources for the purpose of

high-speed random number generation, like those based on thermal noise, avalanche noise, etc.

Example 5.2. Let us consider a weak random source based on thermal noise. By sampling the noise

signal, we get a time sequence of real numbers:

y1y2...yn ∈ Rn.

For this time sequence it has Markov property, i.e.,

P [yi|yi−1, ..., y1] = P [yi|yi−1].

By comparing the value at each time with a fixed threshold, we get a binary sequence as the source

X = x1x2...xn ∈ {0, 1}n,

such that xi = sign(yi − a) with a constant a for all 1 ≤ i ≤ n.

To analyze the performance of linear transformations on hidden Markov sources, we assume

that the external noise of the sources is bounded, hence, we assume that for any three time points
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1 ≤ i1 < i2 < i3 < n,

P [xi2 = 1|θi1 , θi3 ] ∈ [
1

2
− e

2
,
1

2
+
e

2
]

for a constant e.

Lemma 5.13. Let X = x1x2...xn be a binary sequence generated from a hidden Markov source

described above. Let z = xi1 + ... + xit mod 2 for 1 ≤ i1 < i2 < ... < it ≤ n with some t, then we

have

|P [z = 1]− 1

2
| ≤ e(t−1)/2

2
. (5.10)

Proof.

|P [z = 1]− 1

2
| = |

∑
θi1 ,θi3 ,...

P [θi1 , θi3 , ...]P [z = 1|θi1 , θi3 , ...]−
1

2
|

≤
∑

θi1 ,θi3 ,...

P [θi1 , θi3 , ...]|P [z = 1|θi1 , θi3 , ...]−
1

2
|

≤ max
θi1 ,θi3 ,...

|P [xi2 + xi4 + ...|θi1 , θi3 , ...]−
1

2
|.

Given θi1 , θi3 , ..., we have xi2 , xi4 , ... independent of each other. So the conclusion is immediate

following the statement of lemma 5.1.

For some hidden Markov sources, the constraint e is not so strict. It is possible that there exists

a group of θi1 , θi3 , ... such that

|P [z = 1|θi1 , θi3 , ...]−
1

2
| > e(t−1)/2

2
.

In this case, we may find a typical set S such that

P [(θi1 , θi3 , ...) ∈ S] → 1,
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as the sequence becomes long enough, and in this typical set,

|P [z = 1|(θi1 , θi3 , ...) ∈ S]− 1

2
| ≤ e(t−1)/2

2
.

In this case, we can write

|P [z = 1]− 1

2
| ≤ P [(θi1 , θi3 , ...) /∈ S] + max

(θi1 ,θi3 ,...)∈S
|P [z|θi1 , θi3 , ...]−

1

2
|,

where the first term on the righthand side is ignorable.

Note that equation (5.10) can be rewritten as

|P [z = 1]− 1

2
| ≤ (

√
e)t

2
√
e
,

which is very similar to the result in lemma 5.1. If we ignore the constant term
√
e, the only

difference between them is replacing e by
√
e. Based on this observation as well as the results in

section 5.4 for independent sources, we can obtain the following results for hidden Markov sources.

Lemma 5.14. Let X = x1x2...xn be a binary sequence generated from a hidden Markov source

described above. Let M be an n × m random matrix such that each entry of M is 0 or 1 with

probability 1
2 . Then given Y = XM , we have

EM [ρ(Y )] ≤ 2m−n−1

√
e

(1 +
√
e)n.

So with a uniform random matrix, one can extract as many as n log2
2

1+
√
e
random bits from a

hidden Markov source. And this conclusion is also true for sparse random matrices, given by the

following theorem.

Theorem 5.5. Let X = x1x2...xn be a binary sequence generated from a hidden Markov source

described above. Let M be an n ×m binary random matrix in which the probability of each entry

being 1 is p = w( logn
n ) ≤ 1

2 . Assume Y = XM . If m
n log2

2
1+

√
e

< 1, as n becomes large enough, we
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have that ρ(Y ) converges to 0 in probability, i.e.,

ρ(Y )
p→ 0.

Proof. The proof follows the same idea for the proof of theorem 5.3.

Theorem 5.6. Let C be a linear binary code with dimension m and codeword length n. Assume its

weight distribution is binomial and its generator matrix is G. Let X = x1x2...xn be a binary sequence

generated from a hidden Markov source described above, and let Y = XGT . If m
n log2

2
1+

√
e

< 1, as

n→ ∞, we have

ρ(Y ) → 0.

Proof. The proof follows the same idea for the proof of theorem 5.4.

These theorems show that when n is large enough, we can extract as many as n log2
2

1+
√
e
random

bits from the a hidden Markov source using linear transformations.

Let us consider an order-1 Markov source as a special instance. Assume that X = x1x2...xn

is a binary sequence generated from this source such that each bit xi ∈ {0, 1} only depends on its

previous one bit, namely,

P [xi = 1|xi−1] ∈ [
1

2
− ε/2,

1

2
+ ε/2]

for a constant ε. Note that the transition probabilities are slightly unpredictable.

We first show that such a source can be treated as a (hidden) Markov source such that for any

1 ≤ ij−1 ≤ ij ≤ ij+1 ≤ n,

|P [xij |xij−1 , xij+1 ]−
1

2
| ≤ e

2

for a constant e.
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According to the definition, we have

|P [xij |xij−1 ]−
1

2
|

= |
∑

xij−1+1,...,xij−1

P [xij |xij−1]...P [xij−1+1|xij−1 ]−
1

2
|

≤
∑

xij−1+1,...,xij−1

P [xij−1|xij−2]...P [xij−1+1|xij−1 ]|P [xij |xij−1]−
1

2
|

≤ ε

2
.

As a result,

|P [xij |xij−1 , xij+1 ]−
1

2
|

≤ |
P [xij−1 ]P [xij |xij−1 ]P [xij+1 |xij ]∑
xij

P [xij−1 ]P [xij |xij−1 ]P [xij+1 |xij ]
− 1

2
|

≤ |
( 12 + ε

2 )
2

( 12 + ε
2 )

2 + ( 12 − ε
2 )

2
− 1

2
|

=
ε

1 + ε2
.

Then, by setting e = 2ε
1+ε2 , we can get

|P [xij |xij−1 , xij+1 ]−
1

2
| ≤ e

2

for all 1 ≤ ij−1 ≤ ij ≤ ij+1 ≤ n.

According to the above theorems, with linear transformations, we can extract as many as

n log2(
2

1+
√

2ε
1+ε2

) random bits from the above source asymptotically. In this case,

n log2(
2

1 +
√

2ε
1+ε2

) ≤ min
X

Hmin(X) = n log2(
2

1 + ε
).

That means the linear transformations are not optimal for extracting randomness from order-1

Markov sources. It is true for most hidden Markov sources. But we need to see that linear transfor-

mations have good capabilities of tolerating local correlations. The gap between their information
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efficiency and the optimality is reasonable small for hidden Markov sources, especially considering

their constructive simplicity. In high-speed random number generation, the physical sources usually

have relatively good quality, namely, the bits are roughly independent (with a very small amount of

correlations). In this case, Linear transformation are very efficient in extracting randomness.

5.6 Bit-Fixing Sources

In this section, we consider another type of weak random sources, called bit-fixing sources, first

studied by Cohen and Wigderson [23]. In an oblivious bit-fixing source X of length n, k bits in

X are unbiased and independent, and the remaining n − k bits are fixed. The positions of the k

bits are unknown. In fact, oblivious bit-fixing sources is a special type of independent sources that

we studied in the previous sections, where all the bits in the source are independent of each other,

among them, k bits have probability 1/2 and the other n− k bits have probability either 0 or 1. So

our conclusions about the application of sparse random matrices on independent sources still can

work here.

Another type of bit-fixing sources are nonoblivious. Unlike the oblivious case, in nonoblivious

bit-fixing sources, the remaining n−k bits are linearly determined by the k independent and unbiased

bits. Such sources were originally studied in the context of collective coin flipping [11].

Generally, we can describe a (nonoblivious) bit-fixing source in the following way: Let Z ∈ {0, 1}k

be an independent and unbiased sequence, the source X ∈ {0, 1}n can be written as X = ZA, where

A is an unknown k × n binary matrix such that there are k columns in A that form an identity

matrix.

Example 5.3. One example of such a matrix A is

A =


0 1 0 0 1

1 0 0 1 0

1 0 1 0 1

 .
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If we consider the columns 2, 4, 3, then they form an identity matrix.

Given a bit-fixing source with k independent and unbiased bits, one cannot extract more than

k random bits that are arbitrarily close to truly random bits. That’s because the entropy of the

output sequence must be upper bounded by the entropy of the input sequence, which is k.

Lemma 5.15. Let X = x1x2...xn ∈ {0, 1}n be a bit-fixing source in which k bits are unbiased and

independent. Let M be an n×m uniform random matrix such that each entry of M is 0 or 1 with

probability 1
2 . Given Y = XM , then we have

PM [ρ(Y ) ̸= 0] ≤ 2m−k.

Proof. For a bit-fixing source X ∈ {0, 1}n, we can write it as X = ZA, where Z ∈ {0, 1}k is an

independent and unbiased sequence. Hence,

Y = XM = ZAM = ZB,

in which B = AM is an k ×m matrix.

We see that all the columns of B are independent of each other because the ith column of B only

depends on the ith column of M for all 1 ≤ i ≤ m. Furthermore, it can be proved that each column

of B is a vector in which all the elements are independent of each other and each element is 0 or 1

with probability 1/2. To see this, we consider an entry in B, which is Bij =
∑

k AikMkj . Given this

i, according to the definition of A, we can always find a column r such that only the element in the

ith row is 1 and all the other elements in this column are 0s. So we can write

Bij =Mir +
∑
k ̸=r

AikMkj ,

Bi′j =
∑
k ̸=r

Ai′kMkj , for i
′ ̸= i,

whereMir is an unbiased random bit independent ofMkj with k ̸= r. In this case, Bij is independent
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of Bi′j with i′ ̸= i. Hence, we can conclude that B is a random matrix in which each entry is 0 or 1

with probability 1/2.

According to lemma 5.2, we get that ρ(Y ) = 0 if and only if ZBuT is an unbiased random bit

for all u ̸= 0.

Hence,

PM [ρ(Y ) ̸= 0] ≤
∑
u̸=0

PM [ZBuT is fixed ]

=
∑
u̸=0

PB [Bu
T = 0], (5.11)

where BuT is a random vector with each element being 0 or 1 with probability 1/2 for all u ̸= 0. So

PB [Bu
T = 0] = 2−k.

Finally, we can get that

PM [ρ(Y ) ̸= 0] ≤
∑
u̸=0

2−k ≤ 2m−k.

This completes the proof.

According to the above lemma, by using a uniform random matrix with m − k ≤ 0, we can

generate an independent and unbiased sequence from a bit-fixing source with almost probability 1.

In the following theorem, we show that sparse random matrices can also work for bit-fixing sources.

Theorem 5.7. Let X = x1x2...xn ∈ {0, 1}n be a bit-fixing source in which k bits are unbiased and

independent. Let M be an n×m binary random matrix in which the probability for each entry being

1 is p = w( logn
n ) ≤ 1

2 . Assume Y = XM . If m
k < 1, as n becomes large enough, we have that

ρ(Y ) = 0 with almost probability 1, i.e.,

PM [ρ(Y ) = 0] → 1.
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Proof. According to equation (5.11), we have

PM [ρ(Y ) ̸= 0] =
∑
u̸=0

PM [AMuT = 0].

When u ̸= 0, MuT is a random vector in which all the elements are independent of each other.

Let |u| = j, then according to lemma 5.1, the probability for each element in MuT being 1 is

pj ∈ [
1

2
(1− (1− 2p)j),

1

2
(1 + (1− 2p)j)].

Let vT = AMuT and use vTi denote its ith element, then

PM [vT = 0] =

k∏
i=1

P [vTi = 0|vT1 = 0, ..., vTi−1 = 0].

According to the constraint on A, we know that there exists a column that is [0, ..., 0, 1, 0, ..., 0]T ,

in which only the entry in the ith row is 1. Without loss of generality, we assume that this column

is the rth column. Then we can write

vTi = (MuT )r +

n∑
t̸=r,t=1

ait(MuT )t,

where (MuT )r is 1 with probability pj ∈ [ 12 (1− (1− 2p)j), 12 (1 + (1− 2p)j)], and it is independent

of vT1 , v
T
2 , ... Hence,

PM [vTi = 0|vT1 = 0, ..., vTi−1 = 0]

=

1∑
a=0

PM [(MuT )r = a]PM [

n∑
t ̸=r,t=1

ait(MuT )t = a|vT1 = 0, ..., vTi−1 = 0]

≤ 1
max
a=0

PM [(MuT )r = a]

=
1

2
(1 + (1− 2p)j).
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So when |u| = j, we can get

PM [AMuT = 0] ≤ (
1

2
(1 + (1− 2p)j)k.

As a result,

PM [ρ(Y ) ̸= 0] ≤
m∑
j=1

(
m

j

)
(
1

2
(1 + (1− 2p)j))k.

Let us divide it into two parts,

γ1 =

log 1
ϵ

2p∑
j=1

(
m

j

)
(
1

2
(1 + (1− 2p)j))k,

γ2 =

m∑
j=

log 1
ϵ

2p

(
m

j

)
(
1

2
(1 + (1− 2p)j))k,

where ϵ is arbitrary small. Then

PM [ρ(Y ) ̸= 0] ≤ γ1 + γ2.

According to lemma 5.12, we can get that the first part γ1 → 0 as n→ 0.

For the second part γ2, it is easy to show that for any ϵ > 0, when n (or k) is large enough

γ2 =

m∑
j=

log 1
ϵ

2p

(
m

j

)
(
1

2
(1 + (1− 2p)j))k

≤
m∑

j=
log 1

ϵ
p

(
m

j

)
(
1

2
(1 + ϵ))k

≤ 2m−k(1 + ϵ)k.

As a result, if m − k log 2
1+ϵ ≪ 0 for an arbitrary ϵ, then PM [ρ(Y ) ̸= 0] can be very small.

Therefore, we get the conclusion in the theorem.

This completes the proof.

We see that sparse random matrices are asymptotically optimal for extracting randomness from
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bit-fixing sources. Now a question is whether we can find an explicit construction of linear trans-

formations for extracting randomness efficiently from any bit-fixing source specified by n and k.

Unfortunately, the answer is negative. The reason is that in order to extract independent random

bits, it requires XMuT to be an unbiased random bit for all u ̸= 0 (See the proof above). So

∥MuT ∥ > n−k for all u ̸= 0, otherwise we are able to find a bit-fixing source X such that XMuT is

fixed. Such a bit-fixing source can be constructed as follows: Assume X = x1x2...xn, if (MuT )i = 1

we set xi as an unbiased random bit, otherwise we set xi = 0 being fixed. It further implies that if

we have a linear code with generator matrix MT , then its minimum distance should be more than

n − k. But for such a matrix, its efficiency (mn ) is usually very low. For example, when k = n
2 , we

have to find a linear code with minimum distance more than n
2 . In this case, the dimension of the

code, i.e., m, is much smaller than k, implying a low efficiency in randomness extraction.

5.7 Linear-Subspace Sources

In this previous section, we studied a bit-fixing source X ∈ {0, 1}n, which can be written as ZA,

where Z ∈ {0, 1}k is an independent and unbiased sequence and A is an unknown k × n matrix

that embeds an identity matrix. Actually, we can generalize the model of bit-fixing sources in two

directions. First, the matrix A can be generalized to any full-rank matrix. Second, the sequence Z

is not necessary being independent and unbiased. Instead, it can be any random source described

in this chapter, like an independent source or a hidden Markov source. The new generalized source

X can be treated as a mapping of another source Z into a linear subspace of higher dimensions,

so we call it a linear-subspace source. The rows of the matrix A, which are independent of each

other, form the basis of the linear subspace. Linear-subspace sources are good descriptions of many

natural sources, like sparse images studied in compressive sensing.

First, let us consider the case that the matrix A is an arbitrary unknown full rank matrix and Z

is still an independent and unbiased sequence.

Lemma 5.16. Let X = x1x2...xn ∈ {0, 1}n be a source such that X = ZA in which Z is an
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independent and unbiased sequence, and A is an unknown k × n full-rank matrix. Let M be an

n ×m random matrix such that each entry of M is 1 with probability p = w( logn
n ) ≤ 1

2 . Assume

Y = XM . If m
k < 1, as n becomes large enough, we have ρ(Y ) = 0 with almost probability 1, i.e.,

PM [ρ(Y ) = 0] → 1.

Proof. In the proof of theorem 5.7, we have

PM [ρ(Y ) ̸= 0] =
∑
u̸=0

PM [AMuT = 0].

If the matrix A has full rank, than we can write

A = UR,

where det(U) ̸= 0 and R is in row echelon form. We see that RZ is a nonoblivious bit-fixing source.

Since det(U) ̸= 0, AMuT = 0 is equivalent to RMuT = 0. Therefore,

PM [ρ(Y ) ̸= 0] =
∑
u̸=0

PM [RMuT = 0].

Based on the proof of theorem 5.7, we can get the conclusion in the lemma.

This completes the proof.

Furthermore, we generalize the sequence Z to a general independent source in which the proba-

bility of each bit is unknown and the min-entropy of the source is Hmin(Z).

Theorem 5.8. Let X = x1x2...xn ∈ {0, 1}n be a source such that X = ZA in which Z is an

independent sequence and A is an unknown k × n full-rank matrix. Let M be an n × m random

matrix such that each entry of M is 1 with probability p = w( logn
n ) ≤ 1

2 . Assume Y = XM . If
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m
Hmin(X) < 1, as n→ ∞, ρ(Y ) converges to 0 in probability, i.e.,

ρ(Y )
p→ 0.

Proof. Let δi be the bias of zi in Z for all 1 ≤ i ≤ k. According to equation (5.9), we can get

EM [ρ(Y )] ≤ 1

2

∑
u̸=0

∑
v∈{0,1}k

PM [AMuT = vT ]
k∏

i=1

(2δi)
vi .

When ∥u∥ = j, MuT is an independent sequence in which each bit is one with probability

pj ∈ [
1

2
(1− (1− 2p)j),

1

2
(1 + (1− 2p)j)].

In theorem 5.16, we have proved that

PM [AMuT = 0] ≤ (
1

2
(1 + (1− 2p)j)k.

Using a same idea, if A = UR with det(U) ̸= 0 and R in row echelon form, we can write

PM [AMuT = vT ]

= PM [RMuT = U−1vT ]

=

k∏
i=1

PM [(RMuT )i = (U−1vT )i|(RMuT )i−1 = (U−1vT )i−1, ...]

≤ (
1

2
(1 + (1− 2p)j)k

for all vT ∈ {0, 1}k.

Hence

EM [ρ(Y )] ≤ 1

2

m∑
j=1

(
m

j

)
(
1

2
(1 + (1− 2p)j)k

k∏
i=1

(1 + 2δi).
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In the next step, following the proof of theorem 5.3, we can get that if m
Hmin(Z) < 1, as n→ ∞,

EM [ρ(Y )] → 0.

It is equivalent to ρ(Y )
p→ 0.

Since Hmin(Z) = Hmin(X), we can get the conclusion in the theorem.

This completes the proof.

A similar result holds if Z is a hidden Markov sequence. In this case, we have the following

theorem.

Theorem 5.17. Let X = x1x2...xn ∈ {0, 1}n be a source such that X = ZA in which Z ∈ {0, 1}k

is a hidden Markov sequence described in section 5.5, and A is an unknown k × n full-rank matrix.

Let M be an n×m random matrix such that each entry of M is 1 with probability p = w( logn
n ) ≤ 1

2 .

Assume Y = XM . If m
k log2

2
1+

√
e

< 1, as n→ ∞, ρ(Y ) converges to 0 in probability, i.e.,

ρ(Y )
p→ 0.

From the above theorems, we see that by multiplying an invertible matrix to a given source does

not affect the extracting capability of sparse random matrices.

5.8 Implementation for High-Speed Applications

In this section, we discuss the implementation of linear transformations in high-speed random number

generators, where the physical sources usually provide a stream rather than a sequence of finite

length. To generate random bits, we can apply a linear transformation to the incoming stream

based on block by block, namely, we divide the incoming stream into blocks and generate random

bits from each block separately. Such an operation can be finished by software or hardware like

FPGAs [34,148].

Another way is that we process each bit when it arrives. In this case, letM = {mij} be an n×m
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Table 5.1. Asymptotical efficiencies of linear transformations for extracting randomness from differ-
ent sources

Source X =
x1x2...xn

Sparse Random Matrices Generator Matrices

Independent
Sources

Hmin(X) n log2
2

1+e

if P [xi = 1] ∈ [ 12 − e
2 ,

1
2 + e

2 ]

Hidden
Markov
Sources

n log2
2

1+
√
e

if P [xi2 = 1|θi1 , θi3 ] ∈ [ 12 − e
2 ,

1
2 + e

2 ]

n log2
2

1+
√
e

if P [xi2 = 1|θi1 , θi3 ] ∈ [ 12 − e
2 ,

1
2 + e

2 ]

Bit-Fixing
Sources

Hmin(X) NA

Linear-
Subspace
Sources

Hmin(X)
if X = AZ with A full-rank and Z in-
dependent

NA

matrix (such as a sparse random matrix) for processing the incoming stream and let V ∈ {0, 1}m

denote a vector that stores m bits. The vector V is updated dynamically in response of the incoming

bits. When the ith bit of the stream, denoted by xi, arrives we do the following operation on V ,

V → V + xiM1+(i mod n),

where Mj is the jth row in the matrix M . Specifically, we can write the vector V at time i as V [i]

and denote its jth element as Vj [i]. To generate (almost) random bits, we output the bits in V

sequentially and cyclically with a lower rate than that of the incoming stream. Namely, we generate

an output stream Y = y1y2... such that

yi = V1+(i mod m)[n+ ⌊ni
m

⌋].

So the rate of the output stream is m
n of the incoming stream. In this method, the expected

computational time for processing a single incoming bit is proportional to the number of ones in M

over n. According to our results of sparse random matrices, it can be as low as (logn)α with any

α > 1 asymptotically. So this method is computationally very efficient, and the working load is well

balanced.
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5.9 Conclusion

In this chapter, we demonstrated the power of linear transformations in randomness extraction from a

few types of weak random sources, including independent sources, hidden Markov sources, bit-fixing

sources, and linear-subspace sources, as summarized in table 5.1. Compared to the existing methods,

the constructions of linear transformations are much simpler, and they can be easily implemented

using FPGAs; these properties make methods based on linear transformations very practical. To

reduce the hardware/computational complexity, we prefer sparse matrices rather than high-density

matrices, and we proved that sparse random matrices can work as well as uniform random matrices.

Explicit constructions of efficient sparse matrices remain a topic for future research.
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Chapter 6

Extracting Randomness from
Imperfect Stochastic Processes

This chapter studies the problem of extracting a prescribed number of random bits by

reading the smallest possible number of symbols from imperfect stochastic processes. A

new class of extractors called variable-length extractors is introduced, they achieve efficiency

near Shannon’s (optimal) limit.1

6.1 Introduction

We study the problem of extracting a prescribed number of random bits by reading the smallest

possible number of symbols from imperfect stochastic processes. For perfect stochastic processes,

including processes with known accurate distributions or perfect biased coins, this problem has been

well studied. It dates back to von Neumann [9] who considered the problem of generating random

bits from a biased coin with unknown probability. Recently, in [142], we improved von Neumann’s

scheme and introduced an algorithm that generates ‘random bit streams’ from biased coins, uses

bounded space and runs in expected linear time. This algorithm can generate a prescribed number

of random bits with an asymptotically optimal efficiency. On the other hand, efficient algorithms

have also been developed for extracting randomness from any known stochastic process (whose

1 Some of the results presented in this chapter have been previously published in [143]; Thanks

are due to Professor Chris Umans for helpful discussions.
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distribution is given). In [71], Knuth and Yao presented a simple procedure for generating sequences

with arbitrary probability distributions from an unbiased coin (the probability of H and T is 1
2 ).

In [3], Abrahams considered a source of biased coin whose distribution is an integer power of a

noninteger. Han and Hoshi [52] studied the general problem and proposed an interval algorithm

that generates a prescribed number of random bits from any known stochastic process and achieves

the information-theoretic upper bound on efficiency. However, in practice, sources of stochastic

processes have inherent correlations and are affected by measurement’s noise, hence, they are not

perfect. Existing algorithms for extracting randomness from perfect stochastic processes cannot

work for imperfect stochastic processes, where uncertainty exists.

To extract randomness from an imperfect stochastic process, one approach is to apply a seeded

or seedless extractor to a sequence generated by the process that contains a sufficient amount of

randomness, and we call this approach as a fixed-length extractor for stochastic processes since

all the possible input sequences have the same fixed length. Efficient constructions of seeded or

seedless extractors have been extensively studied in last two decades, and it shows that the number

of random bits extracted by them can approach the source’s min-entropy asymptotically [32, 63,

87, 95, 105]. Although fixed-length extractors can generate random bits with good quality from

imperfect stochastic processes, their efficiencies are not close to the optimality. Here, we define the

efficiency of an extractor for stochastic processes as the asymptotic ratio between the number of

extracted random bits and the entropy of its input sequence (the entropy of its input sequence is

proportional to the expected input length if the stochastic process is stationary ergodic), which is

upper bounded by 1 since the process of extracting randomness does not increase entropy. Based on

this definition, we can conclude that the efficiency of a fixed-length extractor is upper bounded by

the ratio between the min-entropy and the entropy of the input sequence, which is usually several

times smaller than 1. So fixed-length extractors are not very efficient in extracting randomness from

stochastic processes. The intuition is that, in order to minimize the expected number of symbols

read from an imperfect stochastic process, the length of the input sequence should be adaptive, not

being fixed.
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The concept of min-entropy and entropy are defined as follows.

Definition 6.1. Given a random source X on {0, 1}n, the min-entropy of X is defined as

Hmin(X) = min
x∈{0,1}n

log
1

P [X = x]
.

The entropy of X is defined as

H(X) =
∑

x∈{0,1}n

P [X = x] log
1

P [X = x]
.

The following example is constructed for comparing entropy with min-entropy for a simple ran-

dom variable.

Example 6.1. Let X be a random variable such that P [X = 0] = 0.9 and P [X = 1] = 0.1,

then Hmin(X) = 0.152 and H(X) = 0.469. In this case, the entropy of X is about three times its

min-entropy. �

In this chapter, we focus on the notion and constructions of variable-length extractors (short

for variable-to-fixed length extractors), namely, extractors with variable input length and fixed

output length. (Note that the interval algorithm proposed by Han and Hoshi [52] and the streaming

algorithm proposed by us [142] are special cases of variable-length extractors). Our goal is to extract

a prescribed number of random bits in the sense of statistical distance while minimizing the expected

input cost, measured by the entropy of the input sequence (whose length is variable). To make this

precise, we let d(R,M) be the difference between two known stochastic processes R and M, defined

by

d(R,M) = lim sup
n→∞

max
x∈{0,1}n

log2
PR(x)
PM(x)

log2
1

PM(x)

,

where PR(x) is the probability of generating x from R when the sequence length is |x|, and PM(x)

is the probability of generating x from M when the sequence length is |x|.

A few models of imperfect stochastic processes are introduced and investigated, including,
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• Let M be a known stochastic process, we consider an arbitrary stochastic process R such that

d(R,M) ≤ β for a constant β.

• We consider R as an arbitrary stochastic process such that minM∈Gs.e. d(R,M) ≤ β for a

constant β, where Gs.e. denotes the set consisting of all stationary ergodic processes.

Generally, given a real slight-unpredictable source R, it is not easy to estimate the exact value

of d(R,M) for a stochastic process M . But its upper bound, i.e., β, can be easily obtained. The

parameter β describes how unpredictable the real source R is, so we call it the uncertainty of R. We

prove that it is impossible to construct an extractor that achieves efficiency strictly larger than 1−β

for all the possible sourcesR with uncertainty β. Then we introduce several constructions of variable-

length extractors, and show that their efficiencies can reach η ≥ 1 − β; that is, the constructions

are asymptotically optimal. The proposed variable-length extractors have two benefits: (i) they are

generalizations of algorithms for perfect sources to address general imperfect sources; and (ii) they

bridge the gap between min-entropy and entropy on efficiency.

The following example is constructed to compare the performances of a variable-length extractor

and a fixed-length extractor when extracting randomness from a slightly-unpredictable independent

process.

Example 6.2. Consider an independent process x1x2x3... such that P [xi = 1] ∈ [0.9, 0.91], then it

can be obtained that β ≤ 0.0315. For this source, a variable-length extractor can generate random

bits with efficiency at least 1 − β = 0.9685 that is very close to the upper bound 1. In comparison,

fixed-length extractors can only reach the efficiency at most 0.3117.

The remainder of this chapter is organized as follows. Section 6.2 presents background and

related results. In section 6.3, we demonstrate that one cannot construct a variable-length extractor

with efficiency strictly larger than 1− β when the source has uncertainty β. Then we focus on the

seeded constructions of variable-length extractors, namely, we use a small number of additional truly

random bits as the seed (catalyst). Three different constructions are provided and analyzed in section

6.4, section 6.5 and section 6.6 separately. All these constructions have efficiencies lower bounded
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by 1 − β, implying their optimality. Finally, we discuss seedless constructions of variable-length

extractors for some types of random sources in section 6.7, followed by the concluding remarks.

6.2 Preliminaries

6.2.1 Statistical Distance

Statistical Distance is used in computer science to measure the difference between two distributions.

Let X and Y be two random sequences with range {0, 1}m, then the statistical distance between X

and Y is defined as

∥X − Y ∥ = max
T :{0,1}m→{0,1}

|P [T (X) = 1]− P [T (Y ) = 1]|

over a boolean function T . We say that X and Y are ϵ-close if ∥X − Y ∥ ≤ ϵ. According to this

definition, we can also write

∥X − Y ∥ =
1

2

∑
x∈{0,1}m

|P [X = x]− P [Y = x]| ≤ ϵ.

It is equivalent to the former expression.

Let Um denote the uniform distribution on {0, 1}m. In order to let a sequence Y to be able to

take place of the truly random bits in a randomized application, we let Y be ϵ-close to Um, where ϵ

is small enough. In this case, the extra probability error introduced by this replacement is at most

ϵ. In this chapter, we want to extract m almost-random bits such that they form a sequence ϵ-close

to the uniform distribution Um on {0, 1}m with specified small ϵ > 0, i.e.,

∥Y − Um∥ ≤ ϵ.
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6.2.2 Seeded Extractors

In 1990, Zuckerman introduced a general model of weak random sources, called k-sources, namely

whose min-entropy is at least k [149]. It was shown that given a source on {0, 1}n with min-entropy

k < n, it is impossible to devise a single function that extracts even one bit of randomness. This

observation led to the introduction of seeded extractors, which use a small number of additional

truly random bits as the seed (catalyst). When simulating a probabilistic algorithm, one can simply

eliminate the requirement of truly random bits by enumerating all possible strings for the seed and

taking a majority vote on the final results. There are a variety of very efficient constructions of

seeded extractors, summarized in [32,87,105]. Mathematically, a seeded extractor is a function,

E : {0, 1}n × {0, 1}d → {0, 1}m,

such that for every distribution X on {0, 1}n with Hmin(X) ≥ k, the distribution E(X,Ud) is ϵ-close

to the uniform distribution Um. Here, d is the seed length, and we call such an extractor as a

(k, ϵ) extractor. There are a lot of works focusing on efficient constructions of seeded extractors.

A standard application of the probabilistic method [93] shows that there exists a seeded extractor

which can extract asymptotically Hmin(X) random bits with log(n − Hmin(X)) additional truly

random bits. Recently, Guruswami, Umans and Vadhan [50] provided an explicit construction of

seeded extractors, whose efficiency is very close to the bound obtained based on the probabilistic

method. Their main result is described as follows:

Lemma 6.1. [50] For every constant α > 0, and all positive integers n, k and all ϵ > 0, there is an

explicit construction of a (k, ϵ) extractor E : {0, 1}n×{0, 1}d → {0, 1}m with d ≤ log n+O(log(k/ϵ))

and m ≥ (1− α)k.

The above result implies that given any source X ∈ {0, 1}n with min-entropy k, if ≥ (1 + α)m

with α > 0, we can always construct a seeded extractor to generates a random sequence Y ∈ {0, 1}m

that is ϵ-close to the uniform distribution. In this case, the seed length d ≤ logn + O(log(k/ϵ))

depends on the input length n and the parameter ϵ.
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6.2.3 Seedless Extractors

In the last decade, the concept of seedless (deterministic) extractors has attracted renewed interests,

motivated by the reduction of the computational complexity for simulating probabilistic algorithms

as well as some requirements in cryptography [31]. Several specific classes of sources have been stud-

ied, including independent sources, which can be divided into several independent parts containing

certain amount of randomness [9, 95, 97]; bit-fixing sources, where some bits in a binary sequence

are truly random and the remaining bits are fixed [23,41,64]; samplable sources, where the source is

generated by a process that has a bounded amount of computational resources like space [63, 116].

For example, suppose that we have multiple independent sources with the same length n. It is

known how to extract from two sources when the min-entropy in each is ≥ 0.5n [97] or slightly less

than 0.5n [15], how to extract from O(1/γ) sources if the min-entropy in each is at least nγ [94]. All

these constructions have exponentially small error, and they are able to extract Θ(k) random bits.

Both seeded extractors and seedless extractors described above have fixed input length, fixed

seed length (d = 0 for seedless extractors) and fixed output length. So we call them fixed-length

extractors. To apply fixed-length extractors in extracting randomness from a stochastic process, it

needs to first read a sequence of fixed length, whose min-entropy is strictly larger than the number

of random bits that we need to generate. Fixed-length extractors can generate random bits of good

quality from imperfect stochastic processes, but they usually consume more incoming symbols than

what are necessarily required. To increase information efficiency, we let the length of input sequences

be adaptive, hence, we have the concept of ‘variable-length extractors’.

6.2.4 Variable-Length Extractors

A variable-length extractor is an extractor with variable input length and fixed output length. When

applying a variable-length extractor to a stochastic process, it reads incoming symbols one by one

until the whole incoming sequence meets certain criterion, then it maps the incoming sequence

into a binary sequence of fixed length as the output. Depending on the sources, the construction

may require a small number of additional truly random bits as the seed. Hence, we have seeded



163

variable-length extractors and seedless variable-length extractors.

A seeded variable-length extractor is a function,

VE : Sp × {0, 1}d → {0, 1}m,

such that given a real source R, the output sequence is ϵ-close to the uniform distribution Um.

Here, Sp is the set consisting of all possible input sequences, called the input set. It is complete

and prefix-free. The input sequence is compete, that means, any infinite sequence has a prefix in

the set; so when reading symbols from any source, we can always meet a sequence in the set. Then

we stop reading and map this sequence into a binary sequence of length m. Being prefix-free is not

very necessary; it ensures that all the sequences in Sp are possible to read.

A general procedure of extracting randomness by using variable-length extractors can be divided

into three steps:

1. Determining an input set Sp such that its min-entropy based on the real source R is at least

k, namely,

min
x∈Sp

log2
1

PR(x)
≤ k,

where k ≥ (1 + α)m for any α > 0.

2. We construct an injective function

V : Sp → {0, 1}n,

to map the sequences in Sp into binary sequences of length m. We read symbols from the

source R one by one until the current incoming sequence matches one in Sp. This incoming

sequence is then mapped to a binary sequence of length n based on function V . As a result,

we get a random sequence Z with length n and min-entropy k (since V is injective).
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3. Since k = (1+α) with an α > 0, according to lemma 6.1, we can always find a seeded extractor,

E : {0, 1}n × {0, 1}d → {0, 1}m

that can extract m almost-random bits from a source with min-entropy k. By applying this

seeded extractor E to the sequence Z, we get a random sequence of length m that is ϵ-close

to the uniform distribution Um. Here, the seed length d ≤ logn+O(log(k/ϵ)).

We can see that the construction of a variable-length extractor is a cascade of a function V and

a seeded extractor E, i.e.,

VE = E
⊗

V.

Note that our requirement is to extract a sequence of m almost-random bits that is ϵ-close to the

uniform distribution Um. The key of constructing variable-length extractors is to find the input set

Sp with min-entropy k, even the distribution of the real source R is slightly unpredictable, such that

the expected length of the sequences in Sp is minimized. For stationary ergodic processes, minimizing

the expected length is equivalent to minimizing the entropy of the sequences in Sp asymptotically

(this will be discussed in this section).

For some specific types of sources, including independent sources and samplable sources, by

applying the ideas in [95] and [63] we can remove the requirement of truly random bits without

degrading the asymptotic performance. As a result, we have seedless variable-length extractors. For

example, if the source R is an independent process, we can first apply the method in [95] to extract d

almost-random bits from the first Θ(log m
ϵ ) bits, and then use them as the seed of a seeded variable-

length extractor to extract randomness from the rest of the process. The detailed discussions will

be given in section 6.7.
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6.3 Efficiency and Uncertainty

6.3.1 Efficiency

To consider the performance of an extractor, we define its efficiency as the asymptotical ratio

between the output length and the total entropy of all its inputs. So the efficiency of an extractor

can be written as

η = lim
m→∞

m

HR(Xm) + d
,

such that the output sequence is ϵ-close to the uniform distribution Um on {0, 1}m, where ϵ is small,

d is the seed length, m is the output length, and HR(Xm) is the entropy of the input sequence Xm

with range on Sp. In our constructions, d ≤ log n + O(log(m/ϵ)), which is ignorable compared to

HR(Xm) when m→ ∞. Hence, we can write

η = lim
m→∞

m

HR(Xm)
.

In the definition, we use the entropy of the input sequence rather than the expected input length,

because the source that we considered may not be stationary ergodic. It needs to mention that,

in seeded constructions, the value of d is also an important parameter although it is much smaller

than m. The problem of minimizing the seed length d can be studied separately from minimizing

the entropy of the input sequence, and it will be addressed in this chapter.

First, we demonstrate that if a distribution is ϵ-close to the uniform distribution Um, then the

entropy of this distribution is asymptotically m for any ϵ < 1.

Lemma 6.2. Let X be a random sequence on {0, 1}m that is ϵ-close to the uniform distribution

Um, then

m− log2
1

1− ϵ
≤ H(X) ≤ m.

Proof. Since there are totally 2m possible assignments for X, it is easy to get H(X) ≤ m. So we
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only need to prove that

H(X) ≥ m− log2
1

1− ϵ
.

Let p(x) denote P [X = x] for x ∈ {0, 1}m. Since X is ϵ-close to the uniform distribution Um, we

have

1

2

∑
x∈{0,1}m

∥p(x)− 2−m∥ ≤ ϵ.

Then the lower bound of H(X) can be written as

min
p

∑
x∈{0,1}m

p(x) log2
1

p(x)

subject to

p(x) ≥ 0, ∀x ∈ {0, 1}m;

∑
x∈{0,1}m

p(x) = 1;

∑
x∈{0,1}m

∥p(x)− 2−m∥ ≤ 2ϵ.

Obviously, the optimal solution of the above problem happens at

∑
x∈{0,1}m

∥p(x)− 2−m∥ = 2ϵ.

To solve the problem based on Lagrange Multipliers, we let

λ(p) =
∑

x∈{0,1}m

p(x) log2
1

p(x)
+ λ1(

∑
x∈{0,1}m

p(x)− 1)

+λ2(
∑

x∈{0,1}m

∥p(x)− 2−m∥ − 2ϵ).

If p(x) ≥ 0 with x ∈ {0, 1}m is a solution of the above question, then

∂λ

∂(p(x))
= 0,
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i.e., 
ln p(x)+1

ln 2 + λ1 + λ2 = 0 if 2−m ≤ p(x) ≤ 1,

ln p(x)+1
ln 2 + λ1 − λ2 = 0 if 0 ≤ p(x) ≤ 2−m.

So there exists two constants a and b with 0 ≤ a ≤ 2−m ≤ b ≤ 1, such that,


p(x) = a if 2−m ≤ p(x) ≤ 1,

p(x) = b if 0 ≤ p(x) ≤ 2−m.

Assume that there are t assignments of x with p(x) = a, then there are 2m − t assignments of x

with p(x) = b. Hence, the problem is converted to the one over a, b, t, i.e.,

min
a,b,t

ta log
1

a
+ (2m − t)b log

1

b
,

subject to

0 ≤ t ≤ 2m;

ta+ (2m − t)b = 1; (6.1)

t(2−m − a) + (2m − t)(b− 2−m) = 2ϵ. (6.2)

From equation (6.1) and (6.2), we get

a = 2−m − ϵ

t
, b = 2−m +

ϵ

2m − t
.

So the question is finding the optimal t that minimizes

−t(2−m − ϵ

t
) log2(2

−m − ϵ

t
)− (2m − t)(2−m +

ϵ

2m − t
) log2(2

−m +
ϵ

2m − t
),

subject to

0 ≤ t ≤ ϵ

2−m
.
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The optimal solution is t∗ = ϵ
2−m . In this case, the entropy of X is

H(X) = log(2m − t) = m− log2
1

1− ϵ
,

which is the lower bound.

This completes the proof.

In the following lemma, we show that for any extractor, its efficiency is upper bounded by 1.

The reason is that the amount of information, i.e., entropy, does not increase during the process of

randomness extraction.

Lemma 6.3. For any extractor with seed length d and output length m, if d = o(m), its efficiency

η ≤ 1.

Proof. We consider fixed-length extractors as a special case of variable-length extractors, and con-

sider seedless extractors as a special case of seeded extractors when d = 0. So our proof only focus

on seeded variable-length extractors.

A main observation is that for any extractor, the entropy of its output sequence is bounded

by the entropy of the input sequence plus the entropy of the seed, since the process of extracting

randomness cannot create new randomness.

For the output sequence, denoted by Y , it is ϵ-close to the uniform distribution Um. According

to Lemma 6.2, its entropy is

HR(Y ) ≥ m− log2
1

1− ϵ
.

The total entropy of the inputs is HR(Xm) + d. Hence,

HR(Y ) ≤ HR(Xm) + d.
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As a result, the efficiency of the extractor is

η = lim
m→∞

m

HR(Xm)
= lim

m→∞

HR(Y )

HR(Xm) + d
≤ 1.

This completes the proof.

If R is a stationary ergodic process, we define its entropy rate as

h(R) = lim
l→∞

H(X l)

l
,

where X l is a random sequence of length l generated from the source R. In this case, the entropy

of the input sequence on Sp is proportional to the expected input length.

Lemma 6.4. Given a stationary ergodic source R, let Xm be the input sequence of a variable-length

extractor that has an output length m. Then

lim
m→∞

HR(Xm)

ER[|Xm|]
= h(R),

where ER[|Xm|] is the expected input length.

Proof. Xm is a random sequence from Sp based on the distribution of R. Let l1 be the minimum

length of the sequences in Sp, as m→ ∞, l1 → ∞. Now, we define

li = l1 + (i− 1) log l1 for all i ≥ 1.

Based on them, we divide all the sequences in Sp into subsets

Si = {x|x ∈ Sp, li ≤ |x| ≤ li+1 − 1}

for i ≥ 1.
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Let pi = PR(Xm ∈ Si), then

HR(Xm) ≥
∑
i

[(
∑
j>i

pj)HR(X li
li−1+1|X

li−1

1 , |Xm| ≥ li)],

where l0 = 0,
∑

j>i pj is the probability that |Xm| ≥ li, and X
b
a is a sequence of Xm from the ath

element to the bth element.

Since Xm is generated from a stationary ergodic process, and li − li−1 → ∞ as m→ ∞, we can

get

HR(X li
li−1+1|X

li−1

1 , |Xm| ≥ li) → (li − li−1)h(R).

As a result, as l1 → ∞, we have

HR(Xm) ≥ (1− ϵ)
∑
i

(
∑
j>i

pj)(li − li−1)h(R)

= (1− ϵ)
∑
i

pilih(R),

for an arbitrary ϵ > 0.

Also considering the other direction, we can get that as l1 → ∞,

HR(Xm) ≤ (1 + ϵ)
∑
i

pili+1h(R)

= (1 + ϵ)
∑
i

pi(li + log l1)h(R),

for an arbitrary ϵ > 0.

For the expected input length, i.e., ER[|Xm|], it is easy to show that

∑
i

pili ≤ ER[|Xm|] ≤
∑
i

pili+1 =
∑
i

pi(li + log l1).

So as m→ ∞, i.e., l1 → ∞, it yields

lim
m→∞

HR(Xm)

ER[|Xm|]
= lim

m→∞

∑
i pilih(R)∑

i pili
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= h(R).

This completes the proof.

6.3.2 Sources and Uncertainty

Given a source R, if its distribution is known, we say that this source is a known stochastic process,

and its uncertainty is 0. In this chapter, we mainly focus on those imperfect processes whose

distributions are slightly unpredictable due to many factors like the existence of external adversaries.

First, given two known stochastic processes R and M, we let d(R,M) be the difference between

R and M. Here, we define d(R,M) as

d(R,M) = lim sup
n→∞

max
x∈{0,1}n

log2
PR(x)
PM(x)

log2
1

PM(x)

,

where PR(x) is the probability of generating x from R when the sequence length is |x|, and PM(x)

is the probability of generating x from M when the sequence length is |x|. Although there are some

existing ways such as normalized Kullback-Leibler divergence to measure the difference between two

sources, with them it is not easy to estimate the uncertainty of a source and it is not easy to analyze

the performances of constructed variable-length extractors.

In the rest of this chapter, we investigate a few models of unpredictable sources. Most natural

source can be well described in those ways.

1. The source R is an arbitrary stochastic process such that d(R,M) ≤ β for a constant β ∈ [0, 1]

and a known stochastic process M.

2. R is an arbitrary stochastic process such that there exists a stationary ergodic process M

(whose distribution is unknown) and d(R,M) ≤ β; that is, minM∈Gs.e. d(R,M) ≤ β, where

Gs.e. denotes the set consisting of all stationary ergodic processes.

In both the models, we call β as the uncertainty of the source R. In the real world, β can be

easily estimated without knowing the distribution of the processes. It just reflects how unpredictable
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the real source R is.

To construct variable-length extractors, we only care about the possible input sequences, namely,

those in Sp. Hence, for the case of finite length, dp(R,M) is a more important parameter for us,

defined by

dp(R,M) = max
x∈Sp

log2
PR(x)
PM(x)

log2
1

PM(x)

,

As the number of required random bits m increases, dp(R,M) quickly converge to d(R,M).

And we can write

dp(R,M) = d(R,M) + ϵp

for a very small constant ϵp. As m → ∞, ϵp → 0. In this case, the upper bound of dp(R,M) or

minM∈Gs.e. dp(R,M) is

βp = β + ϵp.

Example 6.3. Let x1x2... ∈ {0, 1}∗ be a sequence generated from an independent source R such

that

∀i ≥ 1, P [xi = 1] ∈ [0.8, 0.82].

If we let M be a biased coin with probability 0.8132, then

β = max
possible R

d(R,M) = max(
log2

0.2
0.1868

log2
1

0.1868

,
log2

0.82
0.8132

log2
1

0.8132

) = 0.0405.

�

According to our definition, d(M,R) ≤ β if and only if

PR(x) ≤ PM(x)1−β

for all x ∈ {0, 1}∞ with |x| → ∞. This is a condition that is very easy to be satisfied by many

natural stochastic processes for a small β.
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Lemma 6.5. If d(R,M) → 0, we have

PR(x) → PM(x)

for all x ∈ {0, 1}∗.

6.3.3 Efficiency and Uncertainty

In this subsection, we investigate the relation between the efficiency and uncertainty. We show that

given a stochastic process R with uncertainty β, as described in the previous subsection, one cannot

construct a variable-length extractor with efficiency strictly larger than 1−β for all the possibilities

of R.

Let us first consider a simple example: let X be a random sequence with the uniform distribution

on {0, 1}n and let Y be an arbitrary random sequence on {0, 1}n such that

log2
P [Y=x]
P [X=x]

log2
1

P [X=x]

≤ β,∀x ∈ {0, 1}n.

Now, we show that from the source Y , one cannot construct an extractor with efficiency strictly

larger than 1 − β. To see this, we consider an extractor f with output length m, and a source Y

with

P [Y = y] ∈ {0, 2−n(1−β)},∀y ∈ {0, 1}n.

For this a source Y , its entropy is H(Y ) = n(1− β). In order to make sure the output sequence of

f , denoted by Z, is ϵ-close to Um, it has

lim
m→∞

m

n(1− β)
≤ lim

m→∞

H(Z) + log2
1

1−ϵ

H(Y )
≤ 1.

So we cannot generate more than n(1− β) random bits asymptotically. In this case, if we apply the



174

seeded extractor f to the random sequence X, which is a possibility of Y , then the efficiency is

η = lim
m→∞

m

H(X)
= lim

m→∞

m

n
≤ 1− β.

So there does not exist a seeded extractor that can extract randomness from an arbitrary Y and its

efficiency is strictly larger than 1− β. Here, β is the uncertainty of the source.

Theorem 6.6. Let M be a known stochastic process, and R be an arbitrary stochastic process such

that d(R,M) ≤ β, then one cannot construct a variable-length extractor whose efficiency is strictly

larger than 1− β for all possible R.

Proof. Let f be a variable-length extractor whose input sequence is a random sequence Xm on Sp

and its output sequence is a random sequence Y on {0, 1}m. Assume that as m→ ∞, f can extract

from an arbitrary R such that the output sequence Y is ϵ-close to Um.

Let h = HM(Xm) be the entropy of the input sequence based on the distribution of M, then

we want to show that there exists a process R such that d(R,M) ≤ β and HR(Xm) ≤ h(1− β) as

m→ ∞.

To find such a process R, we order all the elements in Sp as x1, x2, x3, ... such that

PM(x1) ≥ PM(x2) ≥ PM(x3) ≥ ...

Then we divide all these elements into groups,

{x1, x2, ..., xi1}, {xi1+1, xi1+2, ..., xi2}, ...

such that the total probability of the elements in each group is almost the probability of its first

element to the power of 1− β, i.e.,

0 ≤ PM(xij+1)
1−β −

ij+1∑
k=ij+1

PM(xk) ≤ PM(xij+1), for j ≥ 0,
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where i0 = 0.

Let A = {x1, xi1+1, xi2+1, ...} be the set consisting of the first elements of all the groups. Now,

we consider a possibility of R in the following way: for all x ∈ {x1, xi1+1, xi2+1, ...}, its probability

is

PR(x) =

ij+1∑
k=ij+1

PM(xk), if x = xij+1;

For all x ∈ Sp/A = Sp/{x1, xi1+1, xi2+1, ...}, its probability is

PR(x) = 0.

For this source R, the entropy of the input sequence is

HR(Xm) =
∑
x∈Sp

PR(x) log2
1

PR(x)
.

As m→ ∞, we have

HR(Xm)

=
∑
x∈A

PR(x) log2
1

PR(x)

→ (1− β)
∑
x∈A

PR(x) log2
1

PM(x)

= (1− β)
∑
j≥0

ij+1∑
k=ij+1

PM(xk) log2
1

PM(xij+1)

≤ (1− β)
∑
j≥0

ij+1∑
k=ij+1

PM(xk) log2
1

PM(xk)

= (1− β)HM(Xm)

= (1− β)h.

According to lemma 6.2, as m→ ∞, m
HR(Y ) → 1. Furthermore, we can get

lim
m→∞

HR(Y )

HR(Xm)
≤ 1,
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it implies that

lim
m→∞

m

(1− β)h
≤ 1,

otherwise, the output sequence cannot be ϵ-close to the uniform distribution Um.

If we apply the extractor f to the source M, which is also a possibility for R, then its efficiency

is

η = lim
m→∞

m

h
≤ 1− β.

So it is impossible to construct a variable-length extractor with efficiency strictly larger than

1− β for all the possibilities of the source R. This completes the proof.

With the same proof, we can also get the following theorem.

Theorem 6.7. Let R be an arbitrary stochastic process such that d(R,M) ≤ β for a stationary

ergodic process M with unknown distribution, , then one cannot construct a variable-length extractor

whose efficiency is strictly larger than 1− β for all possible R.

The above theorems show that one cannot construct an extractor whose efficiency is strictly

larger than 1 − β for all the possible source R. Here, β is an important parameter that measures

the uncertainty of a real source R, either to a known process or to the nearest stationary ergodic

process. In the next a few sections, we will present a few constructions for efficiently extracting

randomness from the sources described in this section. We show that their efficiency η satisfies

1− β ≤ η ≤ 1.

That means the bound 1 − β is actually achievable and the constructions proposed in this chapter

are asymptotically optimal on efficiency.
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6.4 Construction I: Approximated by Known Processes

In this section, we consider those sources which can be approximated by a known stochastic process

M, namely, an arbitrary process R with d(R,M) ≤ β for a known process M. We say that a

stochastic process M is known if its distribution is given, i.e., PM(x) can be easily calculated for

any x ∈ {0, 1}∗. Note that this process M is not necessary to be stationary or ergodic. For instance,

M can be an independent process z1z2... ∈ {0, 1}∗ such that

∀i ≥ 1, PM(zi = 1) =
1 + sin(i/10)

2
.

6.4.1 Construction

Our goal is to extract randomness from an imperfect random source R. The problem is that we do

not know the exact distribution of R, but we know that it can be approximated by a known process

M. So we can use the distribution of M to estimate the distribution of R. As a result, we have the

following procedure to extract m almost-random bits.

The idea of the procedure is first producing a random sequence of length n and min-entropy

k = m(1 + α) with α > 0, from which we can further obtain a sequence ϵ-close to the uniform

distribution Um by applying a (k, ϵ) seeded extractor. According to the results of seeded extractors,

this constant α > 0 can be arbitrarily small.

Construction 6.1. Assume the real source R is an arbitrary stochastic process such that d(R,M) ≤

β for a known process M. Then we extract m almost-random bits from R based on the following

procedure.

1. Read input bits one by one from R until we get an input sequence x ∈ {0, 1}∗ such that

log2
1

PM(x)
≥ k

1− βp
,

where βp = β + ϵp with ϵp > 0 and k = m(1 + α) with α > 0. The small constant ϵp has value
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depending on the input set Sp; as m→ ∞, ϵp → 0. The constant α can be arbitrarily small.

2. Let n be the maximum length of all the possible input sequences, then

n = argmin
l
{l ∈ N|∀y ∈ {0, 1}l, log2

1

PM(y)
≥ k

1− βp
}.

If |x| < n, we extend the length of x to n by adding n− |x| trivial zeros at the end. Since x is

randomly generated, from the above procedure we get a random sequence Z of length n. And

it can be proved that this random sequence has min-entropy k.

3. Applying a (k, ϵ) extractor to Z yields a binary sequence of length m that is ϵ-close to the

uniform distribution Um. �

The following example is provided for comparing this construction with fixed-length construc-

tions.

Example 6.4. Let M be a biased coin with probability 0.8 (of being 1). If k
1−βp

= 2, then we can

get the input set

Sp = {0, 10, 110, 1110, 11110, 111110, 1111110, 1111111}.

In this case, the expected input length is strictly smaller than 7. For fixed-length constructions, to

get a random sequence with min-entropy at least 2, we have to read 7 input bits independent of the

context. It is less efficient than the former method. �

Theorem 6.8. Construction 6.1 generates a random sequence of length m that is ϵ-close to Um.

Proof. We only need to prove that given a source R and a model M with dp(R,M) ≤ βp, it yields

a random sequence Z with min-entropy at least k.

According to the definition of dp(R,M), for all x ∈ Sp,

log2
PR(x)
PM(x)

log2
1

PM(x)

≤ βp.
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Based on the construction, for all x ∈ Sp

log2
1

PM(x)
≥ k

1− βp
.

The two inequalities above yield that

log2
1

PR(x)
≥ k,

for all x ∈ Sp.

Since the second step, i.e., adding trivial zeros, does not reduce the min-entropy of Sp. As a

result, we get a random sequence Z of length n and with min-entropy at least k.

Since k = m(1 + α) with α > 0, according to lemma 6.1, we can construct a seeded extractor

that applies to the sequence Z and generates a binary sequence ϵ-close to the uniform distribution

Um.

This completes the proof.

6.4.2 Efficiency Analysis

Now, we study the efficiency of construction 6.1. According to our definition, given a construction,

its efficiency is

η = lim
m→∞

m

HR(Xm)
.

Theorem 6.9. Given a real source R and a known process M such that d(R,M) ≤ β, then the

efficiency of construction 6.1 is

1− β ≤ η ≤ 1.

Proof. Since η is always upper bounded by 1, we only need to show that η ≥ 1− β.



180

According to lemma 6.1, as m→ ∞, we have

lim
m→∞

k

m
= 1.

Now, let us consider the number of elements in Sp, i.e., |Sp|. To calculate |Sp|, we let

S′
p = {x[1 : |x| − 1]|x ∈ Sp},

where x[1 : |x| − 1] is the prefix of x of length |x| − 1, then for all y ∈ S′
p,

log2
1

PM(y)
≤ k

1− βp
.

Hence,

log2 |S′
p| ≤

k

1− βp
.

It is easy to see that |Sp| ≤ 2|S′
p|, so

log2 |Sp| ≤
k

1− βp
+ 1.

Let Xm be the input sequence, then

lim
k→∞

HR(Xm)

k
≤ lim

k→∞

log2 |Sp|
k

≤ lim
k→∞

1

1− βp
=

1

1− β
.

Finally, it yields

η = lim
m→∞

m

HR(Xm)
≥ 1− β.

This completes the proof.

We see that the efficiency of the above construction is between 1 − β and 1. As shown in
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theorem 6.6, the gap β, introduced by the uncertainty of the real source R, cannot be smaller. Our

construction is asymptotically optimal in the sense that we cannot find a variable-length extractor

with efficiency definitely larger than 1− β.

Corollary 6.10. Given a real source R and a known process M such that d(R,M) ≤ β, then as

β → 0, the efficiency of construction 6.1 is

η → 1.

In this case, the efficiency of the construction can achieve Shannon’s limit.

If R is a stationary ergodic process, we can also get the following result.

Corollary 6.11. Given a stationary ergodic processR and a known process M such that d(R,M) ≤

β, for the expected input length of construction 6.1, we have

1

h(R)
≤ lim

m→∞

E[|Xm|]
m

≤ 1

(1− β)h(R)
,

where h(R) is the entropy rate of the source R.

Proof. This conclusion is immediate following lemma 6.4 and theorem 6.9.

6.5 Construction II: Approximately Biased Coins

In this section, we use a general ideal model such as a biased coin or a Markov chain to approximate

the real source R. Here, we do not care about the specific parameters of the ideal model. The

reason is, in some cases, the source R is very close to an ideal source but we cannot (or do not want

to) estimate the parameters accurately. As a result, we introduce a construction by exploring the

characters of biased coins or Markov chains. For simplicity, we only discuss the case that the ideal

model is a biased coin, and the same idea can be generalized when the ideal model is a Markov

chain. Specifically, let Gb.c. denote the set consisting of all the models of biased coins with different
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probabilities, and we consider R as an arbitrary stochastic process such that

min
M∈Gb.c.

d(R,M) ≤ β.

6.5.1 Construction

The idea of the construction is similar as construction 6.1, i.e., we first produce a random sequence

of length n and with min-entropy k = m(1 + α) for α > 0, from which we can further obtain a

sequence ϵ-close to the uniform distribution Um by applying a (k, ϵ) seeded extractor.

Construction 6.2. Assume the real source R is an arbitrary stochastic process such that

min
M∈Gb.c.

d(R,M) ≤ β

for a constant β. Then we extract m almost-random bits from R based on the following procedure.

1. Read input bits one by one from R until we get an input sequence x ∈ {0, 1}∗ such that

log2

(
k0 + k1

max(1,min(k0, k1))

)
≥ k

1− βp
,

where k0 is the number of zeros in x, k1 is the number of ones in x, βp = β + ϵp with ϵp > 0

and k = m(1+α) with α > 0. The small constant ϵp has value depending on the input set Sp;

as m→ ∞, ϵp → 0. The constant α can be arbitrarily small.

2. Since the input sequence x can be very long, we map it into a sequence z of fixed length n such

that

z = [I(k0≥k1),min(k0, k1), r(x)],

where I(k0≥k1) = 1 if and only if k0 ≥ k1, and r(x) is the rank of x among all the permutations

of x with respect to the lexicographic order. Since x is randomly generated, the above procedure

leads us to a random sequence Z of length n.
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3. Applying a (k, ϵ) extractor to Z yields a random sequence of length m that is ϵ-close to Um.�

To see that the construction above works, we need to show that the random sequence Z obtained

after the second step has min-entropy at least k, and its length n is well bounded.

Lemma 6.12. Given a source R with minM∈Gb.c.
d(R,M) ≤ β, construction 6.2 yields a random

sequence Z with length

n ≤ 1 + ⌈log2(
k

1− βp
+ 1)⌉+ ⌈ 2k

1− βp
⌉.

Proof. 1) I(k0≥k1) can be represented as 1 bit.

2) Without loss of generality, we assume k0 ≤ k1. According to our construction,

log2

(
k0 + k1 − 1

k0 − 1

)
<

k

1− βp
for k0 > 1,

and

log2

(
k1
1

)
<

k

1− βp
for k0 = 0 or k0 = 1.

Then

k0 − 1 ≤ log2

(
2k0 − 1

k0 − 1

)
≤ log2

(
k0 + k1 − 1

k0 − 1

)
<

k

1− βp
.

So min(k0, k1) can be represented as ⌈log2( k
1−βp

+ 1)⌉ bits.

3) Let us consider the number of permutations of x, denoted by N(x). If k0 > 1, then

log2N(x) = log2

(
k0 + k1
k0

)
≤ log2

(
k0 + k1 − 1

k0 − 1

)
+ log2

k0 + k1
k0

≤ k

1− βp
+ log2

k0 + k1
k0

.
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If k0 = 1, then

log2N(x) ≤ log2

(
k1
1

)
+ log2

k1 + 1

k1
.

If k0 = 0, then

log2N(x) = 0.

Based on the analysis above, we can get

log2N(x) ≤ 2k

1− βp
.

Hence, r(x) can be represented as ⌈ 2k
1−βp

⌉ bits.

This completes the proof.

Let 1a denote the all-one vector of length a, then we get the following result.

Theorem 6.13. Construction 6.2 generates a random sequence of length m that is ϵ-close to Um if

PR(1a) ≤ 2−k, PR(0a) ≤ 2−k for a = 2
⌊ k
1−βp

⌋
.

Proof. Since the mapping in the second step is injective, it will not affect the min-entropy; we only

need to prove that the input sequence has min-entropy k, i.e.,

log2
1

PR(x)
≥ k, ∀x ∈ Sp,

where Sp is the set consisting of all the possible input sequences.

It is not hard to see that if min(k0, k1) ≥ 1,

PM(x) ≤ 1(
k0 + k1
k0

) ,

which leads to

log2
1

PM(x)
≥ k

1− βp
.
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Furthermore, based on the definition of dp(R,M), we can get if min(k0, k1) ≥ 1,

log2
1

PR(x)
≥ k.

If min(k0, k1) = 0, according to the condition in the lemma, we can also have the same result.

Since k = m(1 + α) with α > 0, according to lemma 6.1, we can construct a seeded extractor

that applies to the sequence Z and generates a binary sequence ϵ-close to the uniform distribution

Um.

This completes the proof.

Actually, the idea above can be easily generalized if M is a Markov chain that best approximates

the real source R. The idea follows the main lemma in chapter 3 that shows how to generate random

bits with optimal efficiency from an arbitrary Markov chain.

6.5.2 Efficiency Analysis

For the efficiency of the construction, we can get the same bounds as construction 6.1.

Theorem 6.14. Given an arbitrary source R such that

min
M∈Gb.c.

d(R,M) ≤ β,

if there exists a model M ∈ Gb.c. with probability p ≤ 1
2 of being 1 or 0 and

p >

√
d(R,M) log2

1

p

ln 2

2
,

then the efficiency of construction 6.2 is

1− β ≤ η ≤ 1.

Proof. Let Nk0,k1 denote the number of input sequences with k0 zeros and k1 ones in Sp, and let
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pk0,k1 be the probability based on R of generating such a sequence. Let us define

A = {(k0, k1)|Nk0,k1 > 0},

then we can get

HR(Xm) ≤ H({pk0,k1 |(k0, k1) ∈ A}) +
∑

(k0,k1)∈A

pk0,k1 log2Nk0,k1 .

According to the proof in the above theorem, min(k0, k1) ≤ k
1−βp

+ 1. So there are totally at

most 2( k
1−βp

+ 1) available pairs of (k0, k1). Hence

H({pk0,k1 |(k0, k1) ∈ A}) ≤ log2(2 + (
k

1− βp
+ 1)) = o(k).

Now, we write n = k0 + k1. According to our method, if min(k0, k1) ≥ 1,

(
k0 + k1

min(k0, k1)

)
≥ 2

k
1−βp ,

(
k0 + k1 − 1

min(k0, k1)− 1

)
< 2

k
1−βp .

Hence, given n, we get an upper bound for min(k0, k1), which is

tn = max{i ∈ {0, 1, ..., n}|
(
n− 1

i− 1

)
< 2

k
1−βp }. (6.3)

Note that if

(
n− 1
n
2 − 1

)
≥ 2

k
1−βp , then tn is a nondecreasing function of n. Using the Stirling

bounds on factorials yields

lim
n→∞

1

n
log2

(
n

ρn

)
= H(ρ),

where H is the binary entropy function. Hence, following (6.3), we can get

lim
n→∞

H(
tn
n
) = lim

n→∞

k

(1− βp)n
. (6.4)
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Let Pn denote the probability of having an input sequence of length at least n based on the

distribution of R. In this case, Pn is a nonincreasing function of n. Let Qn denote the probability

of having an input sequence of length at least n based on the distribution of M ∈ Gb.c. whose

probability is p ≤ 1
2 . Since for all binary sequence x ∈ {0, 1}n,

log2
1

PM(x)
≤ n log2

1

p
,

we can get

log2
PR(x)

PM(x)
≤ dn log2

1

p
,

where d = dp(R,M).

Since Pn =
∑

x∈S PR(x) and Qn =
∑

x∈S PM(x) for some S ⊂ {0, 1}n, it is not hard to prove

that

log2
Pn

Qn
≤ dn log2

1

p
. (6.5)

According to Hoeffding’s inequality, we can get

Qn ≤ 2P [k1 ≤ tn]

≤ 2P [
k1
n

− p ≤ tn
n

− p]

≤ 2e−2n(p− tn
n )2 .

Hence

Pn ≤ 2−dn log2 pQn ≤ 2e− log2 p ln 2·dn−2n(p− tn
n )2 . (6.6)

From this inequality, we see that Pn → 0 as n→ 0 if

−d log2 p ln 2− 2(p− tn
n
)2 < 0. (6.7)
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Based on (6.4) and (6.7), we can get that Pn → 0 as n→ 0 if

n

k
≥ 1

(1− βp)H(p−
√
d log2

1
p
ln 2
2 )

.

Now, let a = 1+ϵ

(1−βp)H(p−
√

d log2
1
p

ln 2
2 )

with ϵ > 0, we can write

HR(Xm) ≤ o(k) +
∑

k0,k1:k0+k1≥ak

pk0,k1 log2Nk0,k1

+
∑

k0,k1:k0+k1<ak

pk0,k1 log2Nk0,k1 .

According to our analysis, if k0 + k1 ≥ ak, as k → ∞,

Pn =
∑

k0,k1:k0+k1≥ak

pk0,k1
→ 0

and log2Nk0,k1 ≤ 2 k
1−βp

. If k0 + k1 ≤ ak, then

log2Nk0,k1 ≤ k

1− βp
+ log2

k0 + k1
min(k0, k1)

≤ k

1− βp
+ o(k).

As a result, we can get

HR(Xm) ≤ o(k) + o(1)
2k

1− βp
+ (

k

1− βp
+ o(k))

≤ k

1− βp
+ o(k).

So

lim
k→∞

k

HR(Xm)
≥ 1− β.

Furthermore, based on the fact that limm→∞
k
m = 1, we can get η ≥ 1 − β. It is known that

η ≤ 1, so it concludes the theorem.

Similar to construction 6.1, this construction is also asymptotically optimal in the sense that
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we cannot find a variable-length extractor with efficiency definitely larger than 1 − β, as shown in

theorem 6.6.

Corollary 6.15. Given an arbitrary source R such that

min
M∈Gb.c.

d(R,M) ≤ β,

then as β → 0, the efficiency of construction 6.2 is

η → 1.

It is easy to see that as β → 0, construction 6.2 reaches the Shannon’s limit on efficiency. If R

is a stationary ergodic process, we can also get the following corollary.

Corollary 6.16. Given an arbitrary stationary ergodic source R such that

min
M∈Gb.c.

d(R,M) ≤ β,

if there exists a model M ∈ Gb.c. with probability p ≤ 1
2 of being 1 or 0 and

p >

√
d(R,M) log2

1

p

ln 2

2
,

then for the expected input length of construction 6.2, we have

1

h(R)
≤ lim

m→∞

E[|Xm|]
m

≤ 1

(1− β)h(R)
,

where h(R) is the entropy rate of R.
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6.6 Construction III: Approximately Stationary Ergodic Pro-

cesses

In this section, we consider imperfect sources that are approximately stationary and ergodic. Here,

we let R be an arbitrary stochastic process such that d(R,M) ≤ β for a stationary ergodic process

M. For these sources, universal data compression can be used to ‘purify’ input sequences, i.e.,

shortening their lengths while maintaining their entropies. In [126], Visweswariah, Kulkarni and

Verdú showed that optimal variable-length source codes asymptotically achieve optimal variable-

length random bits generation in the sense of normalized divergence. Although their work only

focused on ideal stationary ergodic processes and generates ‘weaker’ random bits, it motivates us

to combine universal compression with fixed-length extractors for efficiently generating random bits

from noisy stochastic processes. In this section, we will first introduce Lempel-Ziv code and then

present its application in constructing variable-length extractors.

6.6.1 Construction

Lempel-Ziv code is a universal data compression scheme introduced by Ziv and Lempel [136], which is

simple to implement and can achieve the asymptotically optimal rate for stationary ergodic sources.

The idea of Lempel-Ziv code is to parse the source sequence into strings that have not appeared so

far, as demonstrated by the following example.

Example 6.5. Assume the input is 010111001110000..., then we parse it as strings

0, 1, 01, 11, 00, 111, 000, ...

where each string is the shortest string that never appear before. That means all its prefixes have

occurred earlier.

Let c(n) be the number of strings obtained by parsing a sequence of length n. For each string, we

describe its location with log c(n) bits. Given a string of length l, it can described by (1) the location
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of its prefix of length l − 1, and (2) its last bit. Hence, the code for the above sequence is

(000, 0), (000, 1), (001, 1), (010, 1), (001, 0), (100, 1), (101, 0), ...

where the first number in each pair indicates the prefix location and the second number is the last

bit of the string.

�

Typically, Lempel-Ziv is applied to an input sequence of fixed length. Here, we are interested in

Lempel-Ziv code with fixed output length and variable input length. As a result, we can apply a single

fixed-length extractor to the output of Lempel-Ziv code for extracting randomness. In our algorithm,

we read raw bits one by one from an imperfect source until the length of the output of a Lempel-Ziv

code reaches a certain length. In another word, the number of strings after parsing is a predetermined

number c. For example, if the source is 1011010100010... and c = 4, then after reading 6 bits, we

can parse them into 1, 0, 11, 01. Now, we get an output sequence (000, 1), (000, 0), (001, 1), (010, 1),

which can be used as the input of a fixed-length extractor. We call this Lempel-Ziv code as a

variable-length Lempel-Ziv code.

Let Z be a random sequence obtained based on variable-length Lempel-Ziv code such that its

length is

|Z| = (log c+ 1)c,

for a predetermined c. Then Z is very close to truly random bits in the term of min-entropy if the

source R is stationary ergodic. As a result, we have the following construction for variable-length

extractors.

Construction 6.3. Assume the real source is R and there exists a stationary ergodic process M

such that d(R,M) ≤ β. Then we extract m almost random bits from R based on the following

procedure.

1. Read input bits one by one based on the variable-length Lempel-Ziv code until we get an output
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sequence Z whose length reaches

n =
k

1− βp
(1 + ε),

where ε > 0 is a small constant indicating the performance gap between the case of finite-length

and that of infinite-length for Lempel-Ziv code; as m → ∞, we have ε → 0. Similar as above,

βp = β + ϵp with ϵp > 0 and k = m(1 + α) with α > 0. The small constant ϵp has value

depending on the input set Sp; as m → ∞, ϵp → 0. The constant α can be arbitrarily small.

Then we get a random sequence Z of length n and with min-entropy k.

2. Applying a (k, ϵ) extractor to Z yields a random sequence of length m that is ϵ-close to Um.�

We show that the min-entropy of Z is at least k as m→ ∞. If m is not very large, by adjusting

the parameter ε, we can make the min-entropy of Z be at least k. So we can continue to apply an

efficient fixed-length extractor to ‘purify’ the resulting sequence. Finally, we can get m random bits

that satisfy our requirements on quality in the sense of statistical distance.

Theorem 6.17. When m → ∞, construction 6.3 generates a random sequence of length m that is

ϵ-close to Um.

Proof. Let x be an input sequence. According to theorem 12.10.1 in [27], for the stationary ergodic

process M, we can get

1

|x|
log2

1

PM(x)
≥ c

|x|
log2 c−

c

|x|
H(U, V ),

where

c

|x|
H(U, V ) → 0 as |x| → 0.
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As a result, if k = Θ(n),

lim
k→∞

1

k
log2

1

PR(x)
≥ lim

k→∞
(1− βp)

1

k
log2

1

PM(x)

≥ lim
k→∞

(1− βp)c log2 c

k

= lim
k→∞

(1− βp)n

k

= lim
k→∞

1 + ε

= 1.

Finally, we can get that

lim
k→∞

Hmin(Z)

k
= lim

k→∞

Hmin(Xm)

k
≥ 1.

This implies that as m→ ∞, i.e., k → ∞, the min-entropy of Z is at least k.

Since k = m(1 + α) for an α > 0, we can continue to apply a (k, ϵ) extractor to extract m

almost-random bits from Z.

6.6.2 Efficiency Analysis

Now, we study the efficiency of the construction based on variable-length Lempel-Ziv codes.

Theorem 6.18. Given a real source R such that there exists a stationary ergodic process M with

d(R,M) ≤ β, then the efficiency of construction 6.3 is

1− β ≤ η ≤ 1.

Proof. Similar as above, we only need to prove that η ≥ 1− β.

Since there are at most n = 2c(log2 c+1) distinct input sequences, their entropy

HR(Xm) ≤ c(log2 c+ 1) = n.
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According to the proof in theorem 6.17, we have that the random sequence Z has min-entropy

at least k, and it satisfies

lim
m→∞

n

k
=

1

1− β
.

Based on the construction of seeded extractors, we can also get

lim
m→∞

m

k
= 1.

As a result,

η = lim
m→∞

m

HR(Xm)
≥ 1− β.

This completes the proof.

Although construction 6.3 has the same efficiency as the other constructions, whenm is not large,

it is less efficient than the other constructions because the Lempel-Ziv code does not always have

the best performance when the input sequence is not long. But its advantage is that it can manage

more general sources without accurate estimations. In the above theorem, the gap β represents how

far the source R is from being stationary ergodic. In general, the efficiency loss introduced by the

uncertainty of sources is a part that cannot be avoid.

Corollary 6.19. Given a real source R such that there exists a stationary ergodic model M with

d(R,M) ≤ β, then as β → 0, the efficiency of construction 6.3 is

η → 1.

It shows that as β → 0, construction 6.3 reaches the Shannon’s limit on efficiency.

Corollary 6.20. Given a stationary ergodic source R (assume we do not know that it is stationary

ergodic), for the expected input length of construction 6.3, we have

1

h(R)
≤ lim

m→∞

E[|Xm|]
m

≤ 1

(1− β)h(R)
,
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where h(R) is the entropy rate of R.

6.7 Seedless Constructions

To simulate seeded constructions of variable-length extractors in randomized applications, we have

to enumerate all possible assignments of the seed, hence, the computational complexity will be

increased significantly. In real applications, we prefer seedless constructions rather than seeded

constructions. It motivates us to study the seedless constructions of variable-length extractors in

this section.

6.7.1 An Independent Source

Let us first consider a simple independent source described in the introduction. This type of sources

have been widely studied in seedless constructions of fixed-length extractors.

Example 6.6. Let x1x2... ∈ {0, 1}∗ be an independent sequence generated from a source R such

that

P [xi = 1] ∈ [0.9, 0.91] ∀i ≥ i.

�

We see that the existing methods for generating random bits from ideal sources (like biased coins

or Markov chains) cannot be applied here, since the probability of each bit is slightly unpredictable.

Some seedless extractors have been developed for extracting randomness from such sources. In

particular, there exists seedless extractors which are able to extract as many as Hmin(X) random

bits from a independent random sequence X asymptotically. In order to extract m random bits in

the above example, it needs to read m
log2

1
0.91

input bits as m → ∞. In this case, the entropy of the

input sequence is in

[H(0.9)
m

log2
1

0.91

,H(0.91)
m

log2
1

0.91

].
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From which, we can get the efficiency of an optimal fixed-length extractor, which is

ηfixed ∈ [0.2901, 0.3117],

i.e., about only 0.3 of the input entropy is used for generating random bits, which is far from optimal

In the above example, we let M be a biased coin model with probability p = 0.9072. In this

case,

β ≤ d(R,M) = 0.0315.

According to the constructions in the previous sections, there exists seeded variable-length extractors

such that their efficiencies are

ηvariable ∈ [1− β, 1] ⊆ [0.9685, 1],

which are near Shannon’s limit.

Based on the fact that the source is independent, we can eliminate the requirement of truly

random bits as the seed, hence, we have seedless variable-length extractors. To construct a seedless

variable-length extractor, we first apply a seedless fixed-length extractor E1 (which may not be very

efficient) to extract a random sequence of length d from input bits. Using this random sequence as

the seed, we continue to apply a seeded variable-length extractors E2 to extract m almost-random

bits from extra input bits. So seedless variable-length extractors can be constructed as cascades of

seedless fixed-length extractors and seeded variable-length extractors. Since the input length of E1

is much shorter (it is ignorable) than the input length of E2, the efficiency of the resulting seedless

extractor, i.e., E = E2

⊗
E1, is dominated by the efficiency of E2. So the efficiency of the seedless

extractor E is in [0.9685, 1], which is very close to the optimality.

This example demonstrates a simple construction of seedless variable-length extractors for inde-

pendent sources, and it shows the significant performance gain of variable-length extractors compared

to fixed-length extractors.
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6.7.2 Generalized Sources

Here we consider a generalization of independent processes. Given a system, we use λi denote the

complete system status at time i. For example, in a system that generates thermal noise, the system

status can include the value of the noise signal, the temperature, the environmental effects, etc.

Usually, the evolution of such a system has a Markov property, namely,

P [λi+1, λi+2, ...|λi, λi−1, ..., λ1] = P [λi+1, λi+2, ...|λi],

for all i ≥ 1. Let X = x1x2... ∈ {0, 1}n be the binary sequence generated from this system, then for

any 1 < k < n− 1,

P [Xk−1
1 , Xn

k+1|λk] = P [Xk−1
1 |λk]P [Xn

k+1|λk], (6.8)

where Xb
a = xaxa+1...xb. In some sense, the source X that we consider is a hidden Markov process,

but the number of hidden states can be infinite (λi can be discrete or continuous).

Example 6.7. One example of the above sources is the one studied in [63], called a space s source.

A space s source is basically a source generated by a width 2s branching program. At each step, the

state of the process generating the source is in one of 2s states, and the bit generated is a function of

the current state. Unlike perfect Markov chains, the transition probabilities can be different at each

step. In this example, the system status λi is the content of space s at time i, that is, one of the 2s

states, and xi ∈ {0, 1} is a function of λi.

Space s sources are very general in that most other classes of sources that have been considered

previously can be computed with a small amount of space [63]. The model that we consider, as

described by (6.8), is a natural generalization of space s sources. This model has a very nice feature:

from such a source, we can get a group of sequences conditionally independent of each other. Namely,

given system statues at some time points

[λ(1), λ(2), ..., λ(γ)] = [λa, λ2a, ..., λγa],
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the subsequences

[X(1), X(2), ..., X(γ), X(γ+1)] = [Xa−1
1 , X2a−1

a+1 , ..., Xγa−1
(γ−1)a+1, X

∞
γa+1]

are conditionally independent of each other. Based on this condition, we have the following seedless

construction of variable-length extractors.

Construction 6.4. Given a source R described by (6.8), we can construct a seedless variable-length

extractor E in the following way:

1. Suppose that

Hmin(X
(i)|λ(i), λ(i+1)) ≥ kd, ∀0 ≤ i ≤ γ.

We construct a γ-source extractor [95] E1 : [{0, 1}a−1]γ → {0, 1}d such that if each source

has min-entropy kd, it can extract d almost-random bits which are ϵ1-close to the uniform

distribution on {0, 1}d.

2. We construct a seeded variable-length extractor E2 : Sp × {0, 1}d → {0, 1}m such that with

condition on λ(γ), it can extract m almost-random bits from X(γ+1) and these m almost-

random bits are ϵ2-close to the uniform distribution on {0, 1}m if the seed is truly random.

3. The seedless variable-length extractor E is a cascade of E1 and E2: Let

D = E1(X
(1), X(2), ..., X(γ)),

then we apply D as the seed of E2 to generate m almost-random bits from X(γ+1); that is,

E(X) = E2(X
(γ+1), E1(X

(1), X(2), ..., X(γ))).

For this construction, we have the following theorems.

Theorem 6.21. In construction 6.4, the m almost-random bits generated by the seedless variable-
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length extractor E are (ϵ1 + ϵ2)-close to the uniform distribution on {0, 1}m.

Proof. According to the construction, we can let the parameter a = |X(i)| + 1 with 1 ≤ i ≤ γ be

large enough, so given λ(1), λ(2), ..., λ(γ),

∥D − Ud∥ ≤ ϵ1.

Let Xm be the input sequence of E2 that read from X(γ+1), then given λ(γ), we have

∥E2(Xm, Ud)− Um∥ ≤ ϵ2.

From the two inequalities above, given λ(1), λ(2), ..., λ(γ), we have

∥E2(Xm, D)− Um∥ ≤ ϵ1 + ϵ2.

Since it is true for any assignments of λ(1), λ(2), ..., λ(γ), we can get

∥E2(Xm, D)− Um∥ =
∑

λ(1),λ(2),...,λ(γ)

P [λ(1), λ(2), ..., λ(γ)](ϵ1 + ϵ2)

≤ ϵ1 + ϵ2.

Hence, the m almost-random bits extracted by E is also (ϵ1 + ϵ2)-close to Um.

In the following theorem, we show that the seedless variable-length extractor E has the efficiency

as the seeded variable-length extractor E2.

Theorem 6.22. In construction 6.4, suppose that

Hmin(X
(i)|λ(i), λ(i+1)) = Θ(|X(i)|),∀0 ≤ i ≤ γ.

Let ηE denote the efficiency of the resulting seedless variable-length extractor E, and let ηE2 denote
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the efficiency of the E2, then

ηE = ηE2 .

Proof. According to the construction of E1, we can get that

d = Θ(a),

where a = |X(i)|+ 1 for 1 ≤ i ≤ γ.

If ϵ2 is a constant, then

d = O(logm) = o(m).

As a result,

lim
m→∞

aγ

m
= 0.

Let H denote the entropy of the input sequence of E2, then ηE2 = limm→∞
m
H , and

lim
m→∞

m

aγ +H
≤ ηE ≤ lim

m→∞

m

H
.

Hence, ηE = ηE2 .

The theorem above shows that the efficiency of seedless variable-length extractors can be very

close to optimality. For many sources, such as biased coins with noise, or Markov chains with noise,

the existing algorithms for ideal sources (e.g., perfect biased coins or perfect Markov chains) cannot

generate high-quality random bits from them. At the same time, the traditional approaches of

fixed-length extractors are not very efficient. The gap between their efficiency and the optimality

is determined by the bias of the source. Seedless variable-length extractors take the advantages of

both, as a result, they can approach the information-theoretic upper bound on efficiency while being

capable to combat noise in the sources.
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6.8 Conclusion and Discussion

In this chapter, we introduced the concept of the variable-length extractors, namely, those extractors

with variable input length and fixed output length. Variable-length extractors are generalizations

of the existing algorithms for ideal sources to manage general stochastic processes. They are also

improvements of traditional fixed-length extractors to fill the gap between min-entropy and entropy

of the source on efficiency. The key idea of constructing variable-length extractors is to approximate

the source using a simple model, which is a known process, a biased coin, or a stationary ergodic

process. Depending on the model selected, we proposed and analyzed three seeded constructions

of variable-length extractors. Their efficiency is lower bounded by 1 − β and upper bounded by 1

(optimality), where β(0 ≤ β ≤ 1) indicate the uncertainty of the real source. We also show that our

constructions are asymptotically optimal, in the sense that one cannot find a construction whose

efficiency is always strictly larger than 1−β. In addition, we demonstrated how to construct seedless

variable-length extractors by cascading seeded variable-length extractors with seedless fixed-length

extractors. They can work for many (but not all) natural sources such as those based on noise

signals.

There are certain connections between variable-length extractors and a whole family of variable-

to-fixed length source codes [74, 84, 103, 114, 115, 117, 127]. With a variable-to-fixed length code,

an infinite sequence is parsed into variable-length phases, chosen from some finite set D of phases.

Each phase is then coded into a binary sequence of fixed length m. The set D of phases is complete,

i.e., every infinite sequence has a prefix in D. The key of constructing a good variable-to-fixed

length source code is to find the best set D that consists of at last 2m prefix-free phases and

maximizes the expected phase length. As comparison, the key of constructing a variable-length

extractor is to find the best input set Sp that consists of sequences with probability at most 2−k

for each and minimizes the expected sequence length. Although their goals are different, some

common ideas can be used to construct both the phase set D and the input set Sp. For example,

in [127], Visweswariah et al. defined the phase set D by x∗ ∈ D if P (x∗) ≤ c and no prefix of x∗

satisfies this property. The same idea is applied in our construction I. In [74, 114], the phase set
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D is determined by the number of ones and zeros in the phase, so is our construction II. In some

sense, an optimal variable-to-fixed length code can result in a fixed-length binary sequence whose

min-entropy is close to its length. However, variable-to-fixed length source codes do not always work

well in constructing variable-length extractors, because (1) the designing criteria are different and

they may degrade the performance; (2) variable-to-fixed length source codes take both encoding

and decoding in consideration, hence, they are more complex in computation than what we require

(decoding is not necessary) for constructing variable-length extractors; and (3) the sources that we

considered for variable-length extractors are unpredictable, which are more general than the ones

considered in variable-to-fixed length source codes.
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Part III

Stochastic System Synthesis
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Chapter 7

Synthesis of Stochastic Switching
Circuits

This chapter studies stochastic switching circuits, which are relay circuits that consist of

stochastic switches called pswitches. It introduces new properties of stochastic switching

circuits, including robustness, expressibility, and probability approximation.1

7.1 Introduction

In his master’s thesis of 1938, Claude Shannon demonstrated how Boolean algebra can be used to syn-

thesize and simplify relay circuits, establishing the foundation of modern digital circuit design [106].

Later, deterministic switches were replaced with probabilistic switches to make stochastic switching

circuits, which were studied in [134]. There are a few features of stochastic switching circuits that

make them very similar to neural systems. First, randomness is inherent in neural systems and it

may play a crucial role in thinking and reasoning. Switching (and relaying) technique provides us

a natural way of manipulating this randomness. Second, in a switching system, each switch can be

treated as either a memory element or a control element for computing. This might enable creating

an intelligent system where storage and computing are highly integrated. In this chapter, we study

stochastic switching circuits from a basic starting point with focusing on probability synthesis. We

consider two-terminal stochastic switching circuits, where each probabilistic switch, or pswitch, is

1 Some of the results presented in this chapter have been previously published in [75] and [141].
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closed with some probability chosen from a finite set of rational numbers, called a pswitch set. By

selecting pswitches with different probabilities and composing them in appropriate ways, we can

realize a variety of different closure probabilities.

Formally, for a two-terminal stochastic switching circuit C, the probabilities of pswitches are

taken from a fixed pswitch set S, and all these pswitches are open or closed independently. We

use P (C) to denote the probability that the two terminals of C are connected, and call P (C) the

closure probability of C. Given a pswitch set S, a probability x can be realized if and only if there

exists a circuit C such that x = P (C). Based on the ways of composing pswitches, we have series-

parallel (sp) circuits and non-series-parallel (non-sp) circuits. An sp circuit consists of either a single

pswitch or two sp circuits connected in series or parallel, see the circuit in figure 7.1(a) and 7.1(b)

as examples. The circuit in figure 7.1(c) is a non-sp circuit. A special type of sp circuits is called

simple-series-parallel (ssp) circuits. An ssp circuit is either a single pswitch, or is built by taking an

ssp circuit and adding another pswitch in either series or parallel. For example, the circuit in figure

7.1(a) is an ssp circuit but the one in figure 7.1(b) is not.

In this chapter, we first study the robustness of different stochastic switching circuits in the

presence of small error perturbations. We assume that the probabilities of individual pswitches are

taken from a fixed pswitch set with a given error allowance of ϵ; that is, the error probabilities of the

pswitches are bounded by ϵ. We show that ssp circuits are robust to small error perturbations, but

the error probability of a general sp circuit may be amplified by adding additional pswitches. These

results might help us understand why local errors do not accumulate in a natural system, and how

to enhance the robustness of a system when designing a circuit.

Next, we study the problem of synthesizing desired probabilities with stochastic switching cir-

cuits. We mainly focus on ssp circuits due to their robustness against small error perturbations. Two

main questions are addressed: (1) Expressibility : Given the pswitch set S = { 1
q ,

2
q , ...,

q−1
q }, where

q is an integer, what kind of probabilities can be realized using stochastic switching circuits? And

how many pswitches are sufficient to realize them? (2) Approximation: Given an arbitrary pswitch

set S, how can we construct a stochastic switching circuit using as a few as possible pswitches, to
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1/2

(a) ssp circuit. P (C) = 5
8
.

1/2

1/2

1/2

1/2

(b) sp circuit, non-ssp.
P (C) = 7

16
.

1/2

1/2

1/2

1/2

1/2

(c) non-sp circuit. P (C) = 1
2
.

Figure 7.1. Examples of ssp, sp, and non-sp circuits.

get a good approximation of the desired probabilities?

The study of probability synthesis based on stochastic switching circuits has widespread applica-

tions. Recently, people found that DNA molecules can be constructed that closely approximate the

dynamic behavior of arbitrary systems of coupled chemical reactions [108], which leads to the field

of molecular computing [25]. In such systems, the quantities of molecules involved in a reaction are

often surprisingly small, and the exact sequence of reactions is determined by chance [38]. Stochas-

tic switching circuits provide a simple and powerful tool to manipulate stochasticity in molecular

systems. Comparing with combinational logic circuits, stochastic switching circuits are easier to

implement using molecular reactions. Another type of applications is probabilistic electrical systems

without sophisticated computing components. In such systems, stochastic switching circuits have

many advantages in generating desired probabilities, including its constructive simplicity, robustness,

and low cost.

The remainder of this chapter is organized as follows: Section 7.2 describes related work and

introduces some existing results on stochastic switching circuits. In section 7.3, we analyze the

robustness of different kinds of stochastic switching circuits. Then we discuss the expressibility of

stochastic switching circuits in section 7.4 and probability approximation in section 7.5, followed by

the conclusion in section 7.6.
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7.2 Related Works and Preliminaries

There are a number of studies related to the problem of generating desired distributions from the

algorithmic perspective. This problem dates back to von Neumann [128], who considered of simu-

lating an unbiased coin using a biased coin with unknown probability. Later, Elias [33] improved

this algorithm such that the expected number of unbiased random bits generated per coin toss is

asymptotically equal to the entropy of the biased coin. On the other hand, people have considered

the case that the probability distribution of the tossed coin is known. Knuth and Yao [71] have given

a procedure to generate an arbitrary probability using an unbiased coin. Han and Hoshi [52] have

demonstrated how to generate an arbitrary probability using a general M -sided biased coin. All

these works aim to efficiently convert one distribution to another. However, they require computing

models and may not be applicable for some simple or distributed electrical/molecular systems.

There are a number of studies focusing on synthesizing a simple physical device to generate

desired probabilities. Gill [44] [45] discussed the problem of generating rational probabilities using

a sequential state machine. Motivated by neural computation, Jeavons et al. provided an algorithm

to generate binary sequences with probability a
qn from a set of stochastic binary sequences with

probabilities in { 1
q ,

2
q , ...,

q−1
q } [57]. Their method can be implemented using the concept of linear

feedback shift registers. Recently, inspired by PCMOS technology [22], Qian et al. considered

the synthesis of decimal probabilities using combinational logic [92]. They have considered three

different scenarios, depending on whether the given probabilities can be duplicated, and whether

there is freedom to choose the probabilities. In contact to the foregoing contributions, we consider the

properties and probability synthesis of stochastic switching circuits. Our approach is orthogonal and

complementary to that of Qian and Riedel, which is based on combinational logic. Generally, each

switching circuit can be equivalently expressed by a combinational logic circuit. All the constructive

methods of stochastic switching circuits in this chapter can be directly applied to probabilistic

combinational logic circuits.

In the rest of this section, we introduce the original work that started the study on stochastic

switching circuits (Wilhelm and Bruck [134]). Similar to resistor circuits [77], connecting one termi-
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nal of a switching circuit C1 (where P (C1) = p1) to one terminal of a circuit C2 (where P (C2) = p2)

places them in series. The resulting circuit is closed if and only if both of C1 and C2 are closed, so

the probability of the resulting circuit is

pseries = p1 · p2.

Connecting both terminals of C1 and C2 together places the circuits in parallel. The resulting circuit

is closed if and only if either C1 or C2 is closed, so the probability of the resulting circuit is

pparallel = 1− (1− p1)(1− p2) = p1 + p2 − p1p2.

Based on these rules, we can calculate the probability of any given ssp or sp circuit. For example,

the probability of the circuit in figure 7.1(a) is

p(a) =

(
1

2
· 1
2

)
+

1

2
−
(
1

2
· 1
2

)
1

2
=

5

8
,

and the probability of the circuit in figure 7.1(b) is

p(b) =

(
1

2
· 1
2

)
+

(
1

2
· 1
2

)
−
(
1

2
· 1
2

)(
1

2
· 1
2

)
=

7

16
.

Let us consider the non-sp circuit in figure 7.1(c). In this circuit, we call the pswitch in the

middle a ‘bridge’. If the bridge is closed, the circuit has a closure probability of 9
16 . If the bridge is

open, the circuit has a closure probability of 7
16 . Since the bridge is closed with probability 1

2 , the

overall probability of the circuit is

p(c) =
1

2
· 9

16
+

1

2
· 7

16
=

1

2
.

An important and interesting question is that if S is uniform, i.e., S = {1
q ,

2
q , ...,

q−1
q } for some

q, what kind of probabilities can be realized using stochastic switching circuits? In [134], Wilhelm
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and Bruck proposed an optimal algorithm (called B-Algorithm) to realize all rational probabilities

of the form a
2n with 0 < a < 2n, using an ssp circuit when S = {1

2}. In their algorithm, at most n

pswitches are used, which is optimal. They also proved that given the pswitch set S = { 1
3 ,

2
3}, all

rational probabilities a
3n with 0 < a < 3n can be realized by an ssp circuit with at most n pswitches;

given the pswitch set S = {1
4 ,

2
4 ,

3
4}, all rational probabilities

a
4n with 0 < a < 4n can be realized by

an ssp circuit with at most 2n− 1 pswitches.

1/3

1/4

1/2

(a) Initial circuit. P = 1
4
.

1/2

3/42/3

(b) The dual. P = 3
4
.

Figure 7.2. A circuit and its dual.

Wilhelm and Bruck also demonstrated the concept of duality in sp circuits. The dual of a single

pswitch of probability p appearing in series is the corresponding pswitch of probability 1−p appearing

in parallel. Similarly, the dual of a pswitch of probability p appearing in parallel is a pswitch of

probability 1− p appearing in series. For example, in figure 7.2, the circuit in (b) is the dual of the

circuit in (a), and vice versa. It can be proved that dual circuits satisfy the following relation:

Theorem 7.1 (Duality Theorem [134]). For a stochastic series-parallel circuit C and its dual C,

we have

P (C) + P (C) = 1,

where P (C) is the probability of circuit C and P (C) is the probability of circuit C.

7.3 Robustness

In this section, we analyze the robustness of different kinds of stochastic switching circuits, where

the probabilities of individual pswitches are taken from a fixed pswitch set, but given an error
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allowance of ϵ; i.e., the error probabilities of the pswitches are bounded by ϵ. For a stochastic circuit

with multiple pswitches, the error probability of the circuit is the absolute difference between the

probability that the circuit is closed when error probabilities of pswitches are included, and the

probability that the circuit is closed when error probabilities are omitted. We show that ssp circuits

are robust to small error perturbations, but the error probability of a general sp circuit may be

amplified with additional pswitches.

7.3.1 Robustness of ssp Circuits

Here, we analyze the susceptibility of ssp circuits to small error perturbations in individual pswitches.

Based on our assumption, instead of assigning a pswitch a probability of p, the pswitch may be

assigned a probability between p− ϵ and p+ ϵ, where ϵ is a fixed error allowance.

Theorem 7.2 (Robustness of ssp circuits). Given a pswitch set S, if the error probability of each

pswitch is bounded by ϵ, then the total error probability of an ssp circuit is bounded by

ϵ

min{min{S}, 1−max{S}}
.

Proof. We induct on the number of pswitches. If we have just one pswitch, the result is trivial.

Suppose the result holds for n pswitches, and note that for an ssp circuit with n+ 1 pswitches, the

last pswitch will either be added in series or in parallel with the first n pswitches. By the induction

hypothesis, the circuit constructed from the first n pswitches has probability p+ ϵ1 of being closed,

where ϵ1 is the error probability introduced by the first n pswitches and |ϵ1| ≤ ϵ
min{min{S},1−max{S}} .

The (n+ 1)st pswitch has probability t+ ϵ2 of being closed, where t ∈ S and |ϵ2| ≤ ϵ.

If the (n + 1)st pswitch is added in series, see figure 7.3(a), then the new circuit (with errors)

has probability

(p+ ϵ1)(t+ ϵ2) = tp+ ϵ2(p+ ϵ1) + tϵ1

of being closed. Without considering the error probability of each pswitch, the probability of the

new circuit is tp. Hence, the overall error probability of the circuit is e1 = ϵ2(p+ ϵ1) + tϵ1. By the
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1
e+p

2
e+t

(a) The last pswitch is added in se-
ries.

1
e+p

2
e+t

(b) The last pswitch is added in par-
allel.

Figure 7.3. Robustness of ssp circuits.

triangle inequality and the induction hypothesis,

|e1| ≤ |ϵ2||(p+ ϵ1)|+ t|ϵ1| ≤ |ϵ2|+ t|ϵ1|

≤
(

t

min{min{S}, 1−max{S}}
+ 1

)
ϵ

≤ min{min{S}, 1−max{S}}+max{S}
min{min{S}, 1−max{S}}

· ϵ

≤ ϵ

min{min{S}, 1−max{S}}
,

completing the induction.

Similarly, if the (n+1)st pswitch is added in parallel, see figure 7.3(b), then the new circuit (with

errors) has probability

(p+ ϵ1) + (t+ ϵ2)− (p+ ϵ1)(t+ ϵ2) = (p+ t− tp) + ϵ1(1− t) + ϵ2(1− p− ϵ1)

of being closed. Without considering the error probability of each pswitch, the probability that the

circuit is closed is p+ t− tp. Hence, the overall error probability of the circuit with n+1 pswitches

is e2 = ϵ1(1− t) + ϵ2(1− p− ϵ1). Again using the induction hypothesis and the triangle inequality,
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we have

|e2| ≤ |ϵ2||(1− p− ϵ1)|+ (1− t)|ϵ1| ≤ |ϵ2|+ (1− t)|ϵ1|

≤
(

1− t

min{min{S}, 1−max{S}}
+ 1

)
ϵ

≤ min{min{S}, 1−max{S}}+ 1−min{S}
min{min{S}, 1−max{S}}

· ϵ

≤ ϵ

min{min{S}, 1−max{S}}
.

This completes the proof.

The theorem above implies that ssp circuits are robust to small error perturbations: no matter

how big the circuit is, the error probability of an ssp circuit will be well bounded by a constant times

ϵ. Let us consider a case that S = {1
2}. In this case, the overall error probability of any ssp circuit

is bounded by 2ϵ if each pswitch is given an error allowance of ϵ.

7.3.2 Robustness of sp Circuits

We have proved that for a given pswitch set S, the overall error probability of an ssp circuit is well

bounded. We want to know whether this property holds for all sp circuits. Unfortunately, we show

that as the number of pswitches increases, the overall error probability of an sp circuit may also

increase. In this subsection, we will give the upper bound and lower bound for the error probabilities

of sp circuits.

Theorem 7.3 (Lower bound for sp circuits). Given a pswitch set S, if the error probability of each

pswitch is ϵ (where ϵ → 0), then there exists an sp circuit of size n with overall error probability

O(log n)ϵ.

Proof. Suppose p ∈ S, and without loss of generality, assume ϵ > 0. We construct an sp circuit as

shown in figure 7.4, by connecting a + 1 strings of pswitches in parallel. Among these strings, we

have a strings of b pswitches and one string of n− ab pswitches, and all pswitches have probability
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p. Now, we let a and b satisfy the following relation:

a =
⌈n
b

⌉
− 1, a =

⌊
(
1

p
)b
⌋
.

Without considering pswitch errors, the probability of the circuit is

p1 = 1− (1− pb)a(1− pn−ab).

…

…

…

…

pswitches abn-

pswitches b

strings 1+a

Figure 7.4. The construction of an sp circuit.

Suppose we introduce an error of ϵ to each pswitch, such that the probability of each pswitch is

p+ ϵ (assume ϵ > 0). Then the probability of the circuit is

p2(ϵ) = 1− (1− (p+ ϵ)b)a(1− (p+ ϵ)n−ab),

where p2(0) = p1.
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Assuming n is large enough, we have the following error probability for the circuit:

e1 = p2(ϵ)− p1

≃ p′2(ϵ)ϵ

≃ −[(1− (p+ ϵ)b)a(1− (p+ ϵ)n−ab)]′ϵ

≃ −[e−a(p+ϵ)b(1− (p+ ϵ)n−ab)]′ϵ

≃ e−a(p+ϵ)bab(p+ ϵ)b−1(1− (p+ ϵ)n−ab)ϵ

+e−a(p+ϵ)b(n− ab)(p+ ϵ)n−ab−1ϵ

≃ [e−apb

abpb−1(1− pn−ab) + e−apb

(n− ab)pn−ab−1]ϵ

≃ [e−1 b

p
(1− pn−ab) + e−1(n− ab)pn−ab−1]ϵ.

So when n is large enough, we have

e−1 1− p

p
bϵ ≤ |e1| ≤ e−1 1

p
bϵ.

Since b⌊( 1p )
b⌋ < n ≤ b(⌊( 1p )

b⌋+ 1) for large n, we have

b ∼ log n

log 1
p

− log log n

log 1
p

+
log log 1

p

log 1
p

∼ log n

log 1
p

.

Finally, we have |e1| ∼ O(log n)ϵ, completing the proof.

In the following theorem, we will give the upper bound for the error probabilities of sp circuits.

Theorem 7.4 (Upper bound for sp circuits). Given an sp circuit with n pswitches taken from a

finite pswitch set S, if each pswitch has error probability bounded by ϵ, then the total error probability

of the circuit is bounded by c
√
nϵ, where c = maxt∈S

1√
t(1−t)

is a constant.

Proof. Assume x is a pswitch in a stochastic circuit C, and the actual probability of x is tx + ϵx,

where ϵx is the error part such that |ϵx| ≤ ϵ. Let P (C|x = 1) denote the probability of circuit C
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when x is closed, and let P (C|x = 0) denote the probability of C when x is open.

Without considering the error probability of x, the probability of circuit C can be written as

Px(C) = txP (C|x = 1) + (1− tx)P (C|x = 0).

Considering the error part of x, we have

P (C) = (tx + ϵx)P (C|x = 1) + (1− tx − ϵx)P (C|x = 0).

In order to prove the theorem, we define a term called the error contribution. In a circuit C, the

error contribution of pswitch x is defined as

ex(C) = |P (C)− Px(C)| = ϵx|P (C|x = 1)− P (C|x = 0)|

≤ ϵ(P (C|x = 1)− P (C|x = 0)).

In the rest of the proof, we have two steps.

(1) In the first step, we show that given an sp circuit with size n, there exists at least one pswitch

such that its error contribution is bounded by
c
√

(1−P )P√
n

ϵ, where P is the probability of the sp circuit

and c = maxt∈S
1√

t(1−t)
.

We induct on the number of pswitches. If the circuit has only one pswitch, the result is trivial.

Suppose the result holds for k pswitches for all k < n. We need to prove that the result holds for

any sp circuit C with n pswitches.

Suppose circuit C is constructed by connecting two sp circuits C1 and C2 in series, where C1 has

n1 pswitches and probability P1, and C2 has n2 pswitches and probability P2. Note that n1+n2 = n

and n1 < n, n2 < n.
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By the induction hypothesis, circuit C1 contains a pswitch x1 with error contribution

ex1(C1) ≤
c
√

(1− P1)P1√
n1

ϵ.

In circuit C, the error contribution of pswitch x1 is

ex1(C) = |P (C)− Px1(C)| = P2|P (C1)− Px1(C1)| = P2ex1(C1).

Similarly, in the circuit C2, there exists a pswitch x2 such that the error contribution of x2 is

ex2(C2) ≤
c
√

(1− P2)P2√
n2

ϵ,

and the error contribution of x2 to circuit C is

ex2(C) = P1ex2(C2).

Since the circuit C is constructed by connecting circuits C1 and C2 in series, the probability of

circuit C is P = P1P2. Thus, we only need to prove that either ex1(C) or ex2(C) is bounded by

c
√

(1− P1P2)P1P2√
n1 + n2

ϵ,

This can be proved by contradiction as follows.

Assume both ex1(C) and ex2(C) are larger than
c
√

(1−P1P2)P1P2√
n1+n2

ϵ. Then we have

P2
c
√
(1− P1)P1√

n1
>
c
√
(1− P1P2)P1P2√

n1 + n2

and

P1
c
√
(1− P2)P2√

n2
>
c
√
(1− P1P2)P1P2√

n1 + n2
,
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which can be simplified as

n1
n1 + n2

<
(1− P1)P2

1− P1P2

and

n2
n1 + n2

<
(1− P2)P1

1− P1P2
.

Adding the two inequalities yields

P1 + P2 − 1− P1P2 = −(1− P1)(1− P2) > 0,

which is a contradiction. So we conclude that at least one of ex1(C) and ex2(C) is bounded by

c
√

(1−P1P2)P1P2√
n1+n2

ϵ when C is constructed by connecting two sp circuits in series. If the circuit C is

constructed by connecting two sp circuits in parallel, using a similar argument, we can get the same

conclusion.

Finally, we get that given an sp circuit with size n, there exists at least one pswitch such that

its error contribution is bounded by
c
√

(1−P )P√
n

ϵ.

(2) In the second step, we prove the theorem based on the result above.

We again induct on the number of pswitches. If we have less than three pswitches, the result is

trivial. Suppose the result holds for any sp circuit with n ≥ 2 pswitches; we want to prove that the

result also holds for any circuit with n+ 1 pswitches.

Based on the result in the first step, we know that given an sp circuit C with n + 1 pswitches,

there exists a pswitch x with error contribution bounded by c
2
√
n+1

ϵ.

By keeping pswitch x closed, we obtain an sp circuit D1 with at most n pswitches. Please see

figure 7.5(a)(b) as an example. Without considering pswitch errors, D1 is closed with probability

p1; considering all pswitch errors, D1 is closed with probability q1. According to our assumption,

we have

e1 = |q1 − p1| ≤ c
√
nϵ.

By keeping pswitch x open, we obtain an sp circuit D2 with at most n pswitches. Please see
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A B

C D

(a) Circuit C.

B

C D

(b) D1, A closed.

C D

(c) D2, A open.

Figure 7.5. An illustration of keeping a pswitch A closed or open in an sp circuit C.

figure 7.5(a)(c) as an example. Without considering pswitch errors, D2 is closed with probability

p2; considering all pswitch errors, D2 is closed with probability q2. According to our assumption,

we have

e2 = |q2 − p2| ≤ c
√
nϵ.

For the initial sp circuit C with n+ 1 pswitches, without considering pswitch errors, the overall

probability of the circuit is given by

txp1 + (1− tx)p2,

where tx is the probability of pswitch x.

Considering all pswitch errors, the overall probability of the circuit is

(tx + ϵx)q1 + (1− tx − ϵx)q2.

We know that the error contribution of pswitch x to the circuit C is

ex(C) = ϵx|q2 − q1| ≤
c

2
√
n+ 1

ϵ.
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Then by the triangle inequality, we can get the error probability of the circuit C:

e = |(tx + ϵx)q1 + (1− tx − ϵx)q2 − (txp1 + (1− tx)p2)|

≤ tx|q1 − p1|+ (1− tx)|q2 − p2|+ ϵx|q2 − q1|

≤
c
√
n(n+ 1) + c

2√
n+ 1

ϵ

≤ c
(n+ 1

2 ) +
1
2√

n+ 1
ϵ

= c
√
n+ 1ϵ.

This finishes the induction.

7.3.3 Robustness of Non-sp Circuits

Here we extend our discussion to the case of general stochastic switching circuits. We have the

following theorem, which clearly holds for sp and ssp circuits:

Theorem 7.5 (Upper bound for general circuits). Given a general stochastic switching circuit with

n pswitches taken from a finite pswitch set S, if each pswitch has error probability bounded by ϵ,

then the total probability of the circuit is bounded by nϵ.

Proof. We first index all the pswitches in the circuit C as x1, x2, ..., xn, see figure 7.6 as an example.

1
x

2
x

3
x

4
x

5
x

Figure 7.6. An example of a general stochastic switching circuit.

Let ti+ϵi be the probability that xi is closed, where ϵi is the error part such that |ϵi| ≤ ϵ. Let P (k)

denote the probability that C is closed when we only take into account the errors of x1, x2, ..., xk,
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i.e.,

P (k) = P (t1 + ϵ1, . . . , tk + ϵk, tk+1, . . . , tn),

where P (a1, a2, ..., an) indicates the probability of C if xi is closed with probability ai for all 1 ≤

i ≤ n.

The overall error probability of the circuit C can then be written as

e = P (n) − P (0)

= (P (n) − P (n−1)) + (P (n−1) − P (n−2)) + · · ·+ (P (1) − P (0)).

Now, we prove that |P (k) − P (k−1)| ≤ ϵ for all 1 ≤ k ≤ n

|P (k) − P (k−1)|

= |P (t1 + ϵ1, . . . , tk + ϵk, tk+1, . . . , tn)− P (t1 + ϵ1, . . . , tk−1 + ϵk−1, tk, . . . , tn)|

= |(tk + ϵk)P (t1 + ϵ1, . . . , 1, tk+1, . . . , tn)

+(1− tk − ϵk)P (t1 + ϵ1, . . . , 0, tk+1, . . . , tn)

−tkP (t1 + ϵ1, . . . , tk−1 + ϵk−1, 1, . . . , tn)

−(1− tk)P (t1 + ϵ1, . . . , tk−1 + ϵk−1, 0, . . . , tn)|

= |ϵk[P (t1 + ϵ1, . . . , 1, tk+1, . . . , tn)− P (t1 + ϵ1, . . . , 0, tk+1, . . . , tn)]|

≤ ϵ.

Therefore, we have

e ≤
n∑

k=1

|P (k) − P (k−1)| ≤ nϵ,

as we wanted.

Note that in most of cases, the actual error probability of a circuit is much smaller than nϵ

when n is large. However, nϵ is still achievable in the following case: by placing n pswitches with
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Table 7.1. The expressibility of stochastic switching circuits

S = { 1
q ,

2
q , . . . ,

q−1
q } Can all a

qn be realized? upper bound of circuit size

q is even yes, ssp circuit ⌈log2 q⌉(n− 1) + 1

q is an odd multiple of 3 yes, ssp circuit ⌈log3 q⌉(n− 1) + 1

q is a prime number larger than 3 no, not by sp circuits –

other values of q open problem –

probability p− ϵ in series, where ϵ→ ∞, we can get a circuit whose probability is

(p− ϵ)n ≈ pn − npn−1ϵ.

Without considering the errors, the probability of the circuit is pn, so the overall error is

n · pn−1ϵ.

Choosing p sufficiently close to 1, we can make the error probability of the circuit arbitrarily close

to nϵ.

7.4 Expressibility

In the previous section, we showed that ssp circuits are robust against noise. This property is

important in natural systems and useful in engineering system design, because the local error of a

system should not be amplified. In this section, we consider another property of stochastic switching

circuits, called expressibility. Namely, given a pswitch set S = { 1
q ,

2
q , ...,

q−1
q } for some integer q, the

questions we ask are: What kinds of probabilities can be realized using stochastic switching circuits

(or only ssp circuits)? How many pswitches are sufficient? Wilhelm and Bruck [134] proved that if

q = 2 or q = 3, all rational a
qn , with 0 < a < qn, can be realized by an ssp circuit with at most n

pswitches, which is optimal. They also showed that if q = 4, all rational a
qn , with 0 < a < qn, can

be realized using at most 2n− 1 pswitches. In this section we generalize these results:

1. If q is an even number, all rational a
qn , with 0 < a < qn, can be realized by an ssp circuit with
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at most ⌈log2 q⌉(n− 1) + 1 pswitches (Theorem 7.8).

2. If q is odd and a multiple of 3, all rational a
qn , with 0 < a < qn, can be realized by an ssp

circuit with at most ⌈log3 q⌉(n− 1) + 1 pswitches (Theorem 7.9).

3. However, if q is a prime number greater than 3, there exists at least one rational a
qn , with

0 < a < qn, that cannot be realized using an sp circuit (Theorem 7.12).

Table 7.1 summarizes these results. We see that when q = 2, 3, or 4, our results agree with the

results in [134].

7.4.1 Backward Algorithms

As mentioned in [134], switching circuits may be synthesized using forward algorithms, where circuits

are built by adding pswitches sequentially, or backward algorithms, where circuits are built starting

from the “outermost” pswitch.

1
p

p

x

x
(a) Step 1: We assume that the de-
sired probability is p1.

p
2
p

1
x

p

x

x

x

xx
(b) Step 2: Insert x1 in parallel as
the last pswitch. Now we try to re-
alize p2 such that p2+x1−p2x1 =
p1.

3
p

1
x

2
x

(c) Step 3: Insert x2 in series as
the last pswitch. Now we try to
realize p3 such that p3x2 = p2.

p

x

x

1
x

2
x

3
x

(d) Last step: Replace p3 with
a single pswitch x3.

Figure 7.7. An example of the backward algorithm.

Figure 7.7 gives a simple demonstration of a backward algorithm. Assume that the desired

probability is p1 and we plan to insert three pswitches, namely x1, x2, x3 in backward direction. If
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x1 ≤ p1, then x1 has to be inserted in parallel. If x1 > p1, then x1 has to be inserted in series.

After the insertion, we can try to realize the inner box with probability p2 such that p2 + x1 −

p2x1 = p1. This process is continued recursively until for some m, pm can be realized with a single

pswitch. Generally, in backward algorithms, we use xk to denote the kth pswitch inserted in the

backward direction, and use pk to denote the probability that we want to realize with pswitches

xk, xk+1, xk+2, ...

Backward algorithms have significant advantages over forward algorithms for probability synthe-

sis. In a forward algorithm, if we want to add one pswitch, we have 2|S| choices, since each pswitch

may be added in either series or parallel. But in a backward algorithm, if we want to insert one

pswitch, we have only |S| choices. That is because the insertion (series or parallel) of a pswitch xk

simply depends on the comparison of xk and pk. Therefore, backward algorithms can significantly

reduce the search space, hence are more efficient than forward algorithms. In this chapter, most of

the circuit constructions are based on backward algorithms.

7.4.2 Multiples of 2 or 3

We consider the case that S = {1
q ,

2
q , . . . ,

q−1
q } and q is a multiple of 2 or 3. We show that based on

a backward algorithm, all rational a
qn , with 0 < a < qn, can be realized using a bounded number of

pswitches. Before describing the details, we introduce a characteristic function called d for a given

probability b
qw , that is

d

(
b

qw

)
=

qw−1

gcd(b, qw−1)
.

Note that the value of d is unchanged when both b and qw are multiplied by the same constant.

From the definition of the characteristic function d, we see that for any rational a
qn with 0 < a < qn,

d is a positive integer. In each iteration of the algorithm, we hope to reduce d(pk) such that it

can reach 1 after a certain number of iterations. If d = 1, this means the desired probability can

be realized using a single pswitch and the construction is done. During this process, we keep each

successive probability pk in the form of b
qw , since only this kind of probabilities can be realized with

the pswitch set S. Now, we describe the algorithm as follows.
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Algorithm 7.6 (Backward algorithm to realize p1 = a
qn with 0 < a < qn and pswitch set

S = {1
q ,

2
q , . . . ,

q−1
q }).

1. Set k = 1, starting with an empty circuit.

2. Let

h(xk, pk) =


pk

xk
if xk > pk (series),

pk−xk

1−xk
if xk < pk (parallel).

We find the optimal xk ∈ S that minimizes d(pk+1) with pk+1 = h(xk, pk). If pk+1 = b
qw , then

d(pk+1) = d

(
b

qw

)
=

qw−1

gcd(b, qw−1)
.

3. Insert pswitch xk to the circuit. If xk > pk, the pswitch is inserted in series; otherwise, it is

inserted in parallel. Then we set

pk+1 = h(xk, pk).

4. Let k = k + 1.

5. Repeat steps 2–4 until pk can be realized using a single pswitch. Then insert pk into the circuit.

In algorithm 7.6, the characteristic function d(pk) strictly decreases as k increases, until it reaches

1. Finally, pk can be replaced by a single pswitch and the construction is done. Figure 7.8 gives an

example of a circuit realized by this algorithm. At the beginning, we have p1 = 71
102 , with d(p1) = 10.

Then we add the “best” pswitch to minimize d(p2), where the optimal pswitch is 6
10 . Since

6
10 <

71
100 ,

we insert the pswitch in parallel, making d(p2) = 4. Repeating this process, we have

p1 =
71

102
, p2 =

275

103
, p3 =

55

102
, p4 =

1

10
,
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(d) Step 4 with d(p4) = 1.

Figure 7.8. The procedure to realize 71
100 for a given pswitch set S = { 1

10 ,
2
10 , . . . ,

9
10}.

with corresponding characteristic functions

d(p1) = 10, d(p2) = 4, d(p3) = 2, d(p4) = 1.

In the following theorem, we show that if q is a multiple of 2 or 3, then algorithm 7.6 realizes

any rational a
qn with 0 < a < qn.

Theorem 7.7. Given a pswitch set S = { 1
q ,

2
q , . . . ,

q−1
q }, if q is a multiple of 2 or 3, then algorithm

7.6 realizes any rational a
qn with 0 < a < qn, using an ssp circuit with a finite number of pswitches.

Proof. The characteristic function d(p1) of the initial probability p1 is bounded by qn−1. We only

need to prove that there exists an integer m such that d(pm) = 1, i.e., pm can be realized by a single

pswitch. Hence the desired probability p1 can be realized by an ssp circuit with m pswitches. It is

enough to show that the characteristic function d(pk) decreases as k increases.

First, we consider the case where q is even. We will show that for any pk = b
qw , there exists

x ∈ S such that d(h(x, pk)) < d(pk). See figure 7.9, depending on the values of pk and d(pk), we

have four different cases of inserting a pswitch x such that d(h(x, pk)) < d(pk).

1. If d(pk) is even and pk <
1
2 , let x = 1

2 and insert the pswitch in series.

2. If d(pk) is even and pk >
1
2 , let x = 1

2 and insert the pswitch in parallel.
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Figure 7.9. When q is even, the way to add a pswitch x ∈ S such that d(h(x, pk)) < d(pk).

3. If d(pk) is odd and pk <
1
2 , let x = 2s

q with s = ⌊log2 q⌋ and insert the pswitch in series.

4. If d(pk) is odd and pk >
1
2 , let x = q−2s

q with s = ⌊log2 q⌋ and insert the pswitch in parallel.

By checking all the cases to insert a pswitch, it is straightforward to see that when d(pk) is

even, d(h(x, pk)) ≤ 1
2d(pk), and when d(pk) is odd, d(h(x, pk)) ≤ 2sd(pk)

gcd(q,2sd(pk))
< d(pk). Since xk is

optimal in each step of algorithm 7.6, we have

d(pk+1) = d(h(xk, pk)) ≤ d(h(x, pk)) < d(pk).

Finally, we can conclude that when q is even, there exists an integer m such that d(pm) = 1.

Consequently, p1 can be realized with at most m pswitches.

Similarly, when q is odd and a multiple of 3, if pk = b
qw , we can always insert a pswitch x ∈ S

such that d(h(x, pk)) < d(pk), as follows:

1. If d(pk) mod 3 = 0 and pk ≤ 1
3 , let x = 1

3 , and insert the pswitch in series.

2. If d(pk) mod 3 = 0 and 1
3 < pk ≤ 2

3 with even b, let x = 2
3 , and insert the pswitch in series.

3. If d(pk) mod 3 = 0 and 1
3 < pk ≤ 2

3 with odd b, let x = 2
3 , and insert the pswitch in parallel.

4. If d(pk) mod 3 = 0 and pk >
2
3 , let x = 2

3 , and insert the pswitch in parallel.



227

5. If d(pk) mod 3 ̸= 0 and pk ≤ 1
3 , let x = 3s

q with s = ⌊log3 q⌋, and insert the pswitch in series.

6. If d(pk) mod 3 ̸= 0 and 1
3 < pk ≤ 2

3 with even b, let x = 2·3s
q with s = ⌊log3 q⌋, and insert the

pswitch in series.

7. If d(pk) mod 3 ̸= 0 and 1
3 < pk ≤ 2

3 with odd b, let x = q−2·3s
q with s = ⌊log3 q⌋, and insert

the pswitch in parallel.

8. If d(pk) mod 3 ̸= 0 and pk > 2
3 , let x = q−3s

q with s = ⌊log3 q⌋, and insert the pswitch in

parallel.

Finally, we can conclude that p1 can be realized with a finite number of pswitches when q is odd

and a multiple of 3.

For each value q ∈ {2, 3, 4, 6, 8, 9, 10}, we enumerate all rational numbers with optimal size

n ∈ (3, 4, 5). Here, we say that a desired probability is realized with optimal size if it cannot

be realized with fewer pswitches. As a comparison, we use algorithm 7.6 to realize these rational

numbers again. Figure 7.10 presents the average number of pswitches required using algorithm 7.6

when the optimal size is n. It is shown that when q is a multiple of 2 or 3, algorithm 7.6 can

construct circuits with almost optimal size.

The next theorem gives an upper bound for the size of the circuits when q is even.

Theorem 7.8 (Upper bound of circuit size when q is even). Suppose q is even. Given a pswitch

set S = {1
q ,

2
q , . . . ,

q−1
q }, any rational a

qn with 0 < a < qn can be realized by an ssp circuit, using at

most ⌈log2 q⌉(n− 1) + 1 pswitches.

Proof. In order to achieve this upper bound, we use a modified version of algorithm 7.6. Instead of

inserting the optimal pswitch xk, we insert the pswitch x described in figure 7.9 as the kth pswitch.

The resulting characteristic function has the following properties:

(1) d(pk) decreases as k increases, and when d(pm) = 1 for some m, the procedure stops.

(2) If d(pk) is even, then d(pk+1) is a factor of d(pk)
2 .
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Figure 7.10. For each q, the average number of pswitches used in algorithm 7.6 to realize the rational
probabilities when their optimal size is n.

(3) If d(pk) is odd, then d(pk+1) is a factor of 2sd(pk)
gcd(q,2sd(pk))

.

We define

N = min{k|k ∈ (1, 2, 3, ...), d(pk) = 1},

then N is the number of required pswitches. We only need to prove that N ≤ ⌈log2 q⌉(n − 1) + 1.

Since q is even, we can write q = 2c or q = 2ct, where t > 1 is odd.

Let us first consider the case of q = 2c. At the beginning, d(p1) is a factor of qn−1, so according

to property (2), we can get

N ≤ c(n− 1) + 1 = ⌈log2 q⌉(n− 1) + 1.

In the case of q = 2ct, let us define a set M as

M = {k|k > 0, d(pk) is odd},

and let Mi be the ith smallest element in M . According to properties (2) and (3) and the fact that
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d(p1) is a factor of qn−1, we see that d(pMi) is a factor of qn−i. Therefore, there exits a minimal k,

with k ≤ n, such that d(pMk
) = 1. Then N =Mk.

Based on properties (2) and (3), we also see that

M1 ≤ c(n− 1) + 1,

and

Mi+1 −Mi ≤ s− c.

Therefore,

N ≤
n−1∑
i=1

(Mi+1 −Mi) +M1 ≤ s(n− 1) + 1

= ⌈log2 q⌉(n− 1) + 1.

This completes the proof.

Using the similar methods, we can prove the following theorems as well when q is a multiple of

3 or 6. Note that theorem 7.8 also applies to the case that q is a multiple of 6, but theorem 7.10

provides a tighter upper bound.

Theorem 7.9 (Upper bound of circuit size when q is odd and a multiple of 3). Given a pswitch set

S = { 1
q ,

2
q , . . . ,

q−1
q }, if q is odd and a multiple of 3, then any rational a

qn with 0 < a < qn can be

realized using an ssp circuit with at most ⌈log3 q⌉(n− 1) + 1 pswitches.

Theorem 7.10 (Upper bound of circuit size when q is a multiple of 6). Given a pswitch set S =

{ 1
q ,

2
q , . . . ,

q−1
q }, if q is multiple of 6, all rational a

qn with 0 < a < qn can be realized by an ssp circuit
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with at most N pswitches, where

N ≤



(2s)(n− 1) + 1 (if 6s = q),

(2s+ 1)(n− 1) + 1 (if q
2 ≤ 6s < q),

(2s+ 2)(n− 1) + 1 (if q
3 ≤ 6s < q

2 ),

(2s+ 3)(n− 1) + 1 (if q
6 < 6s ≤ q

3 ).

7.4.3 Prime Number Larger Than 3

We proved that if q is a multiple of 2 or 3, all rational a
qn can be realized with a finite number of

pswitches. We want to know whether this result also holds if q is an arbitrary number greater than

2. Unfortunately, the answer is negative.

Lemma 7.11. Suppose q is a prime number. Given a pswitch set S = {1
q ,

2
q , . . . ,

q−1
q }, if a rational

a
qn cannot be realized by an sp circuit with n pswitches, then it cannot be realized using an sp circuit

with any number of pswitches.

Proof. Assume there exits a rational a
qn which cannot be realized by an sp circuit with n pswitches,

but can be realized with at least l > n pswitches. Further, suppose that this l is minimal for all

rationals with denominator qk. Under these assumptions, we will prove that there exists a rational

a′

qn′ which cannot be realized with n′ pswitches but can be realized with l′ pswitches such that l′ < l.

This conclusion contradicts the assumption that l is minimal.

According to the definition of sp circuits, we know that a
qn can be realized by connecting two

sp circuits C1 and C2 in series or in parallel. Assume C1 consists of l1 pswitches and is closed with

probability b1
ql1

, and C2 consists of l2 pswitches and is closed with probability b2
ql2

, where l1 + l2 = l.

If C1 and C2 are connected in series, we can get

b1
ql1

· b2
ql2

=
a

qn
.

Therefore, b1b2 = aql−n, where b1b2 is a multiple of q. Since q is a prime number, either b1 or
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b2 is a multiple of q. Without loss of generality, assume b1 is a multiple of q, and we write b1 = cq.

Consider the probability c
ql1−1 , which can be realized with C1, using l1 pswitches. Assume that

the same probability can also be realized with another sp circuit C3, using l1 − 1 pswitches. By

connecting C3 and C2 in series, we can realize a
qn with l1 − 1 + l2 = l − 1 pswitches, contradicting

the assumption that a
qn cannot be realized with less than l pswitches. Therefore, we see that c

ql1−1

cannot be realized with l1 − 1 pswitches, but it can be realized with l1 pswitches. Since l1 < l, this

also contradicts our assumption that l is minimal.

If C1 and C2 are connected in parallel, we have

b1
ql1

+
b2
ql2

− b1
ql1

· b2
ql2

=
a

qn
.

Therefore, b1b2 = b1q
l2 + b2q

l1 −aql−n. Using a similar argument as above, we can conclude that

either b1 or b2 is a multiple of q. Then either (1) a
ql

can be realized with less than l pswitches or (2)

l is not optimal, yielding a contradiction. This proves the lemma.

Based on the lemma above, it is easy to get the following theorem.

Theorem 7.12 (When q is a prime number larger than 3). For a prime number q > 3, there exists

an integer a, with 0 < a < qn, such that a
qn cannot be realized using an sp circuit whenever n ≥ 2.

Proof: The conclusion follows lemma 7.11 and the following result in [134]: For any q > 3, no

pswitch set containing all a
q , with 0 < a < q, can realize all Pr(C) =

b
q2 , with 0 < b < q2, using at

most 2 pswitches.

7.5 Probability Approximation

In this section, we consider a general case where given an arbitrary pswitch set, we want to realize a

desired probability. Clearly, not every desired probability pd can be realized without any error using

a finite number of pswitches for a fixed pswitch set S. So the question is whether we can construct

a circuit with at most n pswitches such that it can approximate the desired probability very well.
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Namely, the difference between the probability of the constructed circuit and the desired probability

should be as small as possible.

7.5.1 Greedy Algorithm

Given an arbitrary pswitch set S with |S| ≥ 2, it is not easy to find the optimal circuit (ssp circuit)

with n pswitches which approximates the desired probability pd. As we discussed in the last section,

a backward algorithm provides |S| choices for each successive insertion. To find the optimal circuit,

we may have to search through |S|n different combinations. As |S| or n increases, the number of

combinations will increase dramatically. In order to reduce the search space, we propose a greedy

algorithm: In each step, we insert m pswitches, which are the “best” locally. Normally, m is a very

small constant. Since each step has complexity |S|m, the total number of possible combinations

is reduced to |S|m n
m , which is much smaller than |S|n when |S| ≥ 2 and n is large. Now, we

describe this greedy algorithm briefly. The same notations x1, x2, ... and p1, p2, ... are used, as those

described for the backward algorithms: xk indicates the kth pswitch inserted and pk indicates the

desired probability of the subcircuit constructed by xk, xk+1, ...

Algorithm 7.13 (Greedy algorithm with step-length m).

1. Assume that the desired probability is p1. Set k = 1 and start with an empty circuit.

2. Select the optimal xm = (x1, x2, . . . , xm) ∈ Sm to minimize f(xm, S, pk), which will be specified

later, and this xm is denoted as x∗ = (x∗1, x
∗
2, . . . , x

∗
m).

3. Insert m pswitches x∗1, x
∗
2, . . . , x

∗
m one by one into the circuit in backward direction. During

this process, calculate pk+1, pk+2, ..., pk+m one by one and update k as k +m.

4. Repeat steps 2 and 3 for ⌊ n
m⌋ times.

5. Construct a new circuit with n−⌊ n
m⌋m pswitches such that its probability is closest to pk, then

replace pk with this new circuit.
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So far, according to the backward algorithm described in section 7.4.1, we know how to finish

step 3, including how to insert m pswitches one by one into a circuit in a backward direction, and

how to update pk. The only thing unclear in the procedure above is the expression of f(xm, S, pk).

In order to get a good expression for f(xm, S, pk), we study how errors propagate in a backward

algorithm. Note that in a backward algorithm, we insert pswitches x1, x2, ..., xn one by one: if

xk > pk, then xk is inserted in series; if xk < pk, then xk is inserted in parallel. Now, given a circuit

C with size n constructed using a backward algorithm, we let C(k) denote the subcircuit constructed

by xk1 , xk1+1, ..., xn and call |P (C(k))− pk| as the approximation error of pk, denoted by ek. In the

following theorem, we will show how ek1 affects that of ek2 for k2 < k1 after inserting pswitches

xk2 , ..., xk1−1.

Lemma 7.14. In a backward algorithm, let pk denote the desired probability of the subcircuit C(k)

constructed by xk, xk+1, ..., xn, and let ek denote the approximation error of pk. Then for any

k2 < k1 ≤ n, we have

ek2 =

(
k2−1∏
i=k1

r(xi)

)
ek1 ,

where

r(xi) =


xi if xi is inserted in series,

1− xi if xi is inserted in parallel.

Proof. We only need to prove that for any k less than the circuit size, the following result holds:

ek = r(xk)ek+1.

When xk = pk, we have ek = ek+1 = 0, so the result is trivial.

When xk > pk, then xk is inserted in series. In this case, we have

pk+1xk = pk,
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and

P (C(k+1))xk = P (C(k)).

As a result, the approximation error of pk is

ek = |P (C(k))− pk|

= |P (C(k+1))xk − pk+1xk|

= xkek+1.

When xk < pk, then xk is inserted in parallel. In this case, we have

pk+1 + xk − pk+1xk = pk,

and

P (C(k+1)) + xk − P (C(k+1))xk = P (C(k)).

As a result, the approximation error of pk is

ek = |P (C(k))− pk|

= |P (C(k+1)) + xk − P (C(k+1))xk − (pk+1 + xk − pk+1xk)|

= (1− xk)ek+1.

This completes the proof.

In each step of the greedy algorithm, our goal is to minimize ek, the approximation error of pk.

According to the lemma above, we know that

ek =

(
k+m−1∏

i=k

r(xi)

)
ek+m,

where the term ek+m is unknown. But we can minimize
∏k+m−1

i=k r(xi) such that ek is as small as



235

possible.

Based on the above discussion, we express f(x, S, pk) as

f(x, S, pk) =
m∏
i=1

r(xi),

with

r(xi) =


xi if xi is inserted in series,

1− xi if xi is inserted in parallel.

In the rest of this section, based on this expression for f(x, S, pk), we show that the greedy algorithm

has good performance in reducing the approximation error of pd.

7.5.2 Approximation Error when |S| = 1

When S has only one element, say S = {p}, the greedy algorithm above can become really simple.

If pk > pk, then we insert one pswitch in parallel; otherwise, we insert it in series. Figure 7.11

demonstrates how to approximate 1
2 using four pswitches with the same probability 1

3 . Initially,

p1 = 1
2 >

1
3 , so we insert 1

3 in parallel. As a result, p2 =
1
2−

1
3

1− 1
3

= 1
4 <

1
3 , so we insert the second

pswitch in series. The final probability of the circuit in figure 7.11 is 37
81 , which is close to 1

2 .

1/3

1/3

1/3

1/3

Figure 7.11. This circuit approximates 1
2 using 4 pswitches of probability 1

3 .

Note that in the greedy algorithm, when p is close to 1
2 , the probability of the resulting circuit

will quickly converge to the desired probability. But when p is close to 0 or 1, the convergence speed

is slower. In the following theorem, we provide an upper bound for the approximation error of the

desired probability when |S| = 1.
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Theorem 7.15 (Approximation error when |S| = 1). Given n pswitches, each with probability p,

and a desired probability pd, the greedy algorithm (algorithm 7.13) with m = 1 generates an ssp

circuit C with approximation error

e = |pd − P (C)| ≤ (max{p, 1− p})n

2
,

where equality is achieved when

pd = fn(p) =


1− (max{p,1−p})n

2 if p < 1
2 ,

(max{p,1−p})n
2 if p > 1

2 .

Proof. In the following proof, we only consider the case when p < 1
2 . From duality, the result will

also hold for p > 1
2 .

We induct on the number of pswitches. For one pswitch, the result is trivial: the worst-case

desired probability is p+ 1−p
2 , with approximation error 1−p

2 . Now assume the result of the theorem

holds for n pswitches, we want to prove that it also holds for n+ 1 pswitches.

Let p1 = pd be approximated with n+ 1 pswitches using algorithm 7.13. At the beginning, one

pswitch is inserted in series if pd < p, or in parallel if pd > p. According to lemma 7.14, we know

that the approximation error of p1 is

e1 = r(p)e2,

where r(p) ≤ max{p, 1− p}, and e2 is the approximation error of p2. According to our assumption,

we know that

e2 ≤ (max{p, 1− p})n

2
.

So we have

e1 ≤ (max{p, 1− p})n+1

2
.

Note that equality is achieved if r(p) = max{p, 1 − p} and e2 = (max{p,1−p})n
2 . In this case,
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p2 = fn(p) ≥ 1
2 > p and the last pswitch is inserted in parallel. As a result, we have

fn+1(p) = fn(p) + p− fn(p)p = 1− (1− p)n+1

2

as described in the theorem. This completes the proof.

If we let p = 1
2 , the theorem shows that for any desired probability pd and any integer n, we

can find an ssp circuit with n pswitches to approximate pd, such that the approximation error is at

most 1
2qn . This agrees with the result in [134]: Given a pswitch set S = { 1

2}, all rational
a
2n , with

0 < a < qn, can be realized using at most n pswitches.

7.5.3 Approximation Error when |S| > 1

In this subsection, we show that using the greedy algorithm (Algorithm 7.13) with small m, such as

1 or 2, we can construct a circuit to obtain a good approximation of any desired probability. Here,

given a pswitch set S = {s1, s2, ..., s|S|}, we define its maximal interval ∆ as

∆ =
|S|
max
i=0

|si+1 − si|,

where we let s0 = 0 and s|S|+1 = 1. In the following theorems, we will see that the approximation

error of the greedy algorithm depends on ∆, and can decrease rapidly as n increases.

Let us first consider the case m = 1:

Theorem 7.16 (Approximation error form = 1). Assume we have the pswitch set S = {s1, s2, . . . , s|S|}

with maximal interval ∆. For any desired probability pd and any integer n, algorithm 7.13 with m = 1

yields an ssp circuit with at most n pswitches, such that the approximation error e satisfies

e ≤ ∆

2

(
(3 + ∆)∆

2

)⌈n
2 ⌉−1

.

Proof. In the following proof, we only consider the case that n is odd. If the result holds for odd n,



238

then the result will also hold for even n. In order to simplify the proof, we assume that s0 = 0 and

s|S|+1 = 1 also belong to S; i.e., there are pswitches with probability 0 or 1. This assumption will

not affect our conclusion.

We write n = 2k+1 and induction on k. When k = 0, the result is trivial, since the approximation

error e of one pswitch satisfies e ≤ ∆
2 . Assume the result holds for 2k + 1 pswitches. We want to

show that the result also holds for 2(k + 1) + 1 pswitches.

When m = 1 in the greedy algorithm, if we want to approximate p1 = pd with 2(k + 1) + 1

pswitches, we should insert a pswitch with probability argminx f(x, S, p1) in the first step.

Let xupper = min{x ∈ S|x > p1} and xlower = max{x ∈ S|x < p1}. Since 0 ∈ S and 1 ∈ S, we

know that xupper and xlower exist.

(1) We first consider the case that 1 − xlower ≤ xupper. In this case, we insert xlower in parallel

as the first pswitch. Therefore, we can get

p2 =
p1 − xlower

1− xlower
.

According to the definition of ∆, there exists a pswitch x ∈ S such that p2 ≤ x < p2+∆. Assume

in the algorithm, we insert pswitch x∗ as the second one. Since x∗ is locally optimal, we have

f(x∗, S, p2) ≤ f(x, S, p2) < p2 +∆.

Assume the approximation error of p3 is e3. According to lemma 7.14, we know that the approx-



239

imation error of p1 = pd is

e1 ≤ (p2 +∆)(1− xlower)e3

= (
p1 − xlower

1− xlower
+∆)(1− xlower)e3

= ((p1 − xlower) + ∆(1− xlower))e3

≤ ∆(2− xlower)e3

≤ ∆(3 + xupper − xlower)

2
e3

≤ ∆(3 +∆)

2
e3.

According to our assumption,

e3 ≤ ∆

2
(
(3 + ∆)∆

2
)k.

So

e1 ≤ ∆

2
(
(3 + ∆)∆

2
)k+1.

This completes the induction.

(2) When 1 − xlower > xupper, we insert xupper in series as the first pswitch. Using a similar

argument as above, we can also prove that

e1 ≤ ∆

2
(
(3 + ∆)∆

2
)k+1.

This completes the proof.

In the next theorem, we show that if we increase m from 1 to 2, the upper bound of the

approximation error can be reduced furthermore.

Theorem 7.17 (Approximation error form = 2). Assume we have the pswitch set S = {s1, s2, . . . , s|S|}

with maximal interval ∆. For any desired probability pd and any integer n, algorithm 7.13 with m = 2
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yields an ssp circuit with at most n pswitches, such that the approximation error e satisfies

e ≤ ∆

2

(
(2 + ∆)∆

2

)⌈n
2 ⌉−1

.

Proof. As in the proof for m = 1, we only consider the case when n is odd, so n = 2k + 1. In the

proof, we use the same notations as those in the case of m = 1, and assume S includes 0 and 1.

Now we induct on k. When k = 0, the result of the theorem is trivial. Assume the result

holds for 2k + 1 pswitches; we want to prove that it also holds for 2(k + 1) + 1 pswitches. Let

xupper = min{x ∈ S|x > p1} and xlower = max{x ∈ S|x < p1}, we will consider two different cases

as follows.

(1) If p1 ≤ xupper+xlower+∆(xupper+xlower−1)
2 , we consider the following way to insert two pswitches:

First insert x1 = xlower in parallel, and we get

p2 =
p1 − xlower

1− xlower
.

There exists a pswitch x2 ∈ S such that p2 ≤ x2 < p2+∆. Then we insert x2 in series as the second

pswitch. In this case, letting x = (x1, x2), we have

f(x, S, p1) ≤ (p2 +∆)(1− xlower).

Let x∗ = (x∗1, x
∗
2) be the two pswitches inserted by the algorithm with m = 2, then the approxi-

mation error of p1 = pd is

e1 = f(x∗, S, p1)e3 ≤ f(x, S, p1)e3

≤ (p2 +∆)(1− xlower)e3

=

(
p1 − xlower

1− xlower
+∆

)
(1− xlower)e3.
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Since p1 ≤ xupper+xlower+∆(xupper+xlower−1)
2 , we have

e1 ≤ (xupper − xlower)(1 + ∆) +∆

2
e3

≤ ∆(2 +∆)

2
e3.

According to our assumption, we have e3 ≤ ∆
2

(
(2+∆)∆

2

)k
, so

e1 ≤ ∆

2

(
(2 + ∆)∆

2

)k+1

.

This completes the induction.

(2) If p1 >
xupper+xlower+∆(xupper+xlower−1)

2 , we consider the following way to insert two pswitches:

First insert x1 = xupper in series, and we get

p2 =
p1

xupper
.

There exists a pswitch x2 ∈ S such that p2 − ∆ ≤ x2 < p2. Then we insert x2 in parallel as the

second pswitch. In this case, letting x = (x1, x2), we have

f(x, S, p1) ≤ (1− (p2 −∆))xupper.

Let x∗ = (x∗1, x
∗
2) be the two pswitches inserted by the algorithm with m = 2, then the approxi-

mation error of p1 = pd is

e1 = f(x∗, S, p1)e3

≤ f(x, S, p1)e3

≤ (1− (p2 −∆))xuppere3

=

(
xupper − p1
xupper

+∆

)
xuppere3.
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Since p1 >
xupper+xlower+∆(xupper+xlower−1)

2 , we have

e1 ≤ (xupper − xlower)(1 + ∆) +∆

2
e3

≤ ∆(2 +∆)

2
e3.

Then we have the same result as the first case.

According to the two theorems above, when we let ∆ → 0, the approximation error for m = 1

is upper bounded by ∆
2

(
3∆
2

)k
where k = ⌈n

2 ⌉ − 1; and the approximation error for m = 2 is

upper bounded by ∆
2 · ∆k. It shows that the greedy algorithm has good performance in terms of

approximation error, even when m is very small. Comparing with the case of m = 1, if we choose

m = 2, the probability of the constructed circuit can converge to the desired probability faster as

the circuit size n increases.

In the following theorem, we consider the special case S = { 1
q ,

2
q , . . . ,

q−1
q } for some integer q. In

this case, we obtain a new upper bound for the approximation error when using the greedy algorithm

with m = 2. This bound is slightly tighter than the one obtained in theorem 7.17.

Theorem 7.18. Suppose S = {1
q ,

2
q , . . . ,

q−1
q } for some integer q, with ∆ = 1

q . For any desired

probability pd and any integer n, algorithm 7.13 with m = 2 constructs an ssp circuit with at most

n pswitches such that its approximation error

e ≤ ∆

2
(∆(1−∆))

⌈n
2 ⌉−1

.

Proof. The proof is similar to the proof of theorem 7.17, so we simply provide a sketch. Assume

that in each step, we insert two pswitches in the following way (see figure 7.12):

(1) If pk ∈ [0, 1q ], we insert a pswitch x1 = 1
q in series, and then insert a pswitch x2 = 1

q in series

or in parallel. In this case,

f

((
1

q
,
1

q

)
, S, pk

)
≤ 1

q

(
1− 1

q

)
= ∆(1−∆).
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p

(a) pk ∈ [0, 1
q
].

q 1-

u 1+

p

1

q

q 1-

u

1

p

1+kp

p

(b) pk ∈ [ q−1
q

, 1].

q

u

q

1

2+kp

(c) pk ∈ [u
q
, u
q
+ 1

q
− u2

q
] for some

u = {1, . . . , q − 1}.

q

q 1-

q

u 1+

u

q

1

p
2+kp

(d) pk ∈ [u
q
+ 1

q
− u2

q
, u
q
+ 1

q
] for

some u = {0, 1, . . . , q − 2}.

Figure 7.12. Inserting pswitches for different values of pk.

(2) If pk ∈ [ q−1
q , 1], we insert a pswitch x1 = q−1

q in parallel, and then insert a pswitch x2 = q−1
q

in series or in parallel. In this case,

f

((
1

q
,
1

q

)
, S, pk

)
≤ 1

q

(
1− 1

q

)
= ∆(1−∆).

(3) If pk ∈ [uq ,
u
q + 1

q − u2

q ] for some u = {1, . . . , q − 1}, we insert a pswitch x1 = u
q in parallel,

and then insert a pswitch x2 = 1
q in series. In this case,

f

((
u

q
,
1

q

)
, S, pk

)
≤
(
1− u

q

)
1

q
≤ ∆(1−∆).

(4) If pk ∈ [uq + 1
q − u2

q ,
u
q + 1

q ] for some u = {0, 1, . . . , q − 2}, we insert a pswitch x1 = u+1
q in

series, and then insert a pswitch x2 = q−1
q in parallel. In this case,

f

((
u+ 1

q
,
q − 1

q

)
, S, pk

)
≤ u+ 1

q

(
1− q − 1

q

)
≤ ∆(1−∆).

Based on the above analysis, we know that for any pk ∈ (0, 1), we can always find x = (x1, x2)
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such that

f((x1, x2), S, pk)) ≤ ∆(1−∆).

Hence, the result of the theorem can be proved by induction.

5/1 5/1

5/1

5/1

5/2

Figure 7.13. The circuit approximates 3
7 with 5 pswitches from the pswitch set S = { 1

5 ,
2
5 , . . . ,

4
5}.

Figure 7.13 shows an example for demonstration. Assume S = { 1
5 ,

2
5 ,

3
5 ,

4
5}, and suppose we want

to realize 3
7 using five pswitches. Using the greedy algorithm with m = 2, we can get the circuit in

figure 7.13, whose probability is 0.4278, and approximation error is

e =

∣∣∣∣37 − 0.4278

∣∣∣∣ = 7.3× 10−4,

which is very small.

7.6 Conclusion

In this chapter, we have studied the robustness and synthesis of stochastic switching circuits. We

have shown that ssp circuits are robust against small error perturbations, while general sp circuits are

not. As a result, we focused on constructing ssp circuits to synthesize or approximate probabilities.

We generalized the results in [134] and proved that when q is a multiple of 2 or 3, all rational

fractions a
qn can be realized using ssp circuits when the pswitch set S = {1

q ,
2
q , . . . ,

q−1
q }. However,

this property does not hold when q is a prime number greater than 3. For a more general case of an

arbitrary pswitch set, we proposed a greedy algorithm to construct ssp circuits. This method can

approximate any desired probability with low circuit complexity and small errors.
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Many open problems remain concerning probability synthesis in stochastic switching circuits.

For instance, if q is neither a prime number nor a multiple of 2 or 3, can we realize all rationals a
qn

using ssp circuits with the pswitch set S = { 1
q ,

2
q , ...,

q−1
q }? Can we combine probability synthesis

and probabilistic computing? Is it possible to design integrated systems with distributed and mixed

storage and computing elements?
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Chapter 8

Synthesis of Stochastic Flow
Networks

This chapter designs optimal-sized stochastic flow networks for “synthesizing” target distri-

butions. It shows that when each splitter (basic probabilistic element) has probability 1/2,

an arbitrary rational probability a
b with a ≤ b ≤ 2n can be realized by a stochastic flow

network of size n, and its size is optimal.1

8.1 Introduction

There are a few works that considered the problem of probability transformation from a synthetic

perspective, namely, designing a physical system for “synthesizing” target distributions, by con-

necting certain probabilistic elements. Such probabilistic elements can be electrical ones based on

internal thermal noise or molecular ones based on inherent randomness in chemical reactions. In this

scenario, the size of the construction becomes a central issue. Gill [44] [45] discussed the problem of

generating rational probabilities using a sequential state machine. Sheng [107] considered applying

threshold logic elements as a discrete probability transformer. Wilhelm and Bruck [134] proposed

a procedure for synthesizing stochastic relay circuits to realize desired discrete probabilities. It was

further discussed and analyzed in chapter 7 of this thesis. Qian et al. [92] studied combinational

logic for transforming a set of given probabilities into target probabilities. Motivated by stochastic

1 Some of the results presented in this chapter have been previously published in [144].
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computation based on chemical reaction networks [108], in this chapter we study stochastic flow

networks. A stochastic flow network is a directed graph with incoming edges (inputs) and outgo-

ing edges (outputs); tokens enter through the input edges, travel stochastically in the network and

can exit the network through the output edges. Each node in the network is a splitter, namely, a

token can enter a node through an incoming edge and exit on one of the output edges according to

a predefined probability distribution. We address the following synthesis question: Given a finite

set of possible splitters and an arbitrary rational probability distribution, design an optimal-sized

stochastic flow network, such that every token that enters the input edge will exit the outputs with

the prescribed probability distribution.

Figure 8.1. A stochastic flow network that consists of three p-splitters and generates probability 1
2 .

While stochastic flow networks can be easily implemented by chemical reaction networks, they

demonstrate strong powers in expressing an arbitrary rational target distribution, stronger than any

other synthetic stochastic systems described above. Figure 8.1 depicts von Neumann’s algorithm

in the language a stochastic flow network that consists of three p-splitters for any p and generates

probability 1
2 . Here, a p-splitter indicates a splitter with two outgoing edges with probabilities p

and (1 − p). In this construction, we have two outputs {β1, β2} = {0, 1} (corresponding to the

labels 0 and 1, respectively). For each incoming token, it has the same probability pq to reach either

output 0 or output 1 directly, and it has probability 1 − 2pq to come back to the starting point.

Eventually, the probability for the token to reach each of the outputs is 1
2 . In general, the outputs

of a stochastic flow network have labels denoted by {β1, β2, ..., βm}. A token will reach an output

βk (1 ≤ k ≤ m) with probability qk, and we call qk the probability of βk and call {q1, q2, ..., qm} the
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output probability distribution of the network, where
∑m

k=1 qk = 1.

In this chapter we assume, without loss of generality, that the probability of each splitter is 1
2

( 12 -splitters can be implemented using three p-splitters for any p). Our goal is to realize the target

probabilities or distributions by constructing a network of minimal size. In addition, we study the

expected latency, namely the expected number of splitters a token need to pass before reaching the

output (or we call it the expected operating time).

The main contributions of the chapter are

1. General optimal construction: For any desired rational probability, an optimal-sized construc-

tion of stochastic flow network is provided.

2. The power of feedback: We show that with feedback (loops), stochastic flow networks can

generate much more probabilities than those without feedback.

3. Constructions with well-bounded expected latency: Two constructions with a few more splitters

than the optimal-sized one are given, such that their expected latencies are well bounded by

constants.

4. Constructions for arbitrary rational distributions: We generalize our constructions and results

to arbitrary rational probability distributions {q1, q2, ..., qm}.

The remainder of this chapter is organized as follows. In section 8.2 we introduce some pre-

liminaries including Knuth and Yao’s scheme and a few mathematical tools for calculating the

distribution of a given stochastic flow network. Section 8.3 introduces an optimal-sized construction

of stochastic flow networks for synthesizing an arbitrary rational probability and it demonstrates

that feedback significantly enhances the expressibility of stochastic flow networks. Section 8.4 an-

alyzes the expected latency of the optimal-sized construction. Section 8.5 gives two constructions

with constant-bounded expected latencies, called size-relaxed construction and latency-oriented con-

struction. Section 8.6 presents the generalizations of our results to arbitrary rational probability

distributions. The concluding remarks and the comparison of different stochastic systems are given

in section 8.7.
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8.2 Preliminaries

In this section, we introduce some preliminaries, including Knuth and Yao’s scheme for simulating

an arbitrary distribution from a biased coin, and how using absorbing Markov chains or Mason’

Rule to calculate the output distribution of a given stochastic flow network.

8.2.1 Knuth and Yao’s Scheme

In 1976, Knuth and Yao proposed a simple procedure for simulating an arbitrary distribution from

an unbiased coin (the probability of H and T is 1
2 ) [71]. They introduced a concept called generating

tree for representing the algorithm [27]. The leaves of the tree are marked by the output symbols,

and the path from the root node to the leaves indicates the sequences of bits generated by the

unbiased coin. Starting from the root node, the scheme selects edges to follow based on the coin

tosses until it reaches one of the leaves. Then it outputs the symbol marked on that leaf.

In general, we assume that the target distribution is {p1, p2, ..., pm}. Since all the leaves of the

tree have probabilities of the form 2−k (if the depth of the leaf is k), we split each probability pi

into atoms of this form. Specifically, let the binary expansion of the probability pi be

pi =
∑
j≥1

p
(j)
i ,

Figure 8.2. The generating tree to generate a ( 23 ,
1
3 ) distribution.
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where p
(j)
i = 2−j or 0. Then for each probability pi, we get a group of atoms {p(j)i : j ≥ 1}. For

these atoms, we allot them to leaves with label βi on the tree. Hence, the probability of generating

βi is pi. We can see that the depths of all the atoms satisfy the Kraft inequality [27], i.e.

m∑
i=1

∑
j≥1

p
(j)
i = 1.

So we can always construct such a tree with all the atoms allotted. Knuth and Yao showed that

the expected number of fair bits required by the procedure (i.e., the expected depth of the tree) to

generate a random variable X with distribution {p1, p2, ..., pm} lies between H(X) and H(X) + 2

where H(X) is the entropy of the target distribution.

Figure 8.2 depicts a generating tree that generates a distribution { 2
3 ,

1
3}, where the atoms for 2

3

are {1
2 ,

1
8 ,

1
32 , ...}, and the atoms for 1

3 are { 1
4 ,

1
16 ,

1
64 , ...}. We see that the construction of generating

trees is, in some sense, a special case of stochastic flow networks. If we consider each node in the

generating tree as a splitter, then each token that enters the tree from the root node will reach the

outputs with the target distribution. While Knuth and Yao’s scheme aims to minimize the expected

depth of the tree (or in our framework, we call it the expected latency of the network), our goal is

to optimize the size of the construction, i.e., the number of nodes in the network.

8.2.2 Absorbing Markov Chain

Let us consider a stochastic flow network with n splitters and m outputs, in which each splitter is

associated with a state number in {1, 2, ..., n} and each output is associated with a state number in

{n + 1, n + 2, ..., n +m}. When a token reaches splitter i with 1 ≤ i ≤ n, we say that the current

state of this network is i. When it reaches output k with 1 ≤ k ≤ m, we say that the current state

of this network is n+ k. Note that the current state of the network only depends on the last state,

and when the token reach one output it will stay there forever. So we can describe token flows in

this network using an absorbing Markov chain. If the current state of the network is i, then the

probability of reaching state j at the next instant of time is given by pij . Here, pij = pH (pij = pT )
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if and only if state i and state j is connected by an edge H (T ).

Clearly, the network with n splitters and m outputs with different labels can be described by

an absorbing Markov chain, where the first n states are transient states and the last m states are

absorbing states. And we have

∑n+m
j=1 pij = 1 i = 1, 2, ..., n+m,

pij = 0 ∀i > n and i ̸= j,

pii = 1 ∀i > n.

The transition matrix of this Markov chain is given by

P =

n m

n

m

 Q R

0 I

 ,

where Q is an n× n matrix, R is an n×m matrix, 0 is an m× n zeros matrix and I is an m×m

identity matrix.

Let Bij be the probability for an absorbing Markov chain reaching the state j + n if it starts in

the transient state i. Then B is an n×m matrix, and

B = (I −Q)−1R.

Assume this Markov chain starts from state 1 and let Sj be the probability for it reaching the

absorbing state j + n. Then S is the distribution of the network

S = [1, 0, ..., 0]B = e1(I −Q)−1R.

Given a stochastic flow network, we can use the formula above to calculate its probability dis-

tribution. For example, the transition matrix of the network in figure 8.3 is
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Figure 8.3. The stochastic flow network to generate a ( 23 ,
1
3 ) distribution.

P =



0 1
2

1
2 0

1
2 0 0 1

2

0 0 1 0

0 0 0 1


,

from which we can obtain the probability distribution

S = e1(I −Q)−1R =

(
2
3

1
3

)
.

8.2.3 Mason’s Rule

Mason’s gain rule is a method used in control theory to find the transfer function of a given control

system. It can be applied to any signal flow graph. Generally, we describe it as follows (see more

details about Mason’s rule in [120]):

Let H(z) denote the transfer function of a signal flow graph. Define the following notations:

1. ∆(z) = determinant of the graph.

2. L = number of forward paths, with Pk(z), 1 ≤ k ≤ L denoting the forward path gains.

3. ∆k(z) = determinant of the graph that remains after deleting the kth forward path Pk(z).

To calculate the determinant of a graph ∆(z), we list all the loops in the graph and their gains
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denoted by Li, all pairs of nontouching loops LiLj , all pairwise nontouching loops LiLjLk, and so

forth. Then

∆(z) = 1−
∑

i:loops

Li +
∑

(i,j):nontouching

LiLj − ...

The transfer function is

H(z) =

∑L
k=1 Pk(z)∆k(z)

∆(z)
,

called Mason’s rule.

Let us treat a stochastic flow network as a control system with input U(z) = 1. Applying Mason’s

rule to this system, we can get the probability that one token reaches output k with 1 ≤ k ≤ m. Also

having the network in figure 8.3 as an example: in this network, we want to calculate the probability

for a token to reach output 1 (for short, we call it the probability of 1). Since there is only one loop

with gain = 1
4 and only one forward path with forward gain 1

4 , we can obtain that the probability

of 1 is

P =
1
4

1− 1
4

=
1

3
,

which accords with the result of absorbing Markov chains. In fact, it can be proved that the Mason’s

rule and the matrix form based on absorbing Markov chains are equivalent.

8.3 Optimal-Sized Construction and Feedback

In this section we present an optimal-sized construction of stochastic flow networks. It consists of

splitters with probability 1/2 and computes an arbitrary rational probability. We demonstrate that

feedback (loops) in stochastic flow networks significantly enhance their expressibility. To see that,

let us first study stochastic flow networks without loops, and then those with loops.

8.3.1 Loop-Free Networks

Here, we want to study the expressive power of loop-free networks. We say that there are no loops in

a network if no tokens can pass any position in the network more than once. For loop-free networks,
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Figure 8.4. Tree structure used to realize probability x
2n for an integer x(0 ≤ x ≤ 2n) .

we have the following theorem:

Theorem 8.1. For a loop-free network with n 1
2 -splitters, any probability x

2n with integer x(0 ≤ x ≤

2n) can be realized, and only probabilities x
2n with integer x(0 ≤ x ≤ 2n) can be realized.

Proof. (a) In order to prove that all probability x
2n with integer x(0 ≤ x ≤ 2n) can be realized, we

only need to provide the constructions of the networks.

1. Construct a tree, as shown in figure 8.4. In this tree structure, each token will reach Ai(1 ≤

i ≤ n) with probability 2−i, and reach An+1 with probability 2−n.

2. Let x
2n =

∑n
i=1 γi2

−i, where γi = 0 or 1. For each j with 1 ≤ j ≤ n, γj = 1, we connect

Aj to output 0; otherwise, we connect Aj to output 1. Then we connect An+1 to output 1.

Eventually, the probability for a token to reach output 0 is

P =
n∑

j=1

γn−j

2j
=

n−1∑
i=0

γi
2n−i

=
x

2n
.

Using the procedure above, we can construct a network such that its probability is x
2n . Actually, it

is a special case of Knuth and Yao’s construction [71].

(b) Now, we prove that only probability x
2n with integer x(0 ≤ x ≤ 2n) can be realized. If this
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is true, then x
2n with odd x cannot be realized with less than n splitters. It means that in the

construction above, the network size n is optimal.

According to Mason’s rule, for a network without loops, the probability for a token reaching one

output is

P =
∑
k

Pk,

where Pk is the path gain of a forward path from the root to the output. Given n splitters, the

length of each forward path should be at most n. Otherwise, there must be a loop along this forward

path (have to pass the same splitter for at least two times). For each k, Pk can be written as xk

2n for

some xk. As a result, we can get that P can be written as x
2n for some x.

8.3.2 Networks with Loops

We showed that stochastic flow networks without loops can only realize binary probabilities. Here, we

show that feedback (loops) plays an important rule in enhancing their expressibility. For example,

with feedback, we can realize probability 2
3 with only two splitters, as shown in figure 8.3. But

without loops, it is impossible (or requires an infinite number of splitters) to realize 2
3 . To study the

property of stochastic flow networks with loops, we first give the following lemma, whose proof will

be given in next subsection.

Lemma 8.2. Given Q an n×n matrix with each entry in {0, 12 , 1}, such that sum of each row is at

most 1, then we have 0 ≤ det(I−Q) ≤ 1, where I is an identity matrix and det(·) is the determinant

of a matrix.

For any desired rational probability a
b with integers 0 ≤ a ≤ b ≤ 2n, we have the following

theorem:

Theorem 8.3. For a network with n 1
2 -splitters, any rational probability a

b with integers 0 ≤ a ≤

b ≤ 2n can be realized, and only rational probabilities a
b with integers 0 ≤ a ≤ b ≤ 2n can be realized.
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Proof. (a) We prove that all rational probability a
b with integers 0 ≤ a ≤ b ≤ 2n can be realized.

When b = 2n, the problem becomes trivial due to the result of theorem 8.1. In the following proof,

without loss of generality (w.l.o.g), we only consider the case in which 2n−1 < b < 2n for some n.

We first show that all probability distributions { x
2n ,

y
2n ,

z
2n } with integers x, y, z such that (x +

y + z = 2n) can be realized with n splitters. Now let us construct the network iteratively.

When n = 1, by enumerating all the possible connections, we can verify that all the following

probability distributions can be realized:

{0, 0, 1}, {0, 1, 0}, {1, 0, 0}, {0, 1
2
,
1

2
}, {1

2
, 0,

1

2
}, {1

2
,
1

2
, 0}.

So all the probability distributions {x
2 ,

y
2 ,

z
2} with integers x, y, z such that (x + y + z = 2) can be

realized.

Assume that all the probability distribution { x
2k
, y
2k
, z
2k
} with integers x, y, z s.t. (x+y+z = 2k)

can be realized by a network with k splitters, then we show that any desired probability distribution

{ x
2k+1 ,

y
2k+1 ,

z
2k+1 } s.t. x+y+z = 2k+1 can be realized with one more splitter. Since x+y+z = 2k+1,

at least one of x, y, z is even. W.l.o.g, we let x be even. Then there are two cases to consider: either

both y and z are even, or both y and z are odd.

When both y and z are even, the problem is trivial since the desired probability distribution can

be written as {x/2
2k
, y/2

2k
, z/2

2k
}, which can be realized by a network with k splitters.

When both y and z are odd, w.l.o.g, we assume that z ≤ y. In this case, we construct a network

to realize probability distribution {x/2
2k
, (y−z)/2

2k
, z
2k
} with k splitters. By connecting the last output

with probability z
2k

to an additional splitter, we can get a new distribution {x/2
2k
, (y−z)/2

2k
, z
2k+1 ,

z
2k+1 }.

If we consider the second and the third output as a single output, then we can get a new network

in figure 8.5(a), whose probability distribution is { x
2k+1 ,

y
2k+1 ,

z
2k+1 }.

Hence, for any probability distribution { x
2n ,

y
2n ,

z
2n } with x+y+z = 2n, we can always construct

a network with n splitters to realize it.

Now, in order to realize probability a
b with 2n−1 < b < 2n for some n, we can construct a network
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(a) The network to realize { x
2k+1 ,

y
2k+1 ,

z
2k+1 } it-

eratively.

(b) The network to realize {a
b
, 1− a

b
}.

Figure 8.5. The network to realize {a
b , 1−

a
b } with feedback.

with probability distribution { a
2n ,

b−a
2n ,

2n−b
2n } with n splitters and connect the last output (output

2) to the starting point of the network, as shown in figure 8.5(b). Using the method of absorbing

Markov chains, we can obtain that the probability for a token to reach output 0 is a
b . A simple

understanding for this result is that: (1) the ratio of the probabilities for a token to reach the first

output and the second output is a
2n : b−a

2n that equals a : (b−a) (2) the sum of these two probabilities

is 1, since the tokens will finally reach one of the two outputs.

(b) Now we prove that with n splitters, only rational probability a
b with integers 0 ≤ a ≤ b ≤ 2n

can be realized. For any flow network with n splitters, it can be described as an absorbing Markov
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chain with n transient states and 2 absorbing states, whose transition matrix P can be written as

P =



p11 . . . p1n p1(n+1) p1(n+2)

...
. . .

...
...

...

pn1 . . . pnn pn(n+1) pn(n+2)

0 . . . 0 1 0

0 . . . 0 0 1


,

where each row consists of two 1
2 entries and n zeros.

Let

Q =


p11 . . . p1n

...
. . .

...

pn1 . . . pnn

 , R =


p1(n+1) p1(n+2)

...
...

pn(n+1) pn(n+2)

 ,

then the probability distribution of the network can be written as

e1(I −Q)−1R.

In order to prove the result in the theorem, we only need to prove that (I−Q)−1R can be written

as 1
bA with b ≤ 2n, where A is an integer matrix (all the entries in A are integers).

Let K = I −Q, we know that K is invertible if and only det(K) ̸= 0. In this case, we have

(K−1)ij =
Kji

det(K)
,

where Kji is defined as the determinant of the square matrix of order (n− 1) obtained from K by

removing the ith row and the jth column multiplied by (−1)i+j .

Since each entry of K is chosen from {0, 12 , 1}, Kji can be written as
kji

2n−1 for some integer kji and

det(K) can be written as b
2n for some integer b. According to lemma 8.2, we have 0 ≤ det(K) ≤ 1,

which leads us to 0 < b ≤ 2n (note that det(K) ̸= 0).
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Then, we have that

K−1 =
1

DEP (K)



K11 K21 . . . Kn1

K12 K22 . . . Kn2

...
...

. . .
...

K1n K2n . . . Knn



=
2

b



k11 k21 . . . kn1

k12 k22 . . . kn2

...
...

. . .
...

k1n k2n . . . knn


.

Since each entry of R is also in {0, 12 , 1}, we know that

2R =



r11 r12

r21 r22

...
...

rn1 rn2


is an integer matrix.

As a result

K−1R =
2R

b



k11 k21 . . . kn1

k12 k22 . . . kn2

...
...

. . .
...

k1n k2n . . . knn





260

=
1

b



k11 k21 . . . kn1

k12 k22 . . . kn2

...
...

. . .
...

k1n k2n . . . knn





r11 r12

r21 r22

...
...

rn1 rn2


=

A

b
,

where each entry of A is an integer. So all the probabilities in the final distribution are of the form

a
b .

This completes the proof.

Based on the method in the theorem above, we can realize any arbitrary rational probability

with an optimal-sized network. The construction has two steps:

1. Construct a network with output distribution { a
2n ,

b−a
2n ,

2n−b
2n } iteratively using at most n

splitters.

2. Connect the last output to the starting point, such that the distribution of the resulting

network is {a
b ,

b−a
b }.

When b = 2n for some n, the construction above is exactly the generating tree construction in

the Knuth and Yao’s scheme as described in section 8.2. Now, assume we want to realize probability

14
29 . We can first generate a probability distribution {14

32 ,
15
32 ,

3
32}, which can be realized by adding

one splitter to a network with probability distribution { 7
16 ,

6
16 ,

3
16}... Recursively, we can have the

following probability distributions:

{14
32
,
15

32
,
3

32
} → { 7

16
,
6

16
,
3

16
} → {2

8
,
3

8
,
3

8
}

→ {1
4
, 0,

3

4
} → {1

2
, 0,

1

2
}.

As a result, we get a network to generate probability distribution { 14
32 ,

15
32 ,

3
32}, as shown in figure

8.6(a), where only 5 splitters are used. Connecting the last output to the starting point results in
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(a) The network to realize probabil-
ity distribution { 14

32
, 15
32

, 3
32

}.

(b) The network to realize probability
14
29

.

Figure 8.6. The network to realize probability 14
29 .

the network in figure 8.6(b) with probability 14
29 . Comparing the results in theorem 8.3 with those in

theorem 8.1, we see that introducing loops into networks can strongly enhance their expressibility.
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8.3.3 Proof of Lemma 8.2

Lemma 8.2. Given Q an n×n matrix with each entry in {0, 12 , 1}, such that sum of each row is at

most 1, then we have 0 ≤ det(I−Q) ≤ 1, where I is an identity matrix and det(·) is the determinant

of a matrix.

Proof. Before proving this lemma, we can see that for any given matrix Q, it has the following

properties: For any i, j such that 1 ≤ i < j ≤ n, switching the ith row with the jth row then

switching the ith column with the jth column, the determinant of K = I−Q stays unchanged. And

more, each entry of Q is still from {0, 12 , 1} and sum of each row of Q is at most 1. Now, we call the

transform above as equivalent transform of Q.

Let us prove this lemma by induction. When n = 1, we have that

Q =

(
0

)
or Q =

(
1
2

)
or Q =

(
1

)
.

In all of the cases, we have 0 ≤ det(I −Q) ≤ 1.

Assume the result of the lemma hold for (n − 1) × (n − 1) matrix, we want to prove that this

result also holds for n× n matrix. Now, given a n× n matrix Q, according to the definition in the

lemma, we know that the sum of all the entries in Q is at most n. As a result, there exists a column

such that the sum of the entries in the column is at most 1. Using equivalent transform, we have

that

• The sum of the entries in the 1st column of Q is at most 1.

• The sum of the entries in each row of Q is at most 1.

Now, for the 1st column of I −Q, let us continue using the equivalent transform to move all the

nonzero entries to the beginning of this column. The possible nonzero entry set of the 1st column

of I −Q is

ϕ, {1
2
}, {1}, {1

2
,−1

2
}, {1,−1

2
}, {1,−1}, {1,−1

2
,−1

2
}.
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The first three cases, the result in the lemma can be easily proved. In the following proof, we

only consider the other cases (let C1 denote the nonzero entry set for the 1st column of I −Q) :

(1) C1 = { 1
2 ,−

1
2}.

In this case, we can write Q as

Q =


1
2 A

1
2 B

O C


where A has at most one nonzero entry −1

2 , the same as B.

Let

E1 =

(
1 0 0 . . . 0

)
,

I1 =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1


,

then we have

DEP (I −Q)

=
1

2
det

 −A

I1 − C

+
1

2
det

 E1 −B

I1 − C



=
1

2
det

 E1 −A−B

I1 − C



=
1

2
det(I −

 A+B

C

).

Let D = A+B, since both A and B has at most one nonzero entry 1
2 , we know that each entry

of D is from {0, 12 , 1}, and the sum of all the entries is at most one. According to our assumption,
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we know that

0 ≤ det(I −

 D

C

 ≤ 1.

As a result, we have

0 ≤ det(I −Q) ≤ 1

2
.

(2) C1 = {1,−1
2}.

In this case, we can write Q as

Q =


0 A

1
2 B

O C

 .

Then

DEP (I −Q)

=
1

2
det

 −A

I1 − C

+ det

 E1 −B

I1 − C



=
1

2
det

 2E1 −A− 2B

I1 − C



=
1

2
det(I −

 A

C

) +
1

2
det(I −

 2B

C

).

According to our assumption

0 ≤ det(I −

 A

C

) ≤ 1,

0 ≤ det(I −

 2B

C

) ≤ 1,
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so det(I −Q) is also bounded by 0 and 1.

(3) C1 = {1,−1}.

Using the same argument as case (1), we can get the result in the lemma.

(4) C1 = {1,−1
2 ,−

1
2}.

In this case, we can write Q as

Q =



0 A

1
2 B

1
2 C

O D


.

Let

E2 =

(
0 1 0 . . . 0

)
,

I2 =



0 0 1 0 . . . 0

0 0 0 1 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . 1


.

Then

I −Q =



1 −A

−1
2 E1 −B

−1
2 E2 − C

O I2 −D


,
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DEP (I −Q)

= det


E1 −B

E2 − C

I2 −D

+
1

2
det


−A

E2 − C

I2 −D

− 1

2
det


−A

E1 −B

I2 −D



=
1

2
det


E1 −B −A

E2 − C

I2 −D

+
1

2
det


E1 −B

E2 − C −A

I2 −D

 .

Now, we can write A = E + F such that both E and F has at most one nonzero entry, which is

1
2 . Therefore,

DEP (I −Q)

=
1

2
det


E1 −B − E − F

E2 − C

I2 −D

+
1

2
det


E1 −B

E2 − C − E − F

I2 −D

 ,

where

det


E1 −B − E − F

E2 − C

I2 −D



= det


E1 −B − E

E2 − C − F

I2 −D

+ det


−F

E2 − C

I2 −D

+ det


E1 −B − E

F

I2 −D

 ,
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and

det


E1 −B

E2 − C − E − F

I2 −D



= det


E1 −B − F

E2 − C − E

I2 −D

+ det


E1 −B

−F

I2 −D

+ det


F

E2 − C − E

I2 −D

 .

Finally, we can get that

DEP (I −Q)

=
1

2
det[I −


B + E

C + F

D

] +
1

2
det[I −


B + F

C + E

D

].

According to our assumption, we have that

0 ≤ det[I −


B + E

C + F

D

] ≤ 1,

0 ≤ det[I −


B + F

C + E

D

] ≤ 1.

Therefore, the result of this lemma holds.

This completes the proof.
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8.4 Expected Latency of Optimal Construction

Besides of network size, anther important issue of a stochastic flow network is the expected operating

time, or we call it expected latency, defined as the expected number of splitters a token need to pass

before reaching one of the outputs. For the optimal-sized construction proposed in the above section,

we have the following results about its expected latency.

Theorem 8.4. Given a network with rational probability a
b with b ≤ 2n constructed using the

optimal-sized construction, its expected latency ET is upper bounded by2

ET ≤ (
3n

4
+

1

4
)
2n

b
<

3n

2
+

1

2
.

Proof. For the optimal-sized construction, we first prove that the expected latency of the network

with distribution { a
2n ,

b−a
2n ,

2n−b
2n } is bounded by 3n

4 + 1
4 .

Let us prove this by induction. When n = 0 or n = 1, it is easy to see that this conclusion is

true. Assume when n = k, this conclusion is true, we want to show that the conclusion still holds for

n = k+2. Note that in the optimal-sized construction, a network with size k+2 can be constructed

by adding two more splitters to a network with size k. Let Tk denote the latency of the network

with size k, then

E[Tk+2] = E[Tk] + p1 + p2,

where p1 is the probability for a token to reach the first additional splitter and p2 is the probability

for a token to reach the second additional splitter. Assume the distribution of the network with size

k is {q1, q2, q3}, then

p1 + p2 ≤ max
i̸=j

(qi + (
qi
2
+ qj)) ≤

3

2
.

So the conclusion is true for n = k + 2. By induction, we know that it holds for all n ∈ {0, 1, 2, ...}.

Secondly, we prove that if the expected latency of the network with distribution {q1, q2, q3} is

2 By making the construction more sophisticated, we can reduce the upper bound to (n2 + 3
4 )

2n

b .
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Figure 8.7. Illustration for the construction of a network with unbounded expected latency.

Table 8.1. The comparison of different construction, here 2n

b < 2

Optimal-Sized Size-Relaxed Construction Latency-Oriented Construction

Construction

Network size ≤ n ≤ n+ 3 ≤ 2(n− 1)

Expected latency ≤ ( 3n4 + 1
4 )

2n

b ≤ 6 2n

b ≤ 3.585 2n

b

ET ′, then by connecting its last output to its starting point, we can get a network such that its

expected latency is ET = ET ′

q1+q2
. This conclusion can be obtained immediately from

ET = ET ′ + q3(ET ).

This completes the proof.

Theorem 8.5. There exists a network of size n constructed using the optimal-sized construction

such that its expected latency ET is lower bounded by

ET ≥ n

3
+

2

3
.

Proof. We only need to construct a network with distribution { x
2n ,

y
2n ,

z
2n } for some integers x, y, z

such that its expected latency is lower bounded by n
3 + 2

3 .

Let us construct such a network in the following way: Starting from a network with single
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splitter, and at each step adding one more splitter. Assume the current distribution is {px, py, pz}

with px ≥ py ≥ pz (if this is not true, we can change the order of the outputs), then we can add

an additional splitter to px as shown in figure 8.7. Iteratively, with n splitters, we can construct

a network with distribution { x
2n ,

y
2n ,

z
2n } for some integers x, y, z and its expected latency is more

than n
3 + 2

3 .

By connecting one output with probability smaller than 1
2 to the starting point, we can get such

a network.

The theorems above show that the upper bound of the expected latency of a stochastic flow

network based on the optimal-sized construction is not well bounded. However, this upper bound

only reflects the worst case. That does not mean that the optimal-sized construction always has a

bad performance in expected latency when the network size is large. Let us consider the case that

the target probability is a
b with b = 2n for some n. In this case, the optimal-sized construction leads

to a tree structure, whose expected latency can be written as

ET =

n∑
i=1

i

2i
+

n

2n

= [

n∑
i=1

xi+1]′ −
n−1∑
i=1

i

2i

= [
x2 − xn+2

1− x
]′ − x− xn

1− x

= 2− 1

2n−1
,

which is well bounded by 2.

8.5 Alternative Constructions

In the last section, we show that the expected latency of a stochastic flow network based on the

optimal-sized construction is not always well bounded. In this section, we give two other con-

structions, called size-relaxed construction and latency-oriented construction. They take both the

network size and the expected latency in consideration. Table 8.1 shows the summary of the results
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Figure 8.8. The framework to realize probability a
b .

in this section, from which we can see that there is a trade-off between the upper bound on the

network size and the upper bound on the expected latency.

8.5.1 Size-Relaxed Construction

Assume that the desired probability is a
b with 2n−1 < b ≤ 2n for some n. In this subsection, we give

a construction, called size-relaxed construction for realizing a
b , with at most n + 3 splitters and its

expected latency is well bounded by a constant.

Assume a and b are relatively prime, and let c = b − a. Then a
2n and c

2n can be represented as

binary expansions, namely

a

2n
=

n∑
i=1

ai2
−i,

c

2n
=
b− a

2n
=

n∑
i=1

ci2
−i.

Let us start from the structure in figure 8.8, where the probability of Ai with 1 ≤ i ≤ n is 2−i

and the probability of An+1 is 2−n. We connect Ai with 1 ≤ i ≤ n + 1 to one of {B1, B2, B3 and

output 2}, such that the probability distribution of the outputs is { a
2n+1 ,

b−a
2n+1 ,

2n+1−b
2n+1 }. Based on
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the values of ai, ci with 1 ≤ i ≤ n (from binary expansions of a
2n and c

2n ), we have the following

rules for these connections:

1. If ai = ci = 1, connect Ai with B1.

2. If ai = 1, ci = 0,connect Ai with B2.

3. If ai = 0, ci = 1, connect Ai with B3.

4. If ai = ci = 0, connect Ai with output 2.

5. Connect An+1 with output 2.

Assume that the probability for a token to reach Bj with 1 ≤ j ≤ 3 is P (Bj), then we have

P (B1) =

n∑
i=1

I(ai=ci=1)2
−i,

P (B2) =
n∑

i=1

I(ai=1,ci=0)2
−i,

P (B3) =
n∑

i=1

I(ai=0,ci=1)2
−i,

where Iϕ = 1 if and only if ϕ is true, otherwise Iϕ = 0.

As a result, the probability for a token to reach the first output is

P1 =
1

2
(P (B1) + P (B2)) =

1

2

n∑
i=1

I(ai=1)2
−i =

a

2n+1
.

Similarly, the probability for a token to reach the second output is

P2 =
b− a

2n+1
.

So far, we get that the distribution of the network is { a
2n+1 ,

b−a
2n+1 ,

2n+1−b
2n+1 }. Similar to theorem

8.3, by connecting the output 2 to the starting point, we get a new network with probability a
b .

Note that compared to the optimal-sized construction, 3 more splitters are used in the size-relaxed



273

Figure 8.9. The network to realize probability 7
29 .

construction to realize the desired probability. But it has a much better upper bound on the expected

latency as shown in the following theorem.

Theorem 8.6. Given a network with probability a
b (2n−1 < b < 2n) constructed using the size-

relaxed construction, its expected latency ET is bounded by

ET ≤ 6
2n

b
< 12.

Proof. First, without the feedback, the expected latency for a token to reach B1, B2, B3 or output

2 is less than 2. This can be obtained from the example in the last section. As a result, without the

feedback, the expected latency for a token to reach one of the outputs is less than 3. Finally, we can

get the theorem.

Let us give an example of the size-relaxed construction. Assume the desired probability is 7
29 ,
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Figure 8.10. The deterministic device to control flow in UPI.

then we can write a
2n and b−a

2n into binary expansions:

a

2n
= 0.00111,

b− a

2n
= 0.10110.

According to the rules above, we connect A1 to B3, A2 to output 2, and so on. After connecting

output 2 to the starting point, we can get a network with probability 7
29 , as shown in figure 8.9.

Another advantage of the size-relaxed construction is that from which we can build an Universal

Probability Generator (UPI) efficiently with ai, ci(1 ≤ i ≤ n) as inputs, such that its probability

output is a
a+c = a

b . The definition and description of UPI can be found in [134]. Instead of

connecting Ai with 1 ≤ i ≤ n to one of {B1, B2, B3 and output 2} directly, we insert a deterministic

device as shown in figure 8.10. At each node of this device, if its corresponding input is 1, all the

incoming tokens will exit the left outgoing edge. If the input is 0, all the incoming tokens will exit

the right outgoing edge. As a result, the connections between Ai and {B1, B2, B3, Output 2} are

automatically controlled by inputs ai and ci with 1 ≤ i ≤ n. Finally, we can get an Universal

Probability Generator (UPI), whose output probability is

∑n
i=1 ai2

−i∑n
i=1(ai + ci)2−i

=
a

a+ c
=
a

b
.
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Figure 8.11. The network to realize { 14
32 ,

15
32 ,

3
32} using Knuth and Yao’s scheme.

8.5.2 Latency-Oriented Construction

In this subsection, we propose another construction, called latency-orient construction. It uses more

splitters than the size-relaxed construction, but achieves a better upper bound on the expected

latency. Similar to the optimal-sized construction, this construction is first trying to realize the dis-

tribution { a
2n ,

b−a
2n ,

2n−b
2n }, and then connecting the last output to the starting point. The difference

is that in the latency-oriented construction, this distribution { a
2n ,

b−a
2n ,

2n−b
2n } is realized by applying

Knuth and Yao’s scheme [71] that was introduced in the section of preliminaries.

Let us go back to the example of realizing probability 14
29 . According to Knuth and Yao’s scheme,

we need first find the atoms for the binary expansions of 14
32 ,

15
32 ,

3
32 , i.e.,

14

32
→ (

1

4
,
1

8
,
1

16
),

15

32
→ (

1

4
,
1

8
,
1

16
,
1

32
),

3

32
→ (

1

16
,
1

32
).

Then we allot these atoms to a binary tree, as shown in figure 8.11. In this tree, the probability

for a token to reach outputs labeled 0 is 14
32 , the probability for a token to reach outputs labeled 1

is 15
32 , and the probability for a token to reach outputs labeled 2 is 3

32 . If we connect the outputs
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labeled 2 to the starting point, the desired probability 14
29 can be achieved.

Theorem 8.7. Given a network with probability a
b (2n−1 < b < 2n) constructed the latency-oriented

construction, its network size is bounded by 2(n− 1) and its expected latency ET is bounded by

ET ≤ (log23 + 2)
2n

b
< 7.2.

Proof. Let us first consider the network with distribution { a
2n ,

b−a
2n ,

2n−b
2n }, which is constructed using

Knuth and Yao’s scheme.

1) The network size is bounded by 2(n − 1). To prove this, let us use kj to denote the number

of atoms with value 2−j , and use aj to denote the number of nodes with depth j in the tree. Then

kj and aj have the following recursive relations,

an = kn,

aj = kj +
aj+1

2
, ∀1 ≤ j ≤ n− 1.

As a result,
n∑

j=1

aj =

n∑
j=1

kj +

n−1∑
j=1

aj+1

2
.

From which, we can get the total number of atoms in the tree is

N =

n∑
j=1

kj =

n∑
j=1

aj
2

+
a1
2
.

We know that kj and aj also satisfy the following constraints,

kj ≤ 3, ∀1 ≤ j ≤ n,

aj mod 2 = 0, ∀1 ≤ j ≤ n.



277

From j = n to j = 1, by induction, we can prove that

aj ≤ 4, ∀1 ≤ j ≤ n.

That is because aj is even, and if aj+1 ≤ 4, then

aj
2

≤ ⌊
kj +

aj+1

2

2
⌋ ≤ 2.

Since an, a1 ≤ 2, we can get that

N ≤ an
2

+ a1 +

n−1∑
j=2

aj
2

≤ 2n− 1.

To create N atoms, we need N − 1 = 2(n− 1) splitters.

2) The expected latency ET ′ of the network with distribution { a
2n ,

b−a
2n ,

2n−b
2n } is bounded by

ET ′ ≤ (log23 + 2). That is because the expected latency ET ′ is equal to the expected number of

fair bits required. According to the result of Knuth and Yao, it is not hard to get this conclusion.

Now we can get a new network by connecting the last output to the starting point. The size of

the network is unchanged and the expected latency of the new network is ET = ET ′ 2n
b . So we can

get the results in the theorem.

8.6 Generating Rational Distributions

In this section, we want to generalize our results to generate an arbitrary rational probability distri-

bution {q1, q2, ..., qm} with m ≥ 2. Two different methods will be proposed and studied. The first

method is based on Knuth and Yao’s scheme and it is a direct generalization of the latency-oriented

construction. The second method is based on a construction with a binary-tree structure. At each

inner node of the binary tree, one probability is split into two probabilities. As a result, using a

binary-tree structure, the probability one can be split into m probabilities (as a distribution) marked
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Figure 8.12. The network to realize probability distribution {1
5 ,

1
5 , ...,

1
5}.

on all the m leaves. In the rest of this section, we will discuss and analyze these two methods. Since

we consider rational probability distributions, we can write {q1, q2, ..., qm} as {a1

b ,
a2

b , ...,
am

b } with

integers a1, a2, ..., b and b minimized.

8.6.1 Based on Knuth and Yao’s Scheme

In order to generate distribution {a1

b ,
a2

b , ...,
am

b } with 2n−1 < b ≤ 2n for some n, we can first

construct a network with distribution { a1

2n ,
a2

2n , ...,
am

2n ,
2n−b
2n } using Knuth and Yao’s scheme. Then

by connecting the last output to the starting point, we can obtain a network with distribution

{a1

b ,
a2

b , ...,
am

b }. In order to study the properties of this method, we will analyze two extreme cases:

(1) m = b and (2) m≪ b.

When m = b, the target probability distribution can be written as { 1
b ,

1
b , ...,

1
b}. For this distri-

bution, we have the following theorem about the network constructed using the method based on

Knuth and Yao’s scheme.

Theorem 8.8. For a distribution { 1
b ,

1
b , ...,

1
b}, the method based on Knuth and Yao’s scheme can

construct a network with b + h(b) − 1 splitters. Here, we assume b = 2n −
∑n−1

i=0 γi2
i and h(b) =∑n−1

i=0 γi.

Proof. See the network in figure 8.12 as an example of the construction.

First, let us consider a complete tree with depth n. The network size of such a tree (i.e., the
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number of parent nodes) is 2n − 1, denoted by Ncomplete.

Let N(b) be the network size of the construction above to realize distribution { 1
b ,

1
b , ...,

1
b}. As-

sume

2n − b = 2a1 + 2a2 + ...+ 2aH ,

with n > a1 > a2 > ... > aH is a binary expansion of 2n − b, then we can get the difference between

the size of the construction and the size of the complete binary tree,

∆ = Ncomplete −N(b) =
H∑
i=1

(2ai − 1) = 2n − b−H.

So the network size of the construction N(b) is

N(b) = 2n − 1− (2n − b−H) = b+H − 1,

where H =
∑n−1

i=0 γi = h(b).

Let N∗(b) be the optimal size of a network that realizes the distribution { 1
b ,

1
b , ...,

1
b}. It is easy

to see that N∗(b) ≥ b− 1. Note that h(b) is at most the number of bits in the binary expansion of

2n − b (which is smaller than b), so we can get the following inequality quickly

b− 1 ≤ N∗(b) ≤ N(b) ≤ b− 1 + log2 b.

It shows that the construction based on Knuth and Yao’s scheme is near-optimal when m = b. More

generally, we believe that when m is large, this construction has a good performance in network size.

For a generalm, we have the following results regarding to the network size and expected latency.

Theorem 8.9. For a distribution {a1

b ,
a2

b , ...,
am

b } with b ≤ 2n, the method based on Knuth and Yao’s

scheme can construct a network with at most m(n − ⌊log2m⌋ + 1) splitters, such that its expected

latency ET is bounded by

H(X ′)
2n

b
≤ ET ≤ [H(X ′) + 2]

2n

b
,
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where 2n

b < 2. H(X ′) is the entropy of the distribution { a1

2n ,
a2

2n , ...,
am

2n ,
2n−b
2n }.

Proof. We can use the same argument as that in theorem 8.7. The proof for the expected latency is

straightforward. Here, we only briefly describe the proof for the network size.

In the network that realizes { a1

2n ,
a2

2n , ...,
am

2n ,
2n−b
2n }, let us use kj to denote the number of atoms

with value 2−j , and use aj to denote the number of nodes with depth j in the tree. It can be proved

that the total number of atoms in the tree is

N =
n∑

j=1

kj =
n∑

j=1

aj
2

+
a1
2
.

Here, the constrains are

kj ≤ m+ 1, ∀1 ≤ j ≤ n,

aj is even, ∀1 ≤ j ≤ n.

Recursively, we can get that for all 1 ≤ j ≤ n− 1, aj ≤ 2m.

For the first ⌊log2 2m⌋ levels, we have

⌊log2 2m⌋∑
j=1

aj ≤ 4m.

Hence,

N ≤
∑⌊log2 2m⌋

j=1 aj

2
+
a1
2

+

∑n
j=⌊log2 2m⌋+1 aj

2

≤ 2m+ 1 +m(n− ⌊log2 2m⌋)

≤ m(n− ⌊log2m⌋+ 1) + 1.

So we can conclude thatm(n−⌊log2m⌋+1) splitters are enough for realizing { a1

2n ,
a2

2n , ...,
am

2n ,
2n−b
2n }

as well as {a1

b ,
a2

b , ...,
am

b }.

This theorem is a simple generalization of the results in theorem 8.7. Here, the upper bound for
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Table 8.2. The comparison of different methods, here 2n

b < 2

Based on Knuth and Yao’s Scheme Based on binary-tree structure

Network size ≤ m(n− ⌊log2m⌋+ 1) ≤ (m− 1)n

Expected latency ≤ (log2(m+ 1) + 2) 2
n

b ≤ (log2m+ 1)ETmax

the network size is tight only for small m.

8.6.2 Based on Binary-Tree Structure

In this subsection, we propose another method to construct a stochastic flow network that generates

an arbitrary rational distribution {a1

b ,
a2

b , ...,
am

b }. The idea of this method is based on binary-tree

structure. We can describe the method in the following way: We construct a binary tree with m

leaves, where the weight of the ith (1 ≤ i ≤ m) leaf is qi =
ai

b . For each parent (inner) node, its

weight is sum of the weights of its two children. Recursively, we can get all the weights of the inner

nodes in the tree and the weight of the root node is 1. For each parent node, assume the weights

of its two children are w1 and w2, then we can replace this parent node by a subnetwork which

implements a splitter with probability distribution { w1

w1+w2
, w2

w1+w2
}. For each leaf, we treat it as an

output. In this new network, a token will reach the ith output with probability qi.

For example, in order to realize the distribution {1
2 ,

1
6 ,

1
4 ,

1
12}, we can first generate a binary tree

with 4 leaves, as shown in figure 8.13(a). Then according to the method above, we can obtain the

weight of each node in this binary tree, see figure 8.13(b). Based on these weights, we replace the

three parent nodes with three subnetworks, whose probability distributions are { 1
2 ,

1
2}, {

1
3 ,

1
3}, {

3
4 ,

1
4}.

Eventually, we construct a network with the desired distribution as shown in figure 8.13(c). It can

be implemented with 1 + 2 + 2 = 5 splitters.

In the procedure above, any binary tree with m leaves works. Among all these binary trees,

we need to find one such that the resulting network satisfies our requirements in network size and

expected latency. For example, given the target distribution { 1
2 ,

1
6 ,

1
4 ,

1
12}, the binary tree depicted

above does not result in an optimal-sized construction. When m is extremely small, such as 3, 4,

we can search all the binary trees with m leaves. However, when m is a little larger, such as 10,



282

(a) A binary tree with 4
leaves.

(b) Node weights in the binary
tree.

(c) The network to realize prob-
ability distribution { 1

2
, 1
6
, 1
4
, 1
12

},
where { 1

3
, 2
3
}, { 3

4
, 1
4
} can be real-

ized using the methods in the sec-
tions above.

Figure 8.13. A demonstration of the method based on binary-tree structure.

the number of such binary trees grows exponentially. In this case, the method of brute-force search

becomes impractical. In the rest of this section, we will show that Huffman procedure can create a

binary tree with good performances in network size and expected latency for most of the cases.

Huffman procedure can be described as follows [27]:

1. Draw m nodes with weights q1, q2, ..., qm.

2. Let S denote the set of nodes without parents. Assume node A and node B are the two nodes

with the minimal weights in S, then we added a new node as the parent of A and B, with

weight w(A) + w(B), where w(X) is the weight of node X.

3. Repeat 2) until the size of S is 1.

Figure 8.14 shows an example of a binary tree constructed by Huffman procedure, when the
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Figure 8.14. The tree constructed using Huffman procedure for {0.1, 0.1, 0.15, 0.15, 0.2, 0.3}.

desired distribution is {0.1, 0.1, 0.15, 0.15, 0.2, 0.3}. From [27], we know that when using Huffman

procedure we can create a tree with minimal expected path length. Let EL∗ denote this minimal

expected path length, then its satisfies the following inequality,

H(X) ≤ EL∗ ≤ H(X) + 1,

where H(X) is the entropy of the desired probability distribution {q1, q2, ..., qm} = {a1

b ,
a2

b , ...,
am

b }.

Let wi denote the weight of the ith parent node in the binary tree. In order to simplify our

analysis, we assume that this parent node can be replaced by a subnetwork with about log2(bwi)

splitters. This simplification is reasonable from the statistical perspective and according to the

results about our constructions for realizing rational probabilities in the sections above. Then the

size of the resulting network is approximately
∑m−1

i=1 log2(bwi). According to lemma 8.10 as follows,

when m is small, Huffman procedure can create a binary tree that minimizes
∑m−1

i=1 log2 wi. As a

result, among all the binary trees with m leaves, the one constructed based on Huffman procedure

has an optimal network size – however, it is only true based on our assumption. For example, let

us consider a desired distribution {q1, q2, ..., qm} with
∑

i∈S qi =
1
2 for some set S. In this case, the

binary-tree structure based on Huffman procedure may not be the best one.

Lemma 8.10. Given a desired probability distribution {q1, q2, ..., qm} and m < 6, Huffman procedure

can construct a binary tree such that
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1. It has m leaves with weight q1, q2, ..., qm.

2. L =
∑m−1

j=1 log2 wj is minimized, where wj is the weight of jth parent node in a binary tree

with m leaves.

Proof. It is easy to prove that the case for m = 3 or m = 4 is true. In the following proof, we only

show the case for m = 5 briefly. W.l.o.g, we assume q1 ≤ q2 ≤ ... ≤ q5. Without considering the

order of the leaves, we have only two binary-tree structures, as shown in figure 8.15.

Figure 8.15. Two possible tree structures for m = 5.

In both of the structures, for any pair of leaves xi and xj , if xi’s sibling is xj ’s ancestor then

xi ≥ xj . Otherwise, we can switch the position of xi and xj to reduce
∑m−1

j=1 log2 wj . So if the tree

structure (a) in figure 8.15 is the optimal one, we have x1 = q1, x2 = q2 or x1 = q2, x2 = q1. Now, we

will show that if the tree structure (b) in figure 8.15 is the optimal one, we also have x1 = q1, x2 = q2

or x1 = q2, x2 = q1.

For the tree structure (b), we have the following relations:

x3 ≥ max{x1, x2},

x4 + x5 ≥ max{x1 + x2, x3}.

Then q1 and q2 is in {x1, x2, x4, x5} and x1 + x2 ≤ 1−x3

2 .
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Let x = x1 + x2, then L can be written as

L = min log(x1 + x2) + log(x1 + x2 + x3) + log(x4 + x5)

= min log((x1 + x2)(x1 + x2 + x3)(1− x1 − x2 − x3))

= min log x(1− x3 − x)(x+ x3).

So we can minimize x(1 − x3 − x)(x + x3) instead of minimizing L. Fixing x3, we can see that

x(1−x3−x) increases as x increases when x ≤ 1−x3

2 ; (x+x3) also increases as x increases. So fixing

x3, x(1−x3−x)(x+x3) is minimized if and only if x is minimized, which will cause x1 = q1, x2 = q2

or x1 = q2, x2 = q1.

Based on the discussion above, we know that in the optimal tree, q1 and q2 must be siblings.

Let us replace q1, q2 and their parent node using a leaf with weight q1 + q2. Then we can get an

optimal tree for distribution {q1 + q2, q3, q4, q5}, whose L value is L∗
4. Assume the optimal L value

for distribution {q1, q2, q3, q4, q5} is L∗
5, then

L∗
5 = L∗

4 + log2(q1 + q2).

Let us consider a tree constructed by Huffman procedure for {q1, q2, q3, q4, q5}, whose L value is

L5. We want to show that this tree is optimal. According to the procedure, we know that q1 and q2

are also siblings. By combing q1 and q2 to a leaf with q1 + q2, we can get a new tree. This new tree

can be constructed by applying Huffman procedure to distribution {q1 + q2, q3, q4, q5}. Due to our

assumption for m = 4, it is optimal, as a result the following result is true,

L5 = L∗
4 + log2(q1 + q2).

Finally, we can obtain L5 = L∗
5, which shows that the L value of the tree constructed by Huffman

procedure is minimized when m = 5.

This completes the proof.
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Now we can get the following conclusion about stochastic flow networks constructed using the

method based on binary-tree structures.

Theorem 8.11. For a distribution {a1

b ,
a2

b , ...,
am

b } with b ≤ 2n, the method based on binary-tree

structures constructs a network with at most (m − 1)n splitters. If the binary tree is constructed

using Huffman procedure, then the expected latency of the resulting network, namely ET , is upper

bounded by

ET ≤ (H(X) + 1)ETmax,

where H(X) is the entropy of the target distribution and ETmax is the maximum expected latency of

the inner nodes in the binary tree.

Proof. 1) According to the optimal-sized construction, each inner node can be implemented using

at most n splitters.

2) The upper bound on the expected latency is immediate following the result that the expected

path length EL∗ ≤ H(X) + 1.

8.6.3 Comparison

Let us have a brief comparison between the method based on Knuth and Yao’s scheme and the

method based on binary-tree structure. Generally, when m is large, the method based Knuth and

Yao’s scheme may perform better. When m is small, the comparison between these two methods is

given in table 8.2, where the desired distribution is {a1

b ,
a2

b , ...,
am

b } with 2n−1 < b ≤ 2n. In this table,

we assume that the binary tree (in the second method) is constructed using Huffman procedure.

ETmax denotes the maximum expected latency of the parent nodes in a given binary tree. It is still

hard to say that one of the two methods has an absolutely better performance than the other one.

In fact, the performance of a construction is usually related to the number structure of the target

distribution. In practice, we can compare both of the constructions based on real values and choose

the better one.
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Table 8.3. The comparison of different stochastic systems of size n

Expressibility (probabilities) Operating time

Sequential State Machine [44] Converge to rational a
b (b ≤ n) states traveled O(n)

Stochastic Switching Circuit [134] Realize binary probability a
2n longest path O(n)

Combinational Logic [92] Realize binary probability a
2n maximum depth O(n)

Stochastic Flow Network Realize rational a
b (b ≤ 2n) expected latency O(1)

8.7 Concluding Remarks

Motivated by computing based on chemical reaction networks, we introduced the concept of s-

tochastic flow networks and studied the synthesis of optimal-sized networks for realizing rational

probabilities. We also studied the expected latency of stochastic flow networks, namely, the expect-

ed number of splitters a token need to pass before reaching the output. Two constructions with

well-bounded expected latency are proposed. Finally, we generalize our constructions to realize ar-

bitrary rational probability distributions. Beside of network size and expected latency, robustness is

also an important issue in stochastic flow networks. Assume the probability error of each splitter is

bounded by a constant ϵ, the robustness of a given network can be measured by the total probability

error. It can be shown that most constructions in this chapter are robust against small errors in the

splitters.

To end this chapter, we compare a few types of stochastic systems of the same size n in table

8.3. Here we assume that the basic probabilistic elements in these systems have probability 1/2

and we want use them to synthesize the other probabilities. To unfairly compare different systems,

we remove threshold logic circuits from the list, since their complexity is difficult to analyze. From

this table, we see that stochastic flow networks have excellent performances in both expressibility

and operating time. Future works include the synthesis of stochastic flow network to ‘approximate’

desired probabilities or distributions, and the study of the scenario that the probability of each

splitter is not 1
2 .
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Part IV

Coding for Data Storage
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Chapter 9

Nonuniform Codes for Correcting
Asymmetric Errors

This chapter introduces a new type of code called a nonuniform code, whose codewords can

tolerate different numbers of asymmetric errors depending on their Hamming weights. The

goal of nonuniform codes is to guarantee the reliability of every codeword while maximizing

the code size for correcting asymmetric errors.1

9.1 Introduction

Asymmetric errors exist in many storage devices [21]. In optical disks, read only memories and

quantum memories, the error probability from 1 to 0 is significantly higher than the error probability

from 0 to 1, which is modeled by Z-channels where the transmitted sequences only suffer one type of

errors, say 1 → 0. In some other devices, like flash memories and phase change memories, although

the error probability from 0 to 1 is still smaller than that from 1 to 0, it is not ignorable. That means

both types of errors, say 1 → 0 and 0 → 1 are possible, modeled by binary asymmetric channels.

In contrast to symmetric errors, where the error probability of a codeword is context independent

(since the error probability for 1s and 0s is identical), asymmetric errors are context dependent.

For example, the all-one codeword is prone to have more errors than the all-zero codeword in both

Z-channels and binary asymmetric channels.

1 Some of the results presented in this chapter have been previously published in [146].
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The construction of asymmetric error correcting codes is a topic that was studied extensively.

In [67], Kløve summarized and presented several such codes. In addition, a large amount of efforts are

contributed to the design of systematic codes [2,16], constructing single or multiple error-correcting

codes [8, 100, 110], increasing the lower bounds [35, 36, 39, 137] and applying LDPC codes in the

context of asymmetric channels [129]. However, the existing approach for code construction is

similar to the approach taken in the construction of symmetric error correcting codes, namely, it

assumes that every codeword could sustain t asymmetric errors (or generally t1 1 → 0 errors and

t2 0 → 1 errors). As a result, different codewords might have different reliability. To see this, let

us consider errors to be i.i.d., where every bit that is a 1 can change to a 0 by an asymmetric

error with crossover probability p > 0 and each bit that is a 0 keeps unchanged. For a codeword

x = (x1, x2, . . . , xn) ∈ {0, 1}n, let w(x) = |{i : 1 ≤ i ≤ n, xi = 1}| denote the Hamming weight of

x. Then the probability for x to have at most t asymmetric errors is

Pt(x) =

t∑
i=0

(
w(x)

i

)
pi(1− p)w(x)−i.

Since x can correct t errors, Pt(x) is the probability of correctly decoding x (assuming codewords with

more than t errors are uncorrectable). It can be readily observed that the reliability of codewords

decreases when their Hamming weights increase, for example, see figure 9.1.

While asymmetric errors are content dependent, in most applications of data storage the re-

liability of each codeword should be content independent. Namely, unaware of data importance,

no matter what content is stored, it should be retrieved with very high probability. The reason

is that once a block cannot be correctly decoded, the content of the block, which might be very

important, will be lost forever. So we are interested in the worst-case performance rather than the

average performance that is commonly considered in telecommunication, and we want to construct

error-correcting codes that can guarantee the reliability of every codeword. In this case, it is not

desired to let all the codewords tolerate the same number of asymmetric errors, since the codeword

with the highest Hamming weight will become a ‘bottleneck’ and limit the code rate. We call the
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Figure 9.1. The relation between Pt(x) and w(x) when p = 0.1 and t = 2.

existing codes uniform codes while we focus on the notion of nonuniform codes, namely, codes whose

codewords can tolerate different numbers of asymmetric errors depending on their Hamming weight-

s. The goal of introducing nonuniform codes is to maximize the code size while guaranteeing the

reliability of each codeword for combating asymmetric errors.

In a nonuniform code, given a codeword x ∈ {0, 1}n of weight w, we let t↓(w) denote the number

of 1 → 0 errors that it has to tolerate, and we let t↑(w) denote the number of 0 → 1 errors that

it has to tolerate. Both t↓ and t↑ are step functions on {0, 1, ..., n} that can be predetermined

by the channel, the types of errors and the required reliability. In this chapter, we consider t↓ a

nondecreasing function and t↑ a nonincreasing function of codeword weight. As a result, we call such

a code as a nonuniform code correcting [t↓, t↑] errors. In particular, for Z-channels where t↑(w) = 0

for all 0 ≤ w ≤ n, we call it a nonuniform code correcting t↓ asymmetric errors. Surprisingly, there

is little in the literature that studies this type of codes although they are natural and much more

efficient than traditional codes for correcting asymmetric errors in data storage applications.

Example 9.1. In Z-channels, let p be the crossover probability of each bit from 1 to 0 and let qe < 1

be maximum tolerated error probability for each codeword. If we consider the errors to be i.i.d., then

we can get

t↓(w) = min{s ∈ N |
s∑

i=0

(
w

i

)
pi(1− p)w−i ≥ 1− qe} (9.1)
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for 0 ≤ w ≤ n. In this case, every erroneous codeword can be corrected with probability at least

1− qe.

The following notations will be used throughout of this chapter:

qe the maximal error probability for each codeword

p, p↓ the error probability of each bit from 1 to 0

p↑ the error probability of each bit from 0 to 1

t↓ a nondecreasing function that indicates

the number of 1 → 0 errors to tolerate

t↑ a nonincreasing function that indicates

the number of 0 → 1 errors to tolerate

In this chapter, we introduce the concept of nonuniform codes and study their basic properties,

upper bounds on the rate, asymptotic performance, and code constructions. We first focus on Z-

channels and study nonuniform codes correcting t↓ asymmetric errors. The chapter is organized as

follows: In section 9.2, we provide some basic properties of nonuniform codes. In section 9.3, we give

an almost explicit upper bound for the size of nonuniform codes. Section 9.4 studies and compares

the asymptotic performances of nonuniform codes and uniform codes. Two general constructions,

based on multiple layers or bit flips, are proposed in section 9.5 and section 9.6. Finally, we extend

our discussions and results from Z-channels to general binary asymmetric channels in section 9.7,

where we study nonuniform codes correcting [t↓, t↑] errors, namely, t↓ 1 → 0 errors and t↑ 0 → 1

errors. Concluding remarks are presented in section 9.8.

9.2 Basic Properties of Nonuniform Codes for Z-Channels

Storage devices such as optical disks, read-only memories and quantum atomic memories can be

modeled by Z-channels, in which the transmitted sequences only suffer one type of errors, namely

1 → 0. In this section, we study some properties of nonuniform codes for Z-channels, namely, codes
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that only correct t↓ asymmetric errors. Typically, t↓(w) is a nondecreasing function in w, the weight

of the codeword. We prove it in the following lemma for the case of i.i.d. errors.

Lemma 9.1. Assume the errors in a Z-channel are i.i.d., then given any 0 < p, qe < 1, the function

t↓ defined in (9.1) satisfies t↓(w + 1)− t↓(w) ∈ {0, 1} for all 0 ≤ w ≤ n− 1.

Proof. Let us define

P (k,w, p) =

k∑
i=0

(
w

i

)
pi(1− p)w−i.

Then

P (k,w, p) = (w − k)

(
w

k

)∫ 1−p

0

tw−k−1(1− t)kdt,

which leads us to

P (k,w, p)− P (k,w + 1, p)

=
k + 1

w + 1
[P (k + 1, w + 1, p)− P (k,w + 1, p)]. (9.2)

First, let us prove that t↓(w + 1) ≥ t↓(w). Since

P (k + 1, w + 1, p)− P (k,w + 1, p) > 0,

we have P (k,w, p) > P (k,w + 1, p).

We know that P (t↓(w + 1), w + 1, p) ≥ 1− qe, so

P (t↓(w + 1), w, p) > 1− qe.

According to definition of t↓(w), we can conclude that t↓(w + 1) ≥ t↓(w).

Second, let us prove that t↓(w + 1)− t↓(w) ≤ 1. Based on equation (9.2), we have

P (k,w, p)− P (k + 1, w + 1, p) =
w − k

w + 1
[P (k,w + 1, p)− P (k + 1, w + 1, p)].
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So P (k,w, p) < P (k + 1, w + 1, p).

We know that P (t↓(w), w, p) ≥ 1− qe, therefore

P (t↓(w) + 1, w + 1, p) > 1− qe.

According to the definition of t↓(w + 1), we have t↓(w + 1) ≤ t↓(w) + 1.

This completes the proof.

Given two binary vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), we say x ≤ y if and only if

xi ≤ yi for all 1 ≤ i ≤ n. Let B(x) be the (asymmetric) ‘ball’ centered at x, namely, it consists of

all the vectors obtained by changing at most t↓(w(x)) 1s in x into 0s, i.e.,

B(x) = {v ∈ {0, 1}n|v ≤ x and N(x,v) ≤ t↓(w(x))},

where w(x) is the weight of x and

N(x,y) , |{i : xi = 1, yi = 0}|.

We have the following properties of nonuniform codes as the generalizations of those for uniform

codes studied in [67].

Lemma 9.2. Code C is a nonuniform code correcting t↓ asymmetric errors if and only if B(x)
∩
B(y) =

ϕ for all x,y ∈ C with x ̸= y.

Proof. According to the definition of nonuniform codes, all the vectors in B(x) can be decoded as

x, and all the vectors in B(y) can be decoded as y. Hence, B(x)
∩
B(y) = ϕ for all x,y ∈ C.

Lemma 9.3. There always exists a nonuniform code of the maximum size that corrects t↓ asym-

metric errors and contains the all-zero codeword.

Proof. Let C be a nonuniform code correcting t↓ asymmetric errors, and assume that 00...00 /∈ C.
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If there exists a codeword x ∈ C such that 00...00 ∈ B(x), then we can get a new nonuniform code

C ′ of the same size by replacing x with 00...00 in C. If there does not exist a codeword x ∈ C such

that 00...00 ∈ B(x), then we can get a larger nonuniform code C ′ by adding 00...00 to C.

Given a nonuniform code C, let Ar denote the number of codewords with Hamming weight r in

C, i.e.,

Ar = |{x ∈ C|w(x) = r}|.

Given a nondecreasing function t↓, let Rr denote a set of weights that can reach weight r with

at most t↓ asymmetric errors, namely,

Rr = {0 ≤ s ≤ n|s− t↓(s) ≤ r ≤ s}.

Lemma 9.4. Let C be a nonuniform code correcting t↓ asymmetric errors. For 0 ≤ r ≤ n, we have

∑
j∈Rr

(
j

r

)
Aj ≤

(
n

r

)
. (9.3)

Proof. Let Vr = {x ∈ {0, 1}n|w(x) = r} be the set consisting of all the vectors of length n and

weight r. If x ∈ C with w(x) = j ∈ Rr, according to the properties of t↓, B(x) contains
(
j

r

)
vectors

of weight r, namely

|Vr
∩

B(x)| =
(
j

r

)
.

According to lemma 9.2, we know that
∪

x∈C(Vr
∩

B(x)) is a disjoint union, in which the number

of vectors is ∑
j∈Rr

(
j

r

)
Aj .

Since
∪

x∈C(Vr
∩

B(x)) ⊆ Vr and there are at most

(
n

r

)
vectors in Vr, the lemma follows.
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9.3 Upper Bounds

Let Bα(n, t) denote the maximal size of a uniform code correcting t asymmetric errors, and let

Bβ(n, t↓) denote the maximal size of a nonuniform code correcting t↓ asymmetric errors, where t is

a constant and t↓ is a nondecreasing function of codeword weight. In this section, we first present

some existing results on the upper bounds of Bα(n, t) for uniform codes. Then we derive an almost

explicit upper bound of Bβ(n, t↓) for nonuniform codes.

9.3.1 Upper Bounds for Uniform Codes

An explicit upper bound to Bα(n, t) was given by Varshamov [122]. In [67], Borden showed that

Bα(n, t) is upper bounded by min{A(n+ t, 2t+1), (t+1)A(n, 2t+1)}, where A(n, d) is the maximal

number of vectors in {0, 1}n with Hamming distance at least d. Goldbaum [46] pointed out that

the upper bounds can be obtained using integer programming. By adding more constrains to the

integer programming, the upper bounds were later improved by Delsarte and Piret [28] and Weber

et al. [133] [132]. Kløve generalized the bounds of Delsarte and Piret, and gave an almost explicit

upper bound which is very easy to compute by relaxing some of the constrains [68], in the following

way.

Theorem 9.5. [68]] For n > 2t ≥ 2, let y0, y1, ..., yn be defined by

1. y0 = 1,

2. yr = 0, ∀1 ≤ r ≤ t,

3. yt+r = 1(
t+ r

t

) [

(
n

r

)
−
∑t−1

j=0 yr+j

(
r + j

j

)
],∀1 ≤ r ≤ n

2 − t,

4. yn−r = yr, ∀0 ≤ r < n
2 .

Then Bα(n, t) ≤Mα(n, t) ,
∑n

r=0 yr.

This method obtains a good upper bound to Bα(n, t) (although it is not the best known one).

Since it is easy to compute, when n and t are large, it is every useful for analyzing the sizes of

uniform codes.
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9.3.2 Upper Bounds for Nonuniform Codes

We now derive an almost explicit upper bound for the size of nonuniform codes correcting t↓ asym-

metric errors, followed the idea of Kløve [68] for uniform codes. According to the lemmas in the

previous section, we can get an upper bound of Bβ(n, t↓), denoted by Mβ(n, t↓), such that

Mβ(n, t↓) = max
n∑

i=0

zr,

where the maximum is taken over the following constraints:

1. zr are nonnegative real numbers;

2. z0 = 1;

3.
∑

j∈Rr

(
j

r

)
zj ≤

(
n

r

)
,∀0 ≤ r ≤ n.

Here, condition 2) is given by lemma 9.3, and condition 3) is given by lemma 9.4. Our goal is to

find an almost explicit way to calculate Mβ(n, t↓).

Lemma 9.6. Assume
∑n

r=0 zr is maximized over z0, z1, ..., zn in the problem above. If r = s− t↓(s)

for some integer s with 0 ≤ s, r ≤ n, then

Zr =
∑
j∈Rr

(
j

r

)
zj =

(
n

r

)
.
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Proof. Suppose that Zr <

(
n

r

)
for some r that satisfies the above condition. Let g = maxRr and

k = min{w|zw > 0, w > g}, as indicated in figure 9.2, where a triangular denote the ball centered at

the top vertex. Furthermore, we let m = max{w|k− t↓(k) > w}. Note that in this case r = g− t↓(g)

and m = k − t↓(k)− 1.

We first prove that for all r ≤ w ≤ m, Zw <

(
n

w

)
. In order to prove this, we let s = w− r, then

we get

Zw =
∑
j∈Rw

zj

(
j

w

)

=

g∑
j=w

zj

(
j

w

)

=

g−r∑
j=s

zr+j

(
r + j

r + s

)
.

It is easy to obtain that (
r + j

r + s

)
=

(
r + j

r

) (
j

s

)
(
r + s

s

) .
So

Zw ≤

(
g − r

s

)
(
r + s

s

) g−r∑
j=s

zr+j

(
r + j

r

)

<

(
g − r

s

)
(
r + s

s

)(n
r

)

=
(g − r)(g − r − 1)...(g − r − s+ 1)

(n− r)(n− r − 1)...(n− r − s+ 1)

(
n

r + s

)
≤

(
n

w

)
.

Now, we construct a new group of real numbers z∗0 , z
∗
1 , ..., z

∗
n such that

1. z∗g = zg +∆,

2. z∗k = zk − δ,
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3. z∗r = zr for r ̸= h, r ̸= k,

with

∆ = min({

(
n

w

)
− Zw(
g

w

) |r ≤ w ≤ m}
∪

{

(
k

w

)
(
g

w

)zk|m < w ≤ g}),

δ =
1

min{

(
k

w

)
(
g

w

) |m < w ≤ g}

∆.

For such ∆, δ, it is not hard to prove that Z∗
r =

(
n

r

)
for 0 ≤ r ≤ n. On the other hand,

n∑
r=0

z∗r =
n∑

r=0

zr +∆− δ >
n∑

r=0

zr,

which contradicts our assumption that
∑n

r=0 zr is maximized over the constrains. So the lemma is

true.

Lemma 9.7. Assume
∑n

r=0 zr is maximized over z0, z1, ..., zn in the problem above. If r = s− t↓(s)

for some integer s with 0 ≤ s, r ≤ n, then

Zr =
h∑

j=r

(
j

r

)
zj =

(
n

r

)
,

where

h = min{s ∈ N |s− t↓(s) = r}.

Sketch of Proof: Let g = max{s ∈ N |s − t↓(s) = r}. If g = h, then the lemma is true. So we

only need to prove it for the case that g > k. Similar to lemma 9.6, we assume Zr <

(
n

r

)
, to get

the contradiction, we can construct a new group of real numbers z∗0 , z
∗
1 , ..., z

∗
n such that

1. z∗h = zh +∆,

2. z∗w = 0 for h < w ≤ g,
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3. z∗w = zw if w /∈ [h, g].

with

∆ = min{

∑g
j=h+1

(
j

w

)
zj(

h

w

) |r ≤ w ≤ h}.

For this z∗0 , z
∗
1 , ..., z

∗
n, they satisfy all the constrains and Z∗

r =
∑h

j=r

(
j

r

)
z∗j =

(
n

r

)
. At the same

time, it can be proved that
n∑

r=0

z∗r >
n∑

r=0

zr,

which contradicts with our assumption that
∑n

r=0 zr is maximized over the constrains. This com-

pletes the proof.

Now let y0, y1, ..., yn be a group of optimal solutions to z0, z1, ..., zn that maximize
∑n

r=0 zr. Then

y0, y1, ..., yn satisfy the condition in Lemma 9.7. We see that y0 = 1. Then based on lemma 9.7,

we can get y1, ..., yn uniquely by iteration. Hence, we have the following theorem for calculating the

upper bound Mβ(n, t↓).

Theorem 9.8. Let y0, y1, ..., yn be defined by

1. y0 = 1;

2. yr = 1(
r

t↓(r)

) [

(
n

r − t↓(r)

)
−
∑t↓(r)

j=1 yr−j

(
r − j

t↓(r)− j

)
], ∀1 ≤ r ≤ n.

Then Bβ(n, t↓) ≤Mβ(n, t↓) =
∑n

r=0 yr.

This theorem provides an almost explicit expression for the upper bound Mβ(n, t↓), which is

much easier to calculate than the equivalent expression defined at the beginning of this subsection.

Note that in the theorem, we do not have a constrain like the one (constraint 4) in theorem 9.5. It

is because that the optimal nonuniform codes do not have symmetric weight distributions due to

the fact that t↓(w) monotonically increases with w.
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Figure 9.3. Upper bounds of the rates for uniform/nonuniform codes when n = 255, qe = 10−4.

9.3.3 Comparison of Upper Bounds

Here we focus on i.i.d. errors, i.e., given the crossover probability p from 1 to 0 and the maximal

tolerated error probability qe, the function t↓ is defined in equation (9.1). In this case, we can write

the maximal size of a uniform code as Bα(n, t↓(n)) = Bα(n, p, qe), and write the maximal size of a

nonuniform code as Bβ(n, t↓(n)) = Bβ(n, p, qe).

Now we let ηα(n, p, qe) denote the maximal code rate defined by

ηα(n, p, qe) =
logBα(n, p, qe)

n
.

Similar, we let ηβ(n, p, qe) denote the maximal code rate defined by

ηβ(n, p, qe) =
logBβ(n, p, qe)

n
.

By the definition of uniform and nonuniform codes, it is simple to see that ηβ(n, p, qe) ≥ ηα(n, p, qe).

Figure 9.3 depicts the upper bounds of ηα(n, p, qe) and ηβ(n, p, qe) for different values of p when
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n = 255 and qe = 10−4. The upper bound of ηα(n, p, qe) is obtained based on the almost explicit

upper bound given by Kløve, and the upper bound of ηβ(n, p, qe) is obtained based on the almost

explicit method proposed in this section. It demonstrates that given the same parameters, the upper

bound for nonuniform codes is substantially greater than that for uniform codes.

9.4 Asymptotic Performance

In this section, we study and compare the asymptotic rates of uniform codes and nonuniform codes.

Note that the performance of nonuniform codes strongly depends on the selection of the function

t↓. Here, we focus on i.i.d. errors, so given 0 < p, qe < 1, we study the asymptotic behavior of

ηα(n, p, qe) and ηβ(n, p, qe) as n → ∞. By the definition of nonuniform and uniform codes, the

‘balls’ containing up to t↓(x) (or t↓(n)) errors that are centered at codewords x need to be disjoint.

Before giving the asymptotic rates, we first present the following known result: For any δ > 0,

when n is large enough, we have

2n(H( k
n )−δ) ≤

(
n

k

)
≤ 2n(H( k

n )+δ),

where H(p) is the entropy function with

H(p) = p log
1

p
+ (1− p) log

1

1− p
for 0 ≤ p ≤ 1,

and

H(p) = 0 for p > 1 or p < 0.

Lemma 9.9. Let A(n, d, w) be the maximum size of a constant-weight binary code of codeword length

n, whose Hamming weight is w and minimum distance is d. Let R(n, t, w) be the maximum size of

a binary code with Hamming weight w and codeword length n where every codeword can correct t

asymmetric errors. Then

R(n, t, w) = A(n, 2(t+ 1), w).
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Proof. Let C be a code of length n, constant weight w and size R(n, t, w) that corrects t asymmetric

errors. For all x ∈ {0, 1}n, let’s define St(x) be the set consisting of all the vectors obtained by

changing at most t 1s in x into 0s, i.e.,

St(x) = {v ∈ {0, 1}n|v < x and N(x,v) ≤ t}.

Then ∀x,y ∈ C, we know that St(x)
∩
St(y) = ϕ.

Let u = (u1, . . . , un) be a vector such that ui = min{xi, yi} for 1 ≤ i ≤ n. Then N(x,u) =

N(y,u) and u /∈ St(x)
∩
St(y). W.l.o.g, suppose that u /∈ St(x). Then N(x,u) > t, and the

Hamming distance between x and y is

d(x,y) = N(x,u) +N(y,u) ≥ 2(t+ 1).

So the minimum distance of C is at least 2(t+ 1). As a result, A(n, 2(t+ 1), w) ≥ R(n, t, w).

On the other hand, if a constant-weight code has minimum distance at least 2(t + 1), it can

correct t asymmetric errors. As a result, R(n, t, w) ≥ A(n, 2(t+ 1), w).

9.4.1 Bounds of limn→∞ ηα(n, p, qe)

Let us first give the lower bound of limn→∞ ηα(n, p, qe) and then provide the upper bound.

Theorem 9.10 (Lower bound). Given 0 < qe < 1, if 0 < p ≤ 1
4 , we have

lim
n→∞

ηα(n, p, qe) ≥ 1−H(2p).

Proof. We consider uniform codes that correct t asymmetric errors, where

t = min{s|
s∑

i=0

(
n

i

)
pi(1− p)n−i ≥ 1− qe}.

According to Hoeffding’s inequality, for any δ > 0, as n becomes large enough, we have (p−δ)n ≤
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t ≤ (p+ δ)n. If we write t = γn, then p− δ ≤ γ ≤ p+ δ for n large enough.

Since each codeword tolerates t asymmetric errors, we have

Bα(n, p, qe) = Bα(n, t) ≥ R(n, t, w) = A(n, 2(t+ 1), w),

for every w with 0 ≤ w ≤ n. The Gilbert Bound gives that (see Graham and Sloane [49])

A(n, 2(t+ 1), w) ≥

(
n

w

)
∑t

i=0

(
w

i

)(
n− w

i

) .

Hence

Bα(n, p, qe) ≥ n
max
w=0

(
n

w

)
∑t

i=0

(
w

i

)(
n− w

i

)

≥ n
max
w=0

(
n

w

)
nmaxi∈[0,t]

(
w

i

)(
n− w

i

)

≥ max
w:

w(n−w)
n >t

(
n

w

)
nmaxi∈[0,t]

(
w

i

)(
n− w

i

)

≥ max
w:

w(n−w)
n >t

(
n

w

)
n

(
w

t

)(
n− w

t

) .

For a binomial term

(
n

k

)
= n!

k!(n−k)! and δ > 0, when n is large enough,

2n(H( k
n )−δ) ≤

(
n

k

)
≤ 2n(H( k

n )+δ).
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Let w = θn and t = γn with 0 ≤ θ, γ ≤ 1, as n becomes large enough, we have

ηα(n, p, qe)

=
1

n
log2Bα(n, p, qe)

≥ 1

n
log2 max

w:
w(n−w)

n >t

(
n

w

)
n

(
w

t

)(
n− w

t

)
≥ 1

n
log2 max

θ:θ(1−θ)>γ

2(H(θ)−δ)n

n2(H( γ
θ )+δ)θn2(H( γ

1−θ )+δ)(1−θ)n

≥ max
θ:θ(1−θ)≥γ

H(θ)− θH(
γ

θ
)− (1− θ)H(

γ

1− θ
)− 2δ +

1

n
log

1

n
.

From θ(1 − θ) ≥ γ, we get θ > γ > 0; then H(γθ ) is a continuous function of γ. As n becomes

large, we have p − δ ≤ γ ≤ p + δ, so we can approximate H(γθ ) with H(pθ ). Similarly, we can

approximate H( γ
1−θ ) with H( p

1−θ ). Then we can get as n→ ∞,

ηα(n, p, qe) ≥ max
θ:θ(1−θ)>p

H(θ)− θH(
p

θ
)− (1− θ)H(

p

1− θ
).

If 0 ≤ p ≤ 1
4 , the maximum value can be achieve at θ∗ = 1

2 . Hence we have

lim
n→∞

ηα(n, p, qe) ≥ 1−H(2p).

This completes the proof.

Theorem 9.11 (Upper bound). Given 0 < p, qe < 1, we have

lim
n→∞

ηα(n, p, qe) ≤ (1 + p)[1−H(
p

1 + p
)].

Proof. For a uniform code correcting t asymmetric errors, we have the following observations:

1. There is at most one codeword with Hamming weight at most t;
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2. For t+ 1 ≤ w ≤ n, the number of codewords with Hamming weight w is at most

(
n

w − t

)
(
w

t

) .

Consequently, the total number of codewords is

Bα(n, p, qe) ≤ 1 +
n∑

w=t+1

(
n

w − t

)
(
w

t

)

= 1 +

n∑
w=t+1

(
n+ t

w

)
(
n+ t

t

)
≤ 2n+t(

n+ t

t

) .

So as n→ ∞, we have

ηα(n, p, qe) ≤ 1

n
log[

2n+t(
n+ t

t

) ]

≤ 1

n
log

2(1+γ)n

2H( γ
1+γ )(1+γ)n

= (1 + γ)−H(
γ

1 + γ
)(1 + γ)

= (1 + p)[1−H(
p

1 + p
)],

where the last step is due to the continuousness of (1 + γ)−H( γ
1+γ )(1 + γ) over γ.

We see that when n→ ∞, ηα(n, p, qe) does not depends on qe as long as 0 < qe < 1. It is because

that when n → ∞, we have t → pn, which does not depend on qe. This property is also hold by

ηβ(n, p, qe) when n→ ∞.

9.4.2 Bounds of limn→∞ ηβ(n, p, qe)

In this subsection, we study the bounds of the asymptotic rates of nonuniform codes. Here, we use

the same idea as that for uniform codes, besides that we need also prove that the ‘edge effect’ can

be ignored, i.e., the number of codewords with Hamming weight w ≪ n does not dominate the final
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result.

Theorem 9.12 (Lower bound). Given 0 < p, qe < 1, we have

lim
n→∞

ηβ(n, p, qe) ≥ max
0≤θ≤1−p

H(θ)− θH(p)− (1− θ)H(
pθ

1− θ
).

Proof. We consider nonuniform codes that corrects t↓ asymmetric errors, where

t↓(w) = min{s|
s∑

i=0

(
w

i

)
pi(1− p)w−i ≥ 1− qe},

for all 0 ≤ w ≤ n.

Based on Hoeffding’s inequality, for any δ > 0, as w becomes large enough, we have (p− δ)w ≤

t↓(w) ≤ (p + δ)w. In another word, for any ϵ, δ > 0, when n is large enough and w ≥ ϵn, we have

(p− δ)w ≤ t↓(w) ≤ (p+ δ)w.

Let w = θn and t↓(w) = γw, then when n is large enough, if θ > ϵ, we have

(p− δ) ≤ γ ≤ (p+ δ).

If θ < ϵ, we call it the ‘edge’ effect. In this case 0 ≤ γ ≤ 1.

Since each codeword with Hamming weight w can tolerate t↓(w) errors,

Bβ(n, p, qe) ≥ R(n, t↓(w), w) ≥ A(n, 2(t↓(w) + 1), w),

for every w with 0 ≤ w ≤ n.
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Applying the Gilbert Bound, we have

Bβ(n, p, qe) ≥ max
w

(
n

w

)
∑t↓(w)

i=0

(
w

i

)(
n− w

i

)

≥ max
w

(
n

w

)
maxi∈[0,t↓(w)] n

(
w

i

)(
n− w

i

)

≥ max
w:

w(n−w)
n ≥t↓(w)

(
n

w

)
n

(
w

t↓(w)

)(
n− w

t↓(w)

) .

When n→ ∞, we have

ηβ(n, p, qe)

=
1

n
log2Bβ(n, p, qe)

≥ 1

n
log2 max

θ:(1−θ)≥γ

2(H(θ)−δ)n

n2(H(γ)+δ)θn2(H( γθ
1−θ )+δ)(1−θ)n

≥ max
θ:(1−θ)≥γ

H(θ)− θH(γ)− (1− θ)H(
γθ

1− θ
)− 2δ +

1

n
log

1

n

= max
θ:(1−θ)≥γ

H(θ)− θH(γ)− (1− θ)H(
γθ

1− θ
).

Note that when θ < ϵ for small ϵ, we have

H(θ)− θH(γ)− (1− θ)H(
γθ

1− θ
) ∼ 0.

So we can ignore this edge effect. That implies that we can write

p− δ ≤ γ ≤ p+ δ,

for any θ with 0 ≤ θ ≤ 1.
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Table 9.1. Upper bounds and lower bounds for the maximum rates of uniform codes and nonuniform
codes

Lower Bound Upper Bound

limn→∞ ηα(n, p, qe) [1−H(2p)]I0≤p≤ 1
4

(1 + p)[1−H( p
1+p )]

limn→∞ ηβ(n, p, qe) max0≤θ≤1−pH(θ)− θH(p) max0≤θ≤1H((1− p)θ)− θH(p)

−(1− θ)H( pθ
1−θ )

Since 1− θ ≥ γ > 0, for any fixed θ,

H(θ)− θH(γ)− (1− θ)H(
γθ

1− θ
)

is a continuous function of γ. As n→ ∞, we have

ηβ(n, p, qe) ≥ max
θ:(1−θ)≥p

H(θ)− θH(p)− (1− θ)H(
pθ

1− θ
).

This completes the proof.

Theorem 9.13 (Upper bound). Given 0 < p, qe < 1, we have

lim
n→∞

ηβ(n, p, qe) ≤ max
0≤θ≤1

H((1− p)θ)− θH(p)

= H(
1

2s(p) + 1
) +

s(p)

2s(p) + 1
,

with s(p) = H(p)/(1− p).

Proof. Here we use the same notations as above. Similar as the proof in theorem 9.11, given (n, p, qe),
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the maximal number of codewords is

Bβ(n, p, qe) ≤ 1 +
n∑

w=h(0)+1

(
n

w − t↓(w)

)
(

w

t↓(w)

)

=
n∑

w=h(0)

(
n

w − t↓(w)

)
(

w

t↓(w)

)

≤ n
max
w=0

n

(
n

w − t↓(w)

)
(

w

t↓(w)

) .

As n→ ∞, we have

ηβ(n, p, qe)

=
1

n
log2Bβ(n, p, qe)

≤ 1

n
log2 max

0≤θ≤1
n
2H((1−γ)θ+δ)n

2(H(γ)θ−δ)n

= max
0≤θ≤1

H((1− γ)θ)− θH(γ) + 2δ +
1

n
log n

= max
0≤θ≤1

H((1− γ)θ)− θH(γ).

Note that when θ < ϵ for small ϵ, we have

H((1− γ)θ)− θH(γ) ∼ 0.

So we can ignore the edge effect. That implies that we can write

p− δ ≤ γ ≤ p+ δ,

for any θ with 0 ≤ θ ≤ 1.

Since for any fixed θ with 0 ≤ θ ≤ 1, H((1− γ)θ)− θH(γ) is a continuous function of γ. When
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Figure 9.4. Bounds of limn→∞ ηα(n, p, qe) and limn→∞ ηβ(n, p, qe).

n→ ∞, we have

ηβ(n, p, qe) . max
0≤θ≤1

H((1− p)θ)− θH(p),

which equals to

H(
1

2s(p) + 1
) +

s(p)

2s(p) + 1
,

with s(p) = H(p)/(1− p).

This completes the proof.

9.4.3 Comparison of Asymptotic Performances

Table 9.1 summarizes the analytic upper bounds and lower bounds of limn→∞ ηα(n, p, qe) and

limn→∞ ηβ(n, p, qe) obtained in this section. For the convenience of comparison, we plot them
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in figure 9.4. The dashed curves represent the lower and upper bounds to limn→∞ ηα(n, p, qe), and

the solid curves represent the lower and upper bounds to limn→∞ ηβ(n, p, qe). The gap between the

bounds for the two codes indicate the potential improvement in efficiency (code rate) by using the

nonuniform codes (compared to using uniform codes) when the codeword length is large. We see

that the upper bound in Theorem 9.13 is also the capacity of the Z-channel, derived in [125]. It

means that nonuniform codes may be able to achieve the Z-channel capacity as n becomes large,

while uniform codes cannot (here we assume that they have codewords of high weights and worst-

case performance is considered, so the constructions of uniform codes cannot achieve the capacity

of Z-channel).

9.5 Layered Codes Construction

In [67], Kløve summarized some constructions of uniform codes for correcting asymmetric errors.

The code of Kim and Freiman was the first one constructed for correcting multiple asymmetric

errors. Varshamov [121] and Constrain and Rao [24] presented some constructions based group

theory. Later, Delsarte and Piret [28] proposed a construction based on ‘expurgating/puncturing’

with some improvements given by Weber et al. [132]. It is natural for us to ask whether it is possible

to construct nonuniform codes based on existing constructions of uniform codes. In this section, we

propose a general construction of nonuniform codes based on multiple layers. It shows that the sizes

of the codes can be significantly increased by equalizing the reliability of all the codewords.

9.5.1 Layered Codes

Let us start from a simple example: Assume we want to construct a nonuniform code with codeword

length n = 10 and

t↓(w) =


0 for w = 0,

1 for 1 ≤ w ≤ 5,

2 for 6 ≤ w ≤ 10.
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In this case, how can we construct a nonuniform code efficiently? Intuitively, we can divide all the

codewords into two layers such that each layer corresponds to a uniform code, namely, we get a

nonuniform code

C = {x ∈ {0, 1}n|w(x) ≤ 5,x ∈ C1}
∪

{x ∈ {0, 1}n|w(x) ≥ 6,x ∈ C2},

where C1 is a uniform code correcting 1 asymmetric error and C2 is a uniform code correcting 2

asymmetric errors. So we can obtain a nonuniform code by combining multiple uniform codes, each

of which corrects a number of asymmetric errors. We call nonuniform codes constructed in this way

as layered codes. However, the simple construction above has a problem – due to the interference

of neighbor layers, the codewords at the bottom of the higher layer may violate our requirement of

reliability, namely, they cannot correct sufficient asymmetric errors. To solve this problem, we can

construct a layered code in the following way: Let us first construct a uniform code correcting 2

asymmetric errors. Then we add more codewords into the code such that

1. The weights of these additional codewords are less than 4 = 6 − t↓(6). This condition can

guarantee that in the resulting nonuniform code all the codewords with weights at least 6 can

tolerate 2 errors.

2. These additional codewords are selected such that the codewords with weights at most 5 can

tolerate 1 error.

9.5.2 Construction

Generally, given a nondecreasing function t↓, we can get a nonuniform code with t↓(n) layers by

iterating the process above. Based on this idea, given n, t↓, we construct layered codes as follows.

Let k = t↓(n) and let C1, ..., Ck be k binary codes of codeword length n, where

C1 ⊃ ... ⊃ Ck,
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Figure 9.5. A demonstration of function t↓ and tl.

and for 1 ≤ t ≤ k, the code Ct can correct t asymmetric errors. Given t↓, we can construct a layered

code C such that

C = {x ∈ {0, 1}n|x ∈ Ctl(w(x))},

where

tl(w(x)) = t↓(maxRw(x))

= t↓(max{s|s− t↓(s) ≤ w(x)}).

We see that there is a shift of the layers (corresponding to the function tl and the function t↓),

see figure 9.5 as a demonstration. The following theorem shows that the construction above satisfies

our requirements of nonuniform codes, i.e., it corrects t↓ asymmetric errors.

Theorem 9.14. Let C be a layered code based on the above construction, then for all x ∈ C, x can

tolerate t↓(w(x)) asymmetric errors.

Proof. We prove that for all x,y ∈ C with x ̸= y, B(x)
∩
B(y) = ϕ. W.l.o.g., we assume w(x) ≥

w(y).
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If w(x)− t↓(w(x)) > w(y), the conclusion is true.

If w(x) − t↓(w(x)) ≤ w(y) and w(x) ≥ w(y), then x,y ∈ Ctl(w(y)). That means there does not

exist a word z ∈ {0, 1}n such that x,y ≥ z and N(x, z) ≤ tl(w(y)) and N(y, z) ≤ tl(w(y)). Since

w(x) − t↓(w(x)) ≤ w(y), according to the definition of tl, it is easy to get tl(w(y)) ≥ t↓(w(x)) ≥

t↓(w(y)). So there does not exist a word z ∈ {0, 1}n such that x,y ≥ z and N(x, z) ≤ t↓(w(x)) and

N(y, z) ≤ t↓(w(y)), namely, B(x)
∩
B(y) = ϕ.

This completes the proof.

We see that the constructions of layered codes are based on the provided group of codes C1, ..., Ck

such that C1 ⊃ C2 ⊃ ... ⊃ Ck and for 1 ≤ t ≤ k, and the code Ct corrects t asymmetric errors.

Examples of such codes include Varshamov codes [121], BCH codes, etc.

The construction of Varshamov codes can be described as follows: Let α1, α2, ..., αn be distinct

nonzero elements of Fq, and let α := (α1, α2, ..., αn). For x = (x1, x2, ..., xn) ∈ {0, 1}n, let xα =

(x1α1, x2α2, ..., xnαn). For g1, g2, ..., gt ∈ Fq and 1 ≤ t ≤ k, let

Ct := {x ∈ {0, 1}n|σl(xα) = gl for 1 ≤ l ≤ t},

where the elementary symmetric function σl(u) for l ≥ 0 are defined by

r∏
i=1

(z + ui) =
∞∑
l=0

σl(u)z
r−l.

Then Ct can correct t asymmetric errors (for 1 ≤ t ≤ k), and C1 ⊃ C2 ⊃ ... ⊃ Ck.

Such a group of codes can also be constructed by BCH codes: Let (α0, α1, ..., αn−1) be n distinct

nonzero elements of G2m with n = 2m − 1. For 1 ≤ t ≤ k, let

Ct := {x ∈ {0, 1}n|
n∑

i=1

xiα
(2l−1)
i = 0 for 1 ≤ l ≤ t}.
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9.5.3 Decoding Algorithm

Assume x is a codeword in Ct and y = x+ e is a received erroneous word with error vector e, then

there is an efficient algorithm to decode y into a codeword, which is denoted by Dt(y). If y has at

most t asymmetric errors, then Dt(y) = x. We show that the layered codes proposed above also

have an efficient decoding algorithm if Dt(·) (for 1 ≤ t ≤ k) are provided and efficient.

Theorem 9.15. Let C be a layered code based on the above construction, and let y = x + e be

a received word such that x ∈ C and |e| ≤ t↓(w(x)). To recover x from y, we enumerate the

integers in [tl(w(y)), tl(w(y) + tl(w(y)))]. If we can find an integer t such that Dt(y) ∈ C and

N(Dt(y),y) ≤ t↓(w(Dt(y))), then Dt(y) = x.

Proof. If we let t = t↓(w(x)), then we can get that t satisfies the conditions and Dt(y) = x. So such

t exists.

Now we only need to prove that once there exists t satisfying the conditions in the theorem, we

have Dt(y) = x. We prove this by contradiction. Assume there exists t satisfying the conditions but

z = Dt(y) ̸= x. Then N(z,y) ≤ t↓(w(z)). Since we also have N(x,y) ≤ t(w(x)), B(x)
∩
B(z) ̸= ϕ,

which contradicts the property of the layered codes.

This completes the proof.

In the above method, to decode an erroneous word y, we can check all the integers between

tl(w(y)) and tl(w(y) + tl(w(y))) to find the value of t. Once we find the integer t satisfying the

conditions in the theorem, we can decode y into Dt(y) directly. (Note that the length of the interval

for t, namely tl(w(y)+tl(w(y)))−tl(w(y)), is normally much smaller than w(y). It is approximately

p2

(1−p)2w(y) for i.i.d. errors when w(y) is large.) We see that this decoding process is efficient if Dt(.)

is efficient for 1 ≤ t ≤ k.

9.5.4 Layered vs.Uniform

Typically, nonlinear codes, like Varshamov codes are superior to BCH codes. But it is still not well-

known how to estimate the sizes of Varshamov codes and their weight distributions. To compare
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Table 9.2. BCH codes with codeword length 255

n k t n k t

255 247 1 255 115 21

255 239 2 255 107 22

255 231 3 255 99 23

255 223 4 255 91 25

255 215 5 255 87 26

255 207 6 255 79 27

255 199 7 255 71 29

255 191 8 255 63 30

255 187 9 255 55 31

255 179 10 255 47 42

255 171 11 255 45 43

255 163 12 255 37 45

255 155 13 255 29 47

255 147 14 255 21 55

255 139 15 255 13 59

255 131 18 255 9 63

255 123 19

[40]

uniform constructions and nonuniform constructions for correcting asymmetric errors, we focus on

BCH codes, namely, we compare normal BCH codes with layered BCH codes. Here, we consider

i.i.d. errors, and we assume that the codeword length is n = 255, the crossover probability is p and

the maximal tolerated error probability is qe.

Table 9.2 shows the relations between the dimension k and the number of errors t that can be

corrected in BCH codes when n = 255. According to [78], many BCH codes have approximated

binomial weight distribution. So given an (255, k, t) BCH code, the number of codewords of weight

i is approximately

bi ∼ 2k

(
n

i

)
2n

.
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Figure 9.6. The estimated rates of BCH codes and layered BCH codes when n = 255, qe = 10−4.

For a normal BCH code, it has to correct t errors with

t = min{s ∈ N |
s∑

i=0

(
n

i

)
pi(1− p)n−i ≥ 1− qe},

then it has 2k codewords where k can be obtained from table 9.2 based on the value of t.

For a layered BCH code, the codewords with Hamming weight w have to correct t↓(w) asymmetric

errors such that

t↓(w) = min{s ∈ N |
s∑

i=0

(
w

i

)
pi(1− p)w−i ≥ 1− qe},

for all 0 ≤ w ≤ n. Based on the approximated weight distribution of BCH codes, the number of

codewords in a layered BCH codes can be estimated by summing up the numbers of codewords with

different weights.

Figure 9.6 plots the estimated rates of BCH codes and layered BCH codes for different p when

n = 255 and qe = 10−4. Here, for a code C, let #C be the number of codewords, then the rate of C

is defined as log2(#C)
n . From this figure, we see that under the same parameters (n, p, qe), the rates

of layered BCH codes are much higher than those of BCH codes. By constructing nonuniform codes

instead of uniform codes, the code rate can be significantly increased. Comparing figure 9.6 with
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figure 9.3, it can be seen that the rates of layered BCH codes are very close to the upper bounds

of uniform codes. It implies that we can gain more by considering nonuniform codes rather than

nonlinear uniform codes.

9.6 Flipping Codes Construction

Many nonlinear codes designed to correct asymmetric errors like Varshamov codes are superior to

linear codes. However, they do not yet have efficient encoding algorithms, namely, it is not easy to

find an efficient encoding function f : {0, 1}k → C with k w ⌊log |C|⌋. In this section, we focus on

the approach of designing nonuniform codes for asymmetric errors with efficient encoding schemes,

by utilizing the well-studied linear codes.

A simple method is that we can use a linear code to correct t↓(n) asymmetric errors directly,

but this method is inefficient not only because the decoding sphere for symmetric errors is greater

than the sphere for asymmetric errors (and therefore an overkill), but also because for low-weight

codewords, the number of asymmetric errors they need to correct can be much smaller than t↓(n).

Our idea is to build a flipping code that uses only low-weight codewords (specifically, codewords

of Hamming weight no more than ∼ n
2 ), because they need to correct fewer asymmetric errors

and therefore can increase the code’s rate. In the rest of this section, we present two different

constructions.

9.6.1 First Construction

First, we construct a linear code C (like BCH codes) of length n with generator matrix G that

corrects t↓(⌊n
2 ⌋) symmetric errors. Assume the dimension of the code is k. For any binary message

u ∈ {0, 1}k, we can map it to a codeword x in C such that x = uG. Next, let x denote a word

obtained by flipping all the bits in x such that if xi = 0 then xi = 1 and if xi = 1 then xi = 0; and

let y denote the final codeword corresponding to u. We check whether w(x) < ⌊n
2 ⌋ and construct y
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in the following way:

y =


x00...0 if w(x) < ⌊n

2 ⌋,

x11...1 otherwise.

Here, the auxiliary bits (0s or 1s) are added to distinguish that whether x has been flipped or not,

and they form a repetition code to tolerate errors.

The corresponding decoding process is straightforward: Assume we received a word y′. If there

is at least one 1 in the auxiliary bits, then we “flip” the word by changing all 0s to 1s and all 1s to

0s; otherwise, we keep the word unchanged. Then we apply the decoding scheme of the code C to

the first n bits of the word. Finally, the message u can be successfully decoded if y′ has at most

t↓(⌊n
2 ⌋) errors in the first n bits.

9.6.2 Second Construction

In the previous construction, several auxiliary bits are needed to protect one bit of information,

which is not very efficient. Here we try to move this bit into the message part of the codewords in

C. This motivates us to give the following construction.

Let C be a systematic linear code with length n that corrects t′ symmetric errors (we will specify

t′ later). Assume the dimension of the code is k. Now, for any binary message u ∈ {0, 1}k−1 of

length k − 1, we get u′ = 0u by adding one bit 0 in front of u. Then we can map u′ to a codeword

x in C such that

x = (0u)G = 0uv,

where G is the generator matrix of C in systematic form and the length of v is n − k. Let α be

a codeword in C such that the first bit α1 = 1 and its weight is the maximal one among all the

codeword in C, i.e.,

α = arg max
x∈C,x1=1

w(x).

Generally, w(α) is very close to n. For example, in any primite BCH code of length 255, α is the

all-one vector. In order to reduce the weights of the codewords, we use the following operations:
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Calculate the relative weight

w(x|α) = |{1 ≤ i ≤ n|xi = 1, αi = 1}|.

Then we get the final codeword

y =


x+ α if w(x|α) > w(α)

2 ,

x otherwise,

where + is the binary sum, so x+ α is to flip the bits in x corresponding the ones in α. So far, we

see that the maximal weight for y is ⌊n− w(α)
2 ⌋. That means we need to select t′ such that

t′ = t↓(⌊n− w(α)

2
⌋).

For many linear codes, α is the all-one vector, so t′ = t↓(⌊n
2 ⌋).

In the above encoding process, for different binary messages, they have different codewords. And

for any codeword y, we have y ∈ C. That is because either y = x or y = x+ α, where both x and

α are codewords in C and C is a linear code. So the resulting flipping code is a subset of code C.

The decoding process is very simple: Given the received word y′ = y+e, we can always get y by

applying the decoding scheme of the linear code if |e| ≤ t′. If y1 = 1, that means x has been flipped

based on α, so we have x = y + α; otherwise, x = y. Then the initial message u = x2x3...xk.

We see that the second construction is a little more efficient than the first one, by moving the

‘flipping’ bit from the outside of a codeword (of an error-correcting code) to the inside. Here is an

example of the second construction: Let C be the (7, 4) Hamming code, which is able to correct
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single-bit errors. The generating matrix of the (7, 4) Hamming code is

G =



1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1


.

Here we have t′ = 1 and k = 4. Assume the binary message is u = 011, then we have x =

(0u)G = 0011100. It is easy to see that α is the all-one codeword, i.e., α = 1111111. In this case,

w(x|α) <= w(α)
2 , so the final codeword y = 0011100. Assume the binary message is u = 110, then we

have x = (0u)G = 0110110. In this case, w(x|α) > w(α)
2 , so the final codeword y = x+α = 1001001.

Assume the received word is y′ = 0001001. By applying the decoding algorithm of Hamming

codes, we get y = 1001001. Since y1 = 1, we have x = y + α, and as a result, u = 110.

9.6.3 Flipping vs.Layered

When n is sufficiently large, the flipping codes above become nearly as efficient (in terms of code

rate) as a linear codes correcting t↓(⌊n
2 ⌋) symmetric errors. It is much more efficient than designing

a linear code correcting t↓(n) symmetric errors. Note that when n is large and p is small, these

codes can have very good performance on code rate. That is because when n is sufficiently large, the

rate of an optimal nonuniform code is dominated by the codewords with the same Hamming weight

wd (≤ n
2 ), and wd approaches n

2 as p gets close to 0. We can intuitively understand it based on

two facts when n is sufficiently large: (1) There are at most n2n(H(
wd
n )+δ) codewords in this optimal

nonuniform code. (2) When p becomes small, we can get a nonuniform code with at least 2n(1−δ)

codewords. So when n is sufficiently large and p is small, we have wd → n
2 . Hence, an optimal

nonuniform code has almost the same asymptotic performance with an optimal weight-bounded

code (Hamming weight is at most n/2) that corrects t↓(n/2) asymmetric errors.

Let us consider a flipping BCH code based on the second construction. Similar as the previous

section, we assume that the codeword length is n = 255 and the number of codewords with weight
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Figure 9.7. The estimated rates of flipping/layered BCH codes when n = 255, qe = 10−4.

i can be approximated by

2k

(
n

i

)
2n

,

where k is the dimension of the code. Figure 9.7 compares the estimated rates of flipping BCH codes

and those of layered BCH codes when n = 255 and qe = 10−4. Surprisingly, the flipping BCH codes

achieves almost the same rates as layered BCH codes. Note that, for the layered codes, we are able

to further improve the efficiency (rates) by replacing BCH codes with Varshamov codes.

9.7 Extension to Binary Asymmetric Channels

In the previous sections, we have introduced and studied nonuniform codes for Z-channels. The

concept of nonuniform codes can be extended from Z-channels to general binary asymmetric channels,

where the error probability from 0 to 1 is smaller than the error probability from 1 to 0 but it may

not be ignorable. In this case, we are able to construct nonuniform codes correcting a big number of

1 → 0 errors and a small number of 0 → 1 errors. Such codes can be used in flash memories or phase

change memories, where the change in data has an asymmetric property. For example, the stored

data in flash memories is represented by the voltage levels of transistors, which drift in one direction
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because of charge leakage. In phase change memories, another class of nonvolatile memories, the

stored data is determined by the electrical resistance of the cells, which also drifts due to thermally

activated crystallization of the amorphous material. This asymmetric property will introduce more

1 → 0 errors after a long duration.

In this section, we first investigate binary asymmetric channels where the probability from 0 to

1 is much smaller than that from 1 to 0, namely, p↑ ≪ p↓, but p↑ is not ignorable. In this case, we

can let t↑ be a constant function. Later, we consider general binary asymmetric channels, where t↑

can be an arbitrary nonincreasing step function.

9.7.1 t↑ Is a Constant Function

We show that if t↑ is a constant function, then correcting [t↓, t↑] errors is equivalent to correcting

t↓ + t↑ asymmetric errors, where t↓ can be an arbitrary step functions on {0, 1, ..., n}.

Theorem 9.16. Let t↑ be a constant function, a code C is a nonuniform code correcting [t↓, t↑]

errors if and only if it is a nonuniform code correcting t↓ + t↑ asymmetric errors.

Proof. 1) We first show that if C is a nonuniform code correcting [t↓, t↑] errors where t↑ is a constant

function, then it can correct t↓ + t↑ asymmetric errors. We need to prove that there does not exists

a pair of codewords x,y ∈ C such that

N(x,y) ≤ t↓(w(x)) + t↑,

N(y,x) ≤ t↓(w(y)) + t↑,

where

N(x,y) , |{i : xi = 1, yi = 0}|.

Let us prove it by contradiction. Assume that their exists a pair of codewords x,y that satisfy

the inequalities above. By adding at most t↑ 0 → 1 errors, we get a vector x′ from x such that the

Hamming distance between x′ and y is minimized; also we get a vector y′ from y such that the



325

x
y

1’s

0’s

N(x,y) N(y,x)

x’

y’

Figure 9.8. A demonstration of x,y,x′,y′.

Hamming distance between y′ and x is minimized. In this case, we only need to show that

N(x′,y′) ≤ t↓(w(x)), N(y′,x′) ≤ t↓(w(y)),

which contradicts with our assumption that C can correct [t↓, t↑] errors. The intuitive way of

understanding x′,y′ is shown in figure 9.8. In the figure, we present each vector as a line, in which

the solid part is for 1s and the dashed part is for 0s.

If N(x′,x) < t↑ and N(y′,y) < t↑, then

x′i = max(xi, yi) = y′i,

so x′ = y′. The statement is true.

If N(x′,x) < t↑ and N(y′,y) = t↑, then y′ ≤ x′. In this case,

N(x′,y′) ≤ N(x,y)− t↑ ≤ t↓(w(x)).

We get the statement.

Similarly, if N(y′,y) < t↑ and N(x′,x) = t↑, we have x′ ≤ y′ and

N(y′,x′) ≤ N(y,x)− t↑ ≤ t↓(w(y)).
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If N(x′,x) = t↑ and N(y′,y) = t↑, we can get

N(x′,y′) ≤ N(x,y)− t↑ ≤ t↓(w(x)),

N(y′,x′) ≤ N(y,x)− t↑ ≤ t↓(w(y)).

Based on the discussions above, we can conclude that if C is a nonuniform code correcting [t↓, t↑]

errors where t↑ is a constant function, then it is also a nonuniform code correcting t↓+t↑ asymmetric

errors.

2) We show that if C is a nonuniform codes correcting t↓ + t↑ asymmetric errors where t↑ is a

constant function, then it is also a nonuniform code correcting [t↓, t↑] errors. That means for any

x,y ∈ C, there does not exist a vector v such that

N(v,x) ≤ t↑, N(x,v) ≤ t↓(w(x)),

N(v,y) ≤ t↑, N(y,v) ≤ t↓(w(y)).

Let us prove this by contradiction. We assume there exists a vector v satisfies the above condi-

tions. Now, we define a few vectors x′,y′,u such that

x′i = min(xi, vi) ∀1 ≤ i ≤ n,

y′i = min(yi, vi) ∀1 ≤ i ≤ n,

ui = min(xi, yi, vi) ∀1 ≤ i ≤ n.

The intuitive way of understanding these vectors is shown in figure 9.9. In the figure, we present

each vector as a line, in which the solid part is for 1s and the dashed part is for 0s.

Then

x′ ≤ x,x′ ≤ v, N(x,x′) ≤ t↓(w(x)), N(v,x′) ≤ t↑,
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y′ ≤ y,y′ ≤ v, N(y,y′) ≤ t↓(w(y)), N(v,y′) ≤ t↑.

Now we want to show that

N(x,u) ≤ t↓(w(x)) + t↑.

Since

N(x,u) ≤ N(x,x′) +N(x′,u),

we only to show that

N(x′,u) ≤ t↑.

According to the definition of u, it is easy to get that

N(v,x′) +N(x′,u) = N(v,y′) +N(y′,u)

≤ N(v,x′) +N(v,y′)

So N(x′,u) ≤ t↑, which leads us to

N(x,u) ≤ t↓(w(x)) + t↑.
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Similarly, we can also get

N(y,u) ≤ t↓(w(y)) + t↑.

In this case, C is not a nonuniform codes correcting t↓ + t↑ asymmetric errors, which contradicts

with our assumption.

Based on the discussions above, we can get the conclusion in the theorem.

According to the above theorem, all our results for Z-channels, like upper bounds and construc-

tions of nonuniform codes, can apply to nonuniform codes correcting [t↓, t↑] errors if t↑ is a constant

function.

9.7.2 t↑ Is a Nonincreasing Function

Another case of binary asymmetric channel is that p↑ < p↓ but p↑ is not much smaller than p↓. In this

case, it is not efficient to write t↑ as a constant function. Instead, we consider it as a nonincreasing

step function.

Theorem 9.17. Let t↓ be a nondecreasing function and t↑ be a nonincreasing function. A code C is

a nonuniform code correcting [t↓, t↑] errors if it is a nonuniform code correcting t↓ + t↑ asymmetric

errors. Here, for all 0 ≤ w ≤ n,

t↑(w) = t↑(max{s|t↑(s) + s ≤ w − t↓(w)}).

Proof. Let C be a nonuniform code correcting t↓ + t↑ errors. For any x,y ∈ C, w.l.o.g, we assume

w(x) ≤ w(y). If w(x) + t↑(w(x)) < w(y)− t↓(w(y)), then there does not exist a vector v such that

N(v,x) ≤ t↑, N(x,v) ≤ t↓(w(x)),

N(v,y) ≤ t↑, N(y,v) ≤ t↓(w(y)).

If w(x) + t↑(w(x)) ≥ w(y) − t↓(w(y)), according to the proof in theorem 9.16, we can get that
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there does not exist a vector v such that

N(v,x) ≤ t↑(w(x)),

N(x,v) ≤ t↓(w(x)) + t↑(w(x))− t↑(w(x));

N(v,y) ≤ t↑(w(x)),

N(y,v) ≤ t↓(w(y)) + t↑(w(y))− t↑(w(x)).

Since

t↑(w(x))− t↑(w(x)) ≥ 0,

t↑(w(x)) ≥ t↑(w(y)),

t↑(w(y)) ≥ t↑(w(x)),

we can get that there does not exist a vector v such that

N(v,x) ≤ t↑, N(x,v) ≤ t↓(w(x)),

N(v,y) ≤ t↑, N(y,v) ≤ t↓(w(y)).

Finally, we conclude that C is a nonuniform code correcting [t↓, t↑] errors.

According to the above theorem, we can convert the problem of constructing a nonuniform codes

for an arbitrary binary asymmetric channel to the problem of constructing a nonuniform correcting

only 1 → 0 errors. Note that this conversion results in a little loss of code efficiency, but typically it

is very small. Both layered codes and flipping codes can be applied for correcting errors in binary

asymmetric channels. A little point to notice is that t↓ + t↑ might not be a strict nondecreasing

function of codeword weight. In this case, we can find a nondecreasing function th which is slightly

larger than t↓ + t↑, and construct a nonuniform code correcting th asymmetric errors.
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When we apply flipping codes for correcting errors in binary asymmetric channels, we do not

have to specify t↓ and t↑ separately. For example, assume that i.i.d. errors are considered. If the

maximal tolerated error probability is qe, then given a codeword of weight w, it has to tolerate total

tf (w) errors. For 0 ≤ w ≤ n, tf (w) can be obtained by calculating the minimal integer t such that

t∑
i=0

t−i∑
j=0

(
w

i

)(
n− w

j

)
pi↓(1− p↓)

w−ipj↑(1− p↑)
(n−w−j) ≥ 1− qe.

To construct a flipping code, we only need to find a linear code such that it corrects tf (⌊n − α
2 ⌋)

symmetric errors, where α is the codeword with the maximum weight in the linear code.

Theorem 9.18. Let t↓ be a nondecreasing function and t↑ be a nonincreasing function. If a code

C is a nonuniform code correcting [t↓, t↑] errors, then it corrects t↓ + t↑ asymmetric errors. Here,

t↑(w) = t↑(min{s|s− t↑(s)− t↓(s) ≤ w}).

Proof. The proof of this theorem is very similar as that for the previous theorem. It follows the

conclusion in theorem 9.16.

According to the theorem above, to calculate the upper bound of nonuniform codes correcting

[t↓, t↑] errors, we can first calculate the upper bound of nonuniform codes correcting t↓+t↑ asymmet-

ric errors. Generally speaking, nonuniform codes correcting [t↓, t↑] errors (considering the optimal

case) are more efficient than nonuniform codes correcting t↓+ t↑ asymmetric errors, but less efficient

than those correcting t↓ + t↑ asymmetric errors. According to the definitions of t↑ and t↑(w), it is

easy to get that

t↑(w) ≤ t↑(w) ≤ t↑(w),

for 0 ≤ w ≤ n. Typically, if p↓, p↑ ≪ 1, then t↑(w) − t↑(w) ≪ t↑(w). It implies that nonuniform

codes correcting [t↓, t↑] errors are roughly as efficient as those correcting t↓ + t↑ asymmetric errors.

If we consider i.i.d. errors and long codewords, it is equally difficult to correct errors introduced by

a binary asymmetric channel with crossover probabilities p↓ and p↑ or a Z-channel with a crossover
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probability p↓ + p↑.

9.8 Conclusion

In storage systems with asymmetric errors, it is very desirable to design a code such that the

reliability of each codeword is guaranteed and the size of the code is maximized. This motivates

us to propose the concept of nonuniform codes, whose codewords can tolerate different numbers

of asymmetric errors depending on their Hamming weights. In this chapter, we gave an almost

explicit upper bound for the sizes of nonuniform codes and studied the asymptotic performances of

nonuniform codes and uniform codes, which shows the potential performance gain by nonuniform

codes. We also presented two general constructions of nonuniform codes, including layered codes

and flipping codes. Finally, we showed that nonuniform codes for Z-channels and those for binary

asymmetric channels can convert to each other. Since more needs to be known on the efficient

mapping between information bits and codewords for layered codes, and the efficiency of flipping

codes still needs improvement when p is not small, how to design simple and efficient nonuniform

codes is still an open problem.
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Chapter 10

Balanced Modulation for
Nonvolatile Memories

This chapter presents a practical writing/reading scheme in nonvolatile memories, called

balanced modulation, for minimizing the asymmetric component of errors. The main idea

is to encode data using a balanced error-correcting code. When reading information from

a block, it adjusts the reading threshold such that the resulting word is also balanced or

approximately balanced. Balanced modulation has suboptimal performance for any cell-

level distribution and it can be easily implemented in the current systems of nonvolatile

memories.1

10.1 Introduction

Nonvolatile memories, like EPROM, EEPROM, Flash memory or Phase-change memory (PCM),

are memories that can keep the data content even without power supply. This property enables

them to be used in a wide range of applications, including cellphones, consumers, automotive and

computers. Many research studies have been carried out on nonvolatile memories because of their

unique features, attractive applications and huge marketing demands.

An important challenge for most nonvolatile memories is data reliability. The stored data can

be lost due to many mechanisms, including cell heterogeneity, programming noise, write distur-

bance, read disturbance, etc. [12,89]. From a long-term view, the change in data has an asymmetric

1 Some of the results presented in this chapter have been previously published in [145].
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property. For example, the stored data in flash memories is represented by the voltage levels of

transistors, which drift in one direction because of charge leakage. In PCM, another class of non-

volatile memories, the stored data is determined by the electrical resistance of the cells, which drifts

due to thermally activated crystallization of the amorphous material [135]. All these mechanisms

make the errors in nonvolatile memories be heterogeneous, asymmetric, time dependent and unpre-

dictable. These properties bring substantial difficulties to researchers attempting to develop simple

and efficient error-correcting schemes.

To date, existing coding schemes for nonvolatile memories commonly use fixed thresholds to read

data. For instance, in flash memories, a threshold voltage level v is predetermined; when reading

data from a cell, it gets ‘1’ if the voltage level is higher than v, and otherwise it gets ‘0’. To increase

data reliability, error-correcting codes such as Hamming code, BCH code, Reed-Solomon code and

LDPC code are applied in nonvolatile memories to combat errors. Because of the asymmetric feature

of nonvolatile memories, a fixed threshold usually introduces too many asymmetric errors after a

long duration [85], namely, the number of 1 → 0 errors is usually much larger than the number

of 0 → 1 errors. To overcome the limitations of fixed thresholds in reading data in nonvolatile

memories, dynamic thresholds are introduced in this chapter. To better understand this, we use

flash memories for illustration, see figure 10.1. The top figure is for newly written data, and the

bottom figure is for old data that has been stored for a long time T . In the figures, assume the left

curve indicates the voltage distribution for bit ‘0’ (a bit ‘0’ is written during programming) and the

right curve indicates the voltage distribution for bit ‘1’. At time 0 (the moment after programming),

it is best to set the threshold voltage as v = v1, for separating bit ‘1’ and ‘0’. But after a period

of time, the voltage distribution will change. In this case, v1 is no longer the best choice, since it

will introduce too many 1 → 0 errors. Instead, we can set the threshold voltage as v = v2 (see the

second plot in the figure), to minimize the error probability. This also applies to other nonvolatile

memories, such as PCMs.

Although best dynamic reading thresholds lead to much less errors than fixed ones, certain

difficulties exist in determining their values at a time t. One reason is that the accurate level
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Figure 10.1. An illustration of the voltage distributions for bit “1” and bit “0” in flash memories.

distributions for bit ‘1’ and ‘0’ at any the current time are hard to obtain due to the lack of time

records, the heterogeneity of blocks, and the unpredictability of exceptions. Another possible method

is to classify all the cell levels into two groups based on unsupervised clustering and then map them

into ‘1’s and ‘0’s. But when the border between bit ‘1’s and ‘0’s becomes fuzzy, mistakes of clustering

may cause significant number of reading errors. In view of these considerations, in this chapter, we

introduce a simple and practical writing/reading scheme in nonvolatile memories, called balanced

modulation, which is based on the construction of balanced codes (or balanced error-correcting codes)

and it aims to minimize the asymmetric component of errors in the current block.

Balanced codes, whose codewords have an equal number of 1s and 0s, have been studied in

several literatures. Knuth, in 1986, proposed a simple method of constructing balanced codes [69].

In his method, given an information word of k-bits (k is even), the encoder inverts the first i bits

such that the modified word has an equal number of 1s and 0s. Knuth showed that such an integer

i always exists, and it is represented by a balanced word of length p. Then a codeword consists

of an p-bit prefix word and an k-bit modified information word. For decoding, the decoder can

easily retrieve the value of i and then get the original information word by inverting the first i
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bits of the k-bit information word again. Knuth’s method was later improved or modified by many

researchers [6, 55, 111, 130]. Based on balanced codes, we have a scheme of balanced modulation.

It encodes the stored data as balanced codewords; when reading data from a block, it adjusts the

reading threshold dynamically such that the resulting word to read is also balanced (namely, the

number of 1s is equal to the number of 0s) or approximately balanced. Here, we call this dynamic

reading threshold as a balancing threshold.

There are several benefits of applying balanced modulation in nonvolatile memories. First, it

increases the safety gap of 1s and 0s. With a fixed threshold, the safety gap is determined by the

minimum difference between cell levels and the threshold. With balanced modulation, the safety

gap is the minimum difference between cell levels for 1 and those for 0. Since the cell level for

an individual cell has a random distribution due to the cell-programming noise [17, 76], the actual

value of the charge level varies from one write to another. In this case, balanced modulation is

more robust than the commonly used fixed-threshold approach in combating programming noise.

Second, as we discussed, balanced modulation can is a very simple solution that minimizes the

influence of cell-level drift. It was shown in [19] that cell-level drift in flash memories introduces

the most dominating errors. Third, balanced modulation can efficiently reduce errors introduced

by some other mechanisms, such as the change of external temperatures and the current leakage of

other reading lines, which result in the shift of cell levels in a same direction. Generally, balanced

modulation is a simple approach that minimizes the influence of noise asymmetries, and it can be

easily implemented on current memory devices without hardware changes. The balanced condition

on codewords enables us to select a much better threshold dynamically than the commonly used

fixed threshold when reading data from a block.

The main contributions of the chapter are

1. We study balanced modulation as a simple, practical and efficient approach to minimize asym-

metric component of errors in nonvolatile memories.

2. A new construction of balanced error-correcting codes, called balanced LDPC code, is intro-

duced and analyzed, which has a higher rate than prior constructions.
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3. We investigate partial-balanced modulation, for its simplicity of constructing error-correcting

codes, and then we extend our discussions from binary cells to multi-level cells.

10.2 Scope of This Chapter

10.2.1 Performance and Implementation

In the first part of this chapter, including section 10.3, section 10.4 and section 10.5, we focus on the

introduction and performance of balanced modulation. In particular, we demonstrate that balanced

modulation introduces much less errors than the traditional approach based on fixed thresholds.

For any cell-level distributions, the balancing threshold used in balanced modulation is suboptimal

among all the possible reading thresholds, in the term of total number of errors. It enables balanced

modulation to be adaptive to a variety of channels characters, hence, it makes balanced modulation

applicable for most types of nonvolatile memories. Beyond storage systems, balanced modulation

can also be used in optimal communication, where the strength of received signals shifts due to

many factors like the transmitting distance, temperature, etc.

A practical and very attractive aspect of balanced modulation is that it can be easily implemented

in the current systems of nonvolatile memories. The only change is that, instead of using a fixed

threshold in reading a binary vector, it allows this threshold to be adaptive. Fortunately, this

operation can be implemented physically, making the process of data reading reasonably fast. In

this case, the reading process is based on hard decision.

If we care less about reading speed, we can have soft-decision decoding, namely, reading data

without using a threshold. We demonstrate that the prior knowledge that the stored codeword is

balanced is very useful. It helps us to better estimate the current cell-level distributions, hence,

resulting in a better performance in bit error rate.
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10.2.2 Balanced LDPC Code

Balanced modulation can efficiently reduce bit error rate when reading data from a block. A further

question is how to construct balanced codes that are capable of correcting errors. We call such codes

balanced error-correcting codes. Knuth’s method cannot correct errors. In [119], van Tilborg and

Blaum presented a family of balanced binary error-correcting codes. The idea is to consider balanced

blocks as symbols over an alphabet and to construct error-correcting codes over that alphabet by

concatenating n blocks of length 2l each. Due to the constraint in the code construction, this method

achieves only moderate rates. Error-correcting balanced codes with higher rates were presented by

Al-Bassam and Bose in [6], however, their construction considers only the case that the number of

errors is at most 4. In [82], Mazumdar, Roth, and Vontobel studied linear balancing sets, namely,

balancing sets that are linear subspaces Fn, which are applied in obtaining coding schemes that

combine balancing and error correction. Recently, Weber, Immink and Ferreira extent Knuth’s

method to let it equipped with error-correcting capabilities [131]. Their idea is to assign different

error protection levels to the prefix and modified information word in Knuth’s construction. So their

construction is a concatenation of two error-correct codes with different error correcting capabilities.

In section 10.6, we introduce a new construction of balanced error-correcting codes, which is based on

LDPC code, so called balanced LDPC code. Such a construction has a simple encoding algorithm and

its decoding complexity based on message-passing algorithm is asymptotically equal to the decoding

complexity of the original (unbalanced) LDPC code. We demonstrate that balanced LDPC code

has error-correcting capability very close to the original (unbalanced) LDPC code.

10.2.3 Partial-Balanced Modulation and Its Extension

Our observation is that the task of constructing efficient balanced error-correcting codes with simple

encoding and decoding algorithms is not simple, but it is much easier to construct error-correcting

codes that are partially balanced, namely, only a certain segment (or subsequence) of each codeword

is balanced. Motivated by this observation, we propose a variant of balanced modulation, called

partial-balanced modulation. When reading from a block, it adjusts the reading threshold such that
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Figure 10.2. The diagram of balanced modulation.

the segment of the resulting word is balanced. Partial-balanced modulation has a performance very

close to that of balanced modulation, and it has much simpler constructions of error-correcting codes

than balanced modulation. Another question that we address in the third part is how to extend the

scheme of balanced modulation or partial-balanced modulation to be used in nonvolatile memories

with multi-level cells. Details will be provided in section 10.7 and section 10.8.

10.3 Balanced Modulation

For convenience, we consider different types of nonvolatile memories in the same framework where

data is represented by cell levels, such as voltages in flash memories and resistance in phase-change

memories. The scheme of balanced modulation is sketched in figure 10.2. It can be divided into two

steps: programming step and reading step.

(1) In the programming step, we encode data based a balanced (error-correcting) code. Let k

denote the dimension of the code and n denote the number of cells in a block, then given a message

u ∈ {0, 1}n, it is mapped to a balanced codeword x ∈ {0, 1}n such that |x| = n
2 where |x| is the

Hamming weight of x.

(2) In the reading step, we let c = c1c2...cn ∈ Rn be the current levels of the n cells to read.

A balancing threshold v is determined based on c such that the resulting word, denoted by y =

y1y2...yn, is also balanced, namely, |y| = n
2 . For each i ∈ {1, 2, ..., n}, yi = 1 if and only if ci ≥ v,
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otherwise yi = 0. By applying the decoder of the balanced (error-correcting) code, we get a binary

output ũ, which is the message that we read from the block.

0 1

v
number of cells 

that store 0
number of cells 

that store 1

cell-level

N (1 0)
N (0 1)

Figure 10.3. Cell-level distributions for 1 and 0, and the reading threshold.

Let us intuitively understanding the function of balanced modulation based on the demonstration

of figure 10.3, which depicts the cell-level distributions for those cells that store 0 or 1. Given a

reading threshold v, we use N (1→0) denote the number of 1 → 0 errors and use N (0→1) denote the

number of 0 → 1 errors, as the tails marked in the figure. Then

N (1→0) = |{i : xi = 1, yi = 0}|,

N (0→1) = |{i : xi = 0, yi = 1}|.

We are ready to see

|y| = |x| −N (1→0) +N (0→1),

where |x| is the Hamming weight of x.

According to the definition, a balancing threshold is the one that makes y being balanced, hence,

N (1→0)(v) = N (0→1)(v),

i.e., a balancing threshold results in the same number of 1 → 0 errors and 0 → 1 errors.
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We define Ne(v) as the total number of errors based on a reading threshold v, then

Ne(v) = N (1→0)(v) +N (0→1)(v).

If the cell-level distributions for those cells that store 1 and those cells that store 0 are known, then

the balancing threshold may not be the best reading threshold that we can have, i.e., Ne(v) may

not be minimized based on the balancing threshold. Let vb denote the balancing threshold, as a

comparison, we can have an optimal threshold vo, which is defined by

vo = argmin
v
Ne(v).

Unfortunately, it is almost impossible for us to know the cell-level distributions for those cells that

store 1 and those cells that store 0 without knowing the original word x. From this sense, the optimal

threshold vo is imaginary. Although we are not able to determine vo, the following result shows that

the balancing threshold vb has performance comparable to that of vo. Even in the worst case, the

number of errors introduced based on vb is at most two times that introduced by vo, implying the

suboptimality of the balancing threshold vb.

Theorem 10.1. Given any balanced codeword x ∈ {0, 1}n and cell-level vector c ∈ Rn, we have

Ne(vb) ≤ 2Ne(vo).

Proof. Given the balancing threshold vb, the number of 0 → 1 errors equals the number of 1 → 0

errors, hence, the total number of errors is

Ne(vb) = 2N (1→0)(vb) = 2N (0→1)(vb).



341

If vo ≥ vb, the number of 1 → 0 errors N (1→0)(vo) ≥ N (1→0)(vb). Therefore,

Ne(vb) ≤ 2N (1→0)(vo) ≤ 2Ne(vo).

Similarly, if vo < vb, by considering only 0 → 1 errors, we get the same conclusion.

Now we compare the balancing threshold vb with a fixed threshold, denoted by vf . As shown in

figure 10.3, if we set the reading threshold as fixed vf = 1
2 , then it will introduce much more errors

then the balancing threshold. Given a fixed threshold vf , after a long duration, we can characterize

the storage channel as a binary asymmetric channel, as shown in figure 10.4(a), where p1 > p2.

Balanced modulation is actually a process of modifying the channel to make it being symmetric.

As a result, balanced modulation results in a binary symmetric channel with crossover probability

p such that p2 < p < p1. When p2 ≪ p1, it has p − p2 ≪ p1 − p. In this case, the bit error rate is

reduced from p1+p2

2 to p, where p≪ p1+p2

2 .

1

0

1

0

p1

p2

1

0

1

0

p

p

balanced modulation

(a) (b)

Figure 10.4. Balanced modulation to turn a binary asymmetric channel with crossover probabilities
p1 > p2 into a binary symmetric channel with p2 < p < p1.

10.4 Bit-Error-Rate Analysis

To better understand different types of reading thresholds as well as their performances, we study

them from the expectation (statistical) perspective. Assume that we write n bits (including k ones)

into a block at time 0, let gt(v) denote the probability density function (p.d.f.) of the cell level at

time t that stores a bit 0, and let ht(v) denote the p.d.f. of the cell level at time t that stores 1.



342

Then at time t, the bit error rate of the block based on a reading threshold v is given by

pe(v) =
1

2

∫ ∞

v

gt(u)du+
1

2

∫ v

−∞
ht(v)dv.

According to our definition, a balancing threshold vb is chosen such thatN (1→0)(vb) = N (0→∞)(vb),

i.e., the number of 1 → 0 errors is equal to the number of 0 → 1 errors. As the block length n becomes

sufficiently large, we can approximate N (1→0)(vb) as n
2

∫ v

−∞ ht(v)dv and approximate N (0→∞)(vb)

as n
2

∫∞
v
gt(u)du. So when n is large, we have approximately

∫ ∞

vb

gt(u)du =

∫ vb

−∞
ht(v)dv.

Differently, an optimal reading threshold vo is the one that minimizes the total number of errors.

When n is large, we have approximately

vo = argmin
v
pe(v).

When gt(v) and ht(v) are continuous functions, the solutions of vo are

vo = ±∞ or gt(vo) = ht(vo).

That means vo is one of the intersections of gt(v) and ht(v) or one of the infinity points.

Generally, gt(v) and ht(v) are various for different nonvolatile memories and different blocks,

and they have different dynamics over time. It is not easy to find a perfect model to characterize

gt(v) and ht(v), but there are two trends about them in timescale. The change of a cell level can be

treated as a superposition of these two trends. First, due to cell-level drift, the difference between

the means of gt(v) and ht(v) becomes smaller. Second, due to the existence of different types of

noise and disturbance, their variances increases over time. To study the performance of balanced

modulation, we consider both of the effects separately in some simple scenarios.
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Example 10.1. Let gt(v) = N (0, σ) and ht(v) = N (1 − t, σ), as illustrated in figure 10.5. We

assume that the fixed threshold is vf = 1
2 , which satisfies g0(vf ) = h0(vf ).

0 1

cell−level

t

Figure 10.5. An illustration of the first model with gt(v) = N (0, σ) and ht(v) = N (1− t, σ).

In the above example, the cell-level distribution corresponding to bit ‘1’ drifts but its variance

does not change. We have

vb = vo =
1− t

2
, vf =

1

2
.

At time t, the bit error rate based on a reading threshold v is

pe(v) =
1

2
Φ(−v

σ
) +

1

2
Φ(−1− t− v

σ
),

where Φ(x) = 1√
2π

∫ x

−∞ e−t2/2dt.

For different selections of reading thresholds, pe(v) is plotted in figure 10.6. It shows that the

balancing threshold and the optimal threshold have the same performance, which is much better than

the performance of a fixed threshold. When cell levels drift, balanced modulation can significantly

reduce the bit error rate of a block.

Example 10.2. Let gt(v) = N (0, σ) and ht(v) = N (1, σ + t), as illustrated in figure 10.7. We

assume that the fixed threshold is vf = 1
2 , which satisfies g0(vf ) = h0(vf ).

In this example, the variance of the cell-level distribution corresponding to bit ‘1’ increases as
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Figure 10.6. Bit error rates as functions of time t, under the first model with gt(v) = N (0, σ) and
ht(v) = N (1− t, σ).

t

cell−level

0 1

Figure 10.7. An illustration of the second model with gt(v) = N (0, σ) and ht(v) = N (1, σ + t).

the time t increases. We have

e−
vo

2

2σ2 =
σ

σ + t
e
− (1−vo)2

2(σ+t)2 , vb =
1

2 + t/σ
, vf =

1

2
.
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At time t, the bit error rate based on a threshold v is

pe(v) =
1

2
Φ(−v

σ
) +

1

2
Φ(−1− v

σ + t
),

which is plotted in figure 10.8 for different thresholds. It shows that balancing thresholds introduce

much less errors than fixed thresholds when bit ‘1’ and ‘0’ have different reliability (reflected by

their variances), although they introduce slightly more errors than optimal thresholds.
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Figure 10.8. Bit error rates as functions of time t, under the second model with gt(v) = N (0, σ) and
ht(v) = N (1, σ + t).

In practice, the cell-level distributions at a time t are much more complex than the simple

Gaussian distributions, and the errors introduced are due to many complex mechanisms. However,

the above analysis based two simple models are still useful, because they reflect the trends of the

cell level changes, which is helpful for analyzing the time-dependent errors in nonvolatile memories.
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10.5 Implementation

Balanced modulation can be easily implemented on the current architecture of nonvolatile memories.

The process described in the previous sections can be treated as a hard decision approach, where

a reading threshold is selected to separate all the cell levels as zeros and ones. In this section, we

discuss a few methods of determining balancing thresholds quickly, as well as their implementations in

nonvolatile memories. Furthermore, we discuss soft decision implementation of balanced modulation,

namely, we do not read data based on a reading threshold, and the decoder can get access into all

the cell levels (cell-level vector c) directly. In this case, we want to know how the prior information

that the stored codeword is balanced can help us to increase the success rate of decoding.

10.5.1 Balancing Threshold for Hard Decision

Given a block of n cells, assume their current levels are c = c1c2...cn. Our problem is to determine

a threshold vb such that there are n
2 cells or approximately n

2 cells will be read as ones. A trivial

method is to sort all the n cell levels in the decreasing order such that ci1 ≥ ci2 ≥ ... ≥ cin . Then

vb =
cik+cik+1

2 is our desired balancing threshold. The disadvantage of this method is that it needs

O(n log n) computational time, which may slow down the reading speed when n is large. To reduce

the reading time, we hope that the balancing threshold can be controlled by hardware.

Half-interval search is a simple approach of determining the balancing threshold. Assume it is

known that vb is ∈ [l1, l2] with l1 < l2. First, we set the reading threshold as l1+l2
2 , based on which a

simple circuit can quickly detect the number of ones in the resulting word, denoted by k. If k < n
2 ,

we reset the interval [l1, l2] as [l1,
l1+l2

2 ]. If k > n
2 , we reset the interval [l1, l2] as [

l1+l2
2 , l2]. Then we

repeat this procedure until we get a reading threshold such that k = n
2 or l2 − l1 ≤ ϵ for a reading

precision ϵ.

10.5.2 Relaxed Balancing Threshold

Half-interval search is an iterative approach of determining the balancing threshold such that the

resulting word is well balanced. To further reduce the reading time, we can relax the constraint on
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the weight of the resulting word, namely, we can let the number of ones in the resulting word be

approximately n
2 , instead of accurately n

2 .

For instance, we can simply set the balancing threshold as

vb =

∑n
i=1 ci
n

= mean(c).

Obviously, such vb reflects the cell-level drift and it can be easily implemented by a simple circuit.

More precisely, we can treat mean(c) as the first-order approximation, in this way, we write vb

as

vb = mean(c) + a(
1

2
−mean(c))2,

where a is a constant depending on the noise model of memory devices.

10.5.3 Prior Probability for Soft Decision

Reading data based on hard decision is preferred in nonvolatile memories, regarding to its advantages

in reading speed and computational complexity compared to soft decision decoding. However, in

some occasions, soft decision decoding is still useful for increasing the decoding success rate. We

demonstrate that the prior knowledge that the stored codewords are balanced can help us to better

estimate the cell-level probability distributions for 0 or 1. Hence, it leads to a better soft decoding

performance.

We assume that given a stored bit, either 0 or 1, its cell level is Gaussian distributed. (We may

also use some other distribution models according to the physical properties of memory devices,

and our goal is to have a better estimation of model parameters). Specifically, we assume that the

cell-level probability distribution for 0 is N (u0, σ0) and the cell-level probability distribution for 1 is

N (u1, σ1). Since the codewords are balanced, the probability for a cell being 0 or 1 is equal. So we

can describe cell levels by a Gaussian Mixture Model. Our goal is to find the maximum likelihood
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u0, σ0, u1, γ1 based on the cell-level vector c, namely, the parameters that maximize

P (c|u0, σ0, u1, σ1).

Expectation-Maximization (EM) algorithm is an iterative method that can easily find the max-

imum likelihood u0, σ0, u1, γ1. The EM iteration alternates between performing an expectation (E)

step and a maximization (M) step. Let x = x1x2...xn be the codeword stored in the current block,

and let λt = [u0(t), σ0(t), u1(t), γ1(t)] be the estimation of the parameters in the tth iteration. In

the E-step, it computes the probability for each cell being 0 or 1 based on the current estimation of

the parameters, namely, for all i ∈ {1, 2, ..., n}, it computes

P (xi = k|ci, λt) =
1

σk(t)
e
− (ci−uk(t))2

2σk(t)2∑1
k=0

1
σk(t)

e
− (ci−uk(t))2

2σk(t)2

.

In the M-step, it computes parameters maximizing the likelihood with given the probabilities ob-

tained in the E-step. Specifically, for k ∈ {0, 1},

uk(t+ 1) =

∑n
i=1 P (xi = k|ci, λt)ci∑n
i=1 P (xi = k|ci, λt)

,

σk(t+ 1)2 =

∑n
i=1 P (xi = k|ci, λt)(ci − uk(t+ 1))2∑n

i=1 P (xi = k|ci, λt)
.

These estimations of parameters are then used to determine the distribution of xi in the next E-step.

Assume u0, σ0, u1, σ1 are the maximum-likelihood parameters, based on which we can calculate

the log-likelihood for each variable xi, that is

λi =
log f(ci|xi = 0)

log f(ci|xi = 1)
=

log 1
σ0

− (ci−u0)
2

2σ2
0

log 1
σ1

− (ci−u1)2

2σ2
1

,

where f is the probability density function. Based on the log-likelihood of each variable xi, some

soft decoding algorithms can be applied to read data, including message-passing algorithms [83],
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linear programming [37], etc. It will be further discussed in the next section for decoding balanced

LDPC code.

10.6 Balanced LDPC Code

Balanced modulation can significantly reduce the bit error rate of a block in nonvolatile memories,

but error correction is still necessary. So we study the construction of balanced error-correcting

codes. In the programming step, we encode the information based on a balanced error-correcting

code and write it into a block. In the reading step, the reading threshold is adjusted such that it

yields a balanced word, but probably erroneous. Then we pass this word to the decoder to further

retrieve the original information.

10.6.1 Construction

In this section, we introduce a simple construction of balanced error-correcting codes, which is based

on LDPC codes, called balanced LDPC code. LDPC codes, first introduced by Gallager [42] in 1962

and rediscovered in 1990s, achieve near Shannon-bound performances and allow reasonable decoding

complexities. Our construction of balanced LDPC code is obtained by inverting the first i bits of

each codeword in a LDPC code such that the codeword is balanced, where i is different for different

codewords. It is based on Knuth’s observation [69], that is, given an arbitrary binary word of length

k with k even, one can always find an integer i with 0 ≤ i < k such that by inverting the first i

bits the word becomes balanced. Different from the current construction in [131], where i is stored

and protected by a lower-rate balanced error-correcting codes (the misdecoding of i may lead to

catastrophic error propagation in the information word), we do not store i in our construction. The

main idea is that certain redundancy exists in the codewords of LDPC codes that enables us to

locate i or at last find a small set that includes i with a very high probability, even some errors exist

in the codewords. It is wasteful to store the value of i with a lower-rate balanced error-correcting

code. As a result, our construction is more efficient than the recent construction proposed in [131].

Let u be the message to encode and its length is k, according to the description above, the
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Figure 10.9. Encoding of balanced LDPC codes.

encoding procedure consists of two steps, as shown in figure 10.9:

1. Apply an (n, k) LDPC code L to encode the message u into a codeword of length n, denoted

by z = Gu, where G is the generator matrix of L.

2. Find the minimal integer i in {0, 1, ..., n− 1} such that inverting the first i bits of z results in

a balanced word

x = z+ 1i0n−i,

where 1i0n−i denotes a run of i bits 1 and n− i bits 0. Then we denote x as ϕ(z). This word

x is a codeword of the resulting balanced LDPC code, denoted by C.

We see that a balanced LDPC code is constructed by simply balancing the codewords of a LDPC

code, which is called the original LDPC code. Based on the procedure above we can encode any

message u of length k into a balanced codeword x of length n. The encoding procedure is very simple,

but how to decode a received word? Now, we focus on the decoding of this balanced LDPC code.

Let y be an erroneous word received by the decoder, then the output of the maximum likelihood

decoder is

x̂ = argmin
x∈C

D(y,x),

where D(y,x) is the distance between y and x depending on the channel, for instance, Hamming

distance for binary symmetric channels.

The balanced code C is not a linear code, so the constraint x ∈ C is not easy to deal with. A

simpler way is to think about the codeword z ∈ L that corresponds to x. By inverting the first j
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bits of y with 0 ≤ j < n, we can get a set of words Sy of size n, namely,

Sy = {y(0),y(1), ...,y(n−1)},

in which

y(j) = y + 1j0n−j ,

for all j ∈ {0, 1, 2, ..., n}. Then there exists an i ∈ {0, 1, 2, ..., n− 1} such that

y(i) − z = y − x.

The output of the maximum likelihood decoder is

(ẑ, î) = arg min
z′∈L,i′∈{0,1,2...,n}

D(y(i′), z′),

subject to i′ is the minimum integer that makes z′ + 1i′0n−i′ being balanced.

If we ignore the constraint that i has to be the minimum integer, then the output of the decoder

is the codeword in L that has the minimum distance to Sy. Figure 10.10 provides a simple demon-

stration, where the solid circles are for the codewords of the LPDC code L, the triangles are for the

words in Sy that are connected by lines. Our goal is to find the solid circle that is the closest one

to the set of triangles. It is different from traditional decoding of linear codes whose goal is to find

the closest codeword to a single point.

10.6.2 An Extreme Case

LDPC codes achieve near Shannon bound performances. A natural question is whether balanced

LDPC codes hold this property. Certain difficulties exist in proving it by following the method

in [43] (section 2 and section 3), since balanced LDPC codes are not linear codes and the distance

distributions of balanced LDPC codes are not easy to characterize. Fortunately, this statement looks

correct because if the first i bits of a codeword have been inverted (we assume that the interger i
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Figure 10.10. Demonstration for the decoding of balanced LDPC codes.

is unknown), then the codeword can be recovered with only little cost, i.e., a very small number of

additional redundant bits.

Let us consider the ensemble of an (n, a, b) parity-check matrix given by Gallager [43], which has

a ones in each column, b ones in each row, and zeros elsewhere. According to this construction, the

matrix is divided into a submatrices, each containing a single 1 in each column. All the submatrices

are random column permutations of a matrix that has a single one in each column and b ones in

each row. As a result, we have (n, a, b) LDPC codes.

Theorem 10.2. Given a codeword z of an (n, a, b) LDPC code, we get

x = z+ 1i0n−i

by inverting the first i bits of z with 0 ≤ i < n. Let Pe(x) be the error probability that z cannot be

correctly recovered from x if i is unknown. As n→ ∞,

Pe(x) → 0,
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for any integers a and b.

Proof. Let H be the parity-check matrix of the LDPC code, and let

y(j) = x+ 1j0n−j ,

for all j ∈ {0, 1, 2, ..., n− 1}.

We can recover z from x if and only if

Hy(j) ̸= 0,

for all j ̸= i and 0 ≤ j ≤ n− 1.

Hence,

Pe(x) = P (∃j ̸= i, s.t.,Hy(j) = 0)

≤
∑
j ̸=i

P (Hy(j) = 0).

Let us first consider the case of j > i. We have Hy(j) = 0 if and only if

H(y(j) + z) = 0,

where

y(j) + z = 0i1j−i0n−j .

So Hy(j) = 0 is equivalent to

H(0i1j−i0n−j) = 0.
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As we described, H is constructed by a submatrices, namely, we can write H as

H =



H1

H2

...

Ha


.

Let Hs be one of the a submatrices of H, then H contains a single one in each columns and b

ones in each row. And it satisfies

Hs(0
i1j−i0n−j) = 0,

i.e., in each row of Hs, there are even number of ones from the i+ 1th column to the jth column.

According to the construction of (n, a, b) LDPC codes,

P (Hs(0
i1j−i0n−j) = 0) = P (Hs(1

j−i0n−j+i) = 0).

So we can use P (n, j − i) to denote P (Hs(0
i1j−i0n−j) = 0).

First, we consider the case that b is even. In this case,

P (n, j − i) = P (n, n− j + i).

Hence, without loss of generality, we can assume that j − i = d ≤ n
2 .

It is easy to see that P (n, j − i) > 0 only if d is even. Assume that the one in the first column

of Hs is in the tth row, and let u be the number of ones in the tth row from the first j − i columns.

Then we can get

P (n, d) =
∑

u=2,4,...

(
b

u− 1

)
(
d− 1

n− 1
)u−1(

n− d

n− 1
)b−uP (n− b, d− u),

where P (n, d) = 1 if n = d or d = 0.
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If d < logn, then P (n, d) = O( logn
n ).

If log n ≤ d ≤ n
2 , then

∑
u=2,4,...

(
b

u− 1

)
(
d− 1

n− 1
)u−1(

n− d

n− 1
)b−u ≤ b− 1

b
.

Iteratively, we can prove that

P (n, d) = O((
b− 1

b
)

log n
2b ).

Similar as above, when j < i, we can get

P (Hy(j) = 0) ≤ P (n, i− j).

Finally, we have

Pe(x) ≤
n−1−i∑
s=1

P (n, s) +

i∑
s=1

P (n, s) = O(
log n

n
).

So if b is even, as n→ ∞, Pe(x) → 0.

If b is odd, in each row, there exists at least one 1 in the last n − j + i elements. As a result,

n− j + i ≥ n
b . Using a same idea as above, we can also prove that as n→ ∞, Pe(x) → 0.

So the statement in the theorem is true for any rate R = b−a
b < 1. This completes the proof.

The above theorem considers an extreme case that if the codeword of a balanced LDPC code

does not have errors, then we can recover the original message with little cost of redundancy. It

implies that balanced LDPC codes may achieve almost the same rates as the original unbalanced

LDPC codes. In the following subsections, we discuss some decoding techniques for binary erasure

channels and binary symmetric channels. Simulation results on these channels support the above

statement.
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10.6.3 Decoding for Erasure Channels

In this subsection, we consider binary erasure channels (BEC), where a bit (0 or 1) is either success-

fully received or it is deleted, denoted by “?”. Let y ∈ {0, 1, ?}n be a word received by a decoder

after transmitting a codeword x ∈ C over a BEC. Then the key of decoding y is to determine the

value of the integer i such that x can be obtained by inverting the first i bits of a codeword in L.

A simple idea is to search all the possible values of i, i.e., we decode all the possible words

y(0),y(1), ...,y(n−1) separately and select the best resulting codeword that satisfies all the constraints

as the final output. This idea is straightforward, but the computational complexity of the decoding

increases by a factor of n, which is not acceptable for most practical applications.

Our observation is that we might be able to determine the value of i or at least find a feasible

set that includes i, based on the unerased bits in y. For example, given x ∈ L, assume that one

parity-check constraint is

xi1 + xi2 + ...+ xi4 = 0.

If all yi1 , yi2 , ..., yi4 are observed (not erased), then we can have the following statement about i:

(1) If yi1 + yi2 + ...+ yi4 = 0, then

i ∈ [0, i1)
∪

[i2, i3)
∪

[i4, n].

(2) If yi1 + yi2 + ...+ yi4 = 1, then

i ∈ [i1, i2)
∪

[i3, i4).

By combining this observation with the message-passing algorithm, we get a decoding algorithm

for balanced LDPC codes under BEC. Similar as the original LDPC code, we present a balanced

LDPC code as a sparse bipartite graph with n variable nodes and r check nodes, as shown in figure

10.11. Additionally, we add an inversion node for representing the value or the feasible set of i. Let

us describe a modified message-passing algorithm on this graph. In each round of the algorithm,
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Figure 10.11. Graph for balanced LDPC codes.

messages are passed from variable nodes and inversion nodes to check nodes, and then from check

nodes back to variable nodes and inversion nodes.

We use I denote the feasible set consisting of all possible values for the integer i, called inversion

set. At the first round, we initialize the jth variable node yj ∈ {0, 1, ?} and initialize the inversion

set as I = [0, n]. Then we pass message and update the graph iteratively. In each round, we do the

following operations.

(1) For each variable node v, if its value xv is in {0, 1}, it sends xv to all its check neighbors.

If xv =? and any incoming message u is 0 or 1, it updates xv as u and sends u to all its check

neighbors. If xv =? and all the incoming messages are ?, it sends ? to all its check neighbors.

(2) For each check node c, assume the messages from its variable neighbors are xi1 , xi2 , ..., xib ,

where i1, i2, ..., ib are the indices of these variable nodes s.t. i1 < i2 < ... < ib. Then we define

S0
c = [0, i1)

∪
[i2, i3)

∪
...,
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S1
c = [i1, i2)

∪
[i3, i4)

∪
....

If all the incoming messages are in {0, 1}, then we update I in the following way: If xi1 + xi2 + ...+

xib = 0, we update I as I
∩
S0
c ; otherwise, we update I as I

∩
S1
c . In this case, this check node c

is no longer useful, so we can remove this check node from the graph.

(3) For each check node c, if there are exactly one incoming message from its variable neighbor

which is xj =? and all other incoming messages are in {0, 1}, we check whether I ⊆ S0
c or I ⊆ S1

c .

If I ⊆ S0
c , then the check node sends the XOR of the other incoming messages except ? to xj . If

I ⊆ S1
c , then the check node sends the XOR of the other incoming messages except ? plus one to

xj . In this case, the check node c is also no longer useful, so we can remove this check node from

the graph.

The procedure above continues until all erasures are filled in, or no erasures are filled in the

current iteration. Different from the message-passing decoding algorithm for LDPC codes, where

in each iteration both variable nodes and check nodes are processed only once, here, we process

variable nodes once but check nodes twice in each iteration. If all erasures are filled in, x is the

binary vector labeled on the variable nodes. In this case, if |I| = 1, then i is the only element in I,

and we can get z ∈ L by calculating

z = x+ 1i0n−i.

If there are still some unknown erasures, we enumerate all the possible values in I for the integer

i. Usually, |I| is small. For a specific i, it leads to a feasible solution z if

(1) Given I = {i}, with the message-passing procedure above, all the erasures can be filled in.

(2) x is balanced, namely, the numbers of ones and zeros are equal for the variable nodes.

(3) Let z = x+ 1i0n−i. Then i is the minimal integer in {0, 1, 2, ..., n} subject to z+ 1i0n−i is

balanced.

We say that a word y with erasures is uniquely decodable if and only if there exists i ∈ I that

leads to a feasible solution, and for all such integers i they result in the unique solution z ∈ L. The

following simple example is provided for the purpose of demonstrating the decoding process.
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Example 10.3. Based on figure 10.11, we have a codeword x = 01111000, which is transmitted

over an erasure channel. We assume that the received word is y = 011110??.

In the first round of the decoding, we have

x(1) = 011110??, I = [0, 8].

Considering the 2nd check node, we can update I as

I = {0, 1, 4, 5}.

Considering the 3nd check node, we can continue updating I as

I = I
∩

{1, 2, 6, 7, 8} = {1}.

Based on (3), we can fill 0, 0 for the 7th and 8th variable nodes. Finally, we get z = 11111000

and i = 1.

Regarding to the decoding algorithm described above, there are two important issues that need

to consider, including the decoding complexity of the algorithm and its performance. First, the

decoding complexity of the algorithm strongly depends on the size of I when it finishes iterations.

Figure 10.12 simulates the average size of the inversion set I for decoding three balanced LDPC

codes. It shows that when the crossover probability is lower than a threshold, the size of I is smaller

than a constant with a very high probability. In this case, the decoding complexity of the balanced

LDPC code is very close to the decoding complexity of the original unbalanced LDPC code.

Another issue is about the performance of the decoding algorithm for balanced LDPC codes. In

particular, we want to figure out the cost of additional redundancy in correcting the inversion of the

first i bits when i is unknown. In figure 10.13, it presents the word error rate of balanced LDPC codes

and the corresponding original unbalanced LDPC codes for different block lengths. It is interesting

to see that as the block length increases, the balanced LDPC codes and the original unbalanced
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LDPC codes have almost the same performance, that is, the cost of correcting the inversion of the

first i bits is ignorable.

10.6.4 Decoding for Symmetric Channels

In this subsection, we study and analyze the decoding of balanced LDPC codes for symmetric

channels, including binary symmetric channels (BSC) and AWGN (Additive White Gaussian Noise)

channels. Different from binary erasure channels (BEC), here we are not able to determine a small

set that definitely includes the integer i. Instead, we want to figure out the most possible values

for i. Before presenting our decoding algorithm, we first introduce belief propagation algorithm for

decoding LDPC codes.

Belief propagation [83], where messages are passed iteratively across a factor graph, has been

widely studied and recommended for the decoding of LDPC codes. In each iteration, each variable

node passes messages (probabilities) to all the adjacent check nodes and then each check node passes

messages (beliefs) to all the adjacent variable nodes. Specifically, let m
(ℓ)
vc be the message passed

from a variable node v to a check node c at the ℓth round of the algorithm, and let m
(ℓ)
cv be the

message from a check node c to a variable node v. At the first round, m
(0)
vc is the log-likelihood

of the node v conditioned on its observed value, i.e., log P (y|x=0)
P (y|x=1) for variable x and its observation

y. This value is denoted by mv. Then the iterative update procedures can be described by the

following equations

m(ℓ)
vc =


mv ℓ = 0,

mv +
∑

c′∈N(v)/c m
(ℓ−1)
c′v ℓ ≥ 1,

m(ℓ)
cv = 2 tanh−1(

∏
v′∈N(c)/v

tanh(
m

(ℓ)
v′c

2
)),

where N(v) is the set of check nodes that connect to variable node v and N(c) is the set of variable

nodes that connect to check node c. In practice, the belief-propagation algorithm stops after a

certain number of iterations or until the passed likelihoods are close to certainty. Typically, for

a BSC with crossover probability p, the log-likelihood mv for each variable node v is a constant
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depending on p. Let x be the variable on v and let y be its observation, then

mv =


log 1−p

p if y = 0,

− log 1−p
p if y = 1.

Let us consider the decoding of balanced LDPC codes. Assume x ∈ C is a codeword of a balanced

LDPC code, obtained by inverting the first i bits of a codeword z in a LDPC code L. The erroneous

word received by the decoder is y ∈ Yn for an alphabet Y. For example, Y = {0, 1} for BSC

channels, and Y = R for AWGN channels. Here, we consider a symmetric channel, i.e., a channel

for which there exists a permutation π of the output alphabet Y such that (1) π−1 = π, and (2)

P (y|1) = P (π(y)|0) for all y ∈ Y, where P (y|x) is the probability of observing y when the input bit

is x.

The biggest challenge of decoding a received word y ∈ Yn is lacking of the location information

about where the inversion happens, i.e., the integer i. We let

y(i) = π(y1)π(y2)...π(yi)yi+1...yn,

for all i ∈ {0, 1, 2, ..., n − 1}. A simple idea is to search all the possibilities for the integer i from 0

to n− 1, i.e, decoding all the words

y(0),y(1), ...,y(n−1)

separately. Assume their decoding outputs based on belief propagation are

ẑ(0), ẑ(1), ...ẑ(n),

then the final output of the decoder is ẑ = ẑ(j) such that P (y(j)|ẑ(j)) is maximized. The drawback of

this method is its high computational complexity, which is about n times the complexity of decoding

the original unbalanced LDPC code. To reduce computational complexity, we want to estimate the
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value of i in a simpler and faster way, even sacrificing a little bit of performance on bit error rate.

The idea is that when we are using belief propagation to decode a group of words y(0),y(1), ...,y(n−1),

some information can be used to roughly compare their goodness, namely, their distances to the n-

earest codewords. To find such information, given each word y(i) (here, we denote it as y for

simplicity), we run belief propagation for ℓ rounds (iterations), where ℓ is very small, e.g., ℓ = 2.

There are several ways of estimating the goodness of y, and we introduce one of them as follows.

Given a word y, we define

λ(y, ℓ) =
∑
c∈C

∏
v∈N(c)

tanh(m(ℓ)
vc /2),

where C is the set of all the variable nodes, N(c) is the set of neighbors of a check node c, and

m
(ℓ)
vc is the message passed from a variable node v to a check node c at the ℓth round of the belief-

propagation algorithm. Roughly, λ(y, ℓ) is a measurement of the number of correct parity checks

for the current assignment in belief propagation (after ℓ− 1 iterations). For instance,

λ(y, ℓ = 1) = α(r − 2|Hy|),

for a binary symmetric channel. In this expression, α is a constant, r = n − k is the number of

redundancies, and |Hy| is the number of ones in Hy, i.e., the number of unsatisfied parity checks.

Generally, the bigger λ(y(j), ℓ) is, the more likely j = i is. So we can get the most likely i by

calculating

î = arg
n−1
max
j=0

λ(y(j), ℓ).

Then we decode y(̂i) as the final output. However, the procedure requires to calculate λ(y(j), ℓ)

with 0 ≤ j ≤ n − 1. The following theorem shows that the task of computing all λ(y(j), ℓ) with

0 ≤ j ≤ n− 1 can be finished in linear time if ℓ is a small constant.

Theorem 10.3. The task of computing all λ(y(j), ℓ) with 0 ≤ j ≤ n − 1 can be finished in linear

time if ℓ is a small constant.
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Proof. First, we calculate λ(y(0), ℓ). Based on the belief-propagation algorithm described above, it

can be finished in O(n) time. In this step, we save all the messages including mv, m
(l)
cv , m

(l)
vc for all

c ∈ C, v ∈ V and 1 ≤ l ≤ ℓ.

When we calculate λ(y(1), ℓ), the only change on the inputs is mv1 , where v1 is the first variable

node (the sign of mv1 is flipped). As a result, we do not have to calculate all mv, m
(l)
cv , m

(l)
vc for all

c ∈ C, v ∈ V and 1 ≤ l ≤ ℓ. Instead, we only need to update those messages that are related with

mv1 . It needs to be noted that the number of messages related tomv1 has an exponential dependence

on ℓ, so the value of ℓ should be small. In this case, based on the calculation of λ(y(0), ℓ), λ(y(1), ℓ)

can be calculated in a constant time. Similarly, each of λ(y(j), ℓ) with 2 ≤ j ≤ n−1 can be obtained

iteratively in a constant time.

Based on the process above, we can compute all λ(y(j), ℓ) with 0 ≤ j ≤ n− 1 in O(n) time.

To increase the success rate of decoding, we can also create a set of most likely values for i,

denoted by Ic. Ic consists of at most c local maximums with the highest values of λ(y(i), ℓ). Here,

we say that j ∈ {0, 1, 2, 3, ..., n− 1} is a local maximum if and only if

λ(y(j), ℓ) > λ(y(j−1), ℓ), λ(y(j), ℓ) ≥ λ(y(j+1), ℓ).

Note that I1 = {̂i}, where î is the global maximum as defined above. If c > 1, for all j ∈ Ic, we

decode y(j) separately and choose the output with the maximum likelihood as the final output of

the decoder. It is easy to see that the the above modified belief-propagation algorithm for balanced

LDPC codes has asymptotically the same decoding complexity as the belief-propagation algorithm

for LDPC codes, that is, O(n log n).

In figure 10.14, it shows the performance of the above algorithm for decoding balanced LDPC

codes under BSC and the performance of belief propagation algorithm for the original LDPC codes.

From which, we see that when ℓ = 2 and c = 4, the performance gap between balanced (280, 4, 7)

LDPC code and unbalanced (280, 4, 7) LDPC code is very small. This comparison implies that the

cost of correcting the inversion of the first i bits (when i is unknown) is small for LDPC codes.
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Let us go back the scheme of balanced modulation. The following examples give the log-likelihood

of each variable node when the reading process is based on hard decision and soft decision, respec-

tively. Based on them, we can apply the modified propagation algorithm in balanced modulation.

Example 10.4. If the reading process is based on hard decision, then it results in a binary symmetric

channel with crossover probability p. In this case, let y be the observation on a variable node v, the

log-likelihood for v is

mv =


log 1−p

p if y = 0,

− log 1−p
p if y = 1.

Example 10.5. If the reading process is based on soft decision, then we can approximate cell-level

distributions by Gaussian distributions, which are characterized by 4 parameters u0, σ0, u1, σ1. These

parameters can be obtained based on the cell-level vector y = c, following the steps in subsection

10.5.3. In this case, if the input of the decoder is y, then the log-likelihood of the ith variable node
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v is

mv = λi =
log 1

σ0
− (ci−u0)

2

2σ2
0

log 1
σ1

− (ci−u1)2

2σ2
1

where ci is the current level of the ith cell. If the input of the decoder is y(i) (we don’t have to care

about its exact value), then the log-likelihood of the ith variable node v is

mv =


λi if i > j,

−λi if i ≤ j,

,

for all 0 ≤ i < n.

10.7 Partial-Balanced Modulation

Constructing balanced error-correcting codes is more difficult than constructing normal error-correcting

codes. A question is: is it possible to design some schemes that achieve similar performances with

balanced modulation and have simple error-correcting code constructions? With this motivation,

we propose a variant of balanced modulation, called partial-balanced modulation. The main idea is

to construct an error-correcting code whose codewords are partially balanced, namely, only a cer-

tain segment of each codeword is balanced. When reading information from a block, we adjust the

reading threshold to make this segment of the resulting word being balanced or being approximately

balanced.

One way of constructing partial-balanced error-correcting codes is shown in figure 10.15. Given

an information vector u of k bits (k is even), according to Knuth’s observation [69], there exists an

integer i with 0 ≤ i < k such that inverting the first i bits of u results in a balanced word ũ. Since

our goal is to construct a codeword that is partially balanced, it is not necessary to present i in a

balanced form. Now, we use i denote the binary representation of length ⌈log2 k⌉ for i. To further

correct potential errors, we consider [ũ, i] as the information part and add extra parity-check bits by

applying a systematic error-correcting code, like BCH code, Reed-Solomon code, etc. As a result,

we obtain a codeword x = [ũ, i, r] where r is the redundancy part. In this codeword, ũ is balanced,
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Figure 10.15. Partial balanced code.

[i, r] is not balanced.

Note that in most data-storage applications, the bit error rate of a block is usually very small.

The application of modulation schemes can further reduce the bit error rate. Hence, the number

of errors in real applications is usually much smaller than the block length. In this case, the total

length of [i, r] is smaller or much smaller than the code dimension k. As the block length n becomes

large, like one thousand, the reading threshold determined by partial-balanced modulation is almost

the same as the one determined by balanced modulation. One assumption that we made is that all

the cells in the same block have similar noise properties. To make this assumption being sound, we

can reorder the bits in x = [ũ, i, r] such that the k cells of storing ũ is (approximately) randomly

distributed among all the n cells. Compared to balanced modulation, partial-balanced modulation

can achieve almost the same performance, and its code construction is much easier (the constraints

on the codewords are relaxed). In the following two examples, it compares the partial-balanced

modulation scheme with the traditional one based on a fixed threshold.

Example 10.6. Let us consider a nonvolatile memory with block length n = 255. To guarantee the

data reliability, each block has to correct 18 errors if the reading process is based on a fixed reading
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threshold. Assume (255, 131) primitive BCH code is applied for correcting errors, then the data rate

(defined by the ratio between the number of available information bits and the block length) is

131

255
= 0.5137.

Example 10.7. For the block discussed in the previous example, we assume that it only needs to

correct 8 errors based on partial-balanced modulation. In this case, we can apply (255, 191) primitive

BCH code for correcting errors, and the data rate is

191− 8

255
= 0.7176,

which is much higher than the one obtained in the previous example.

The reading/decoding process of partial-balanced modulation is straightforward. First, the read-

ing threshold vb is adjusted such that among the cells corresponding to u there are k/2 cells or

approximately k/2 cells with higher levels than vb. Based on this reading threshold vb, the whole

block is read as a binary word y, which can be further decoded as [ũ, i] if the total number of errors

is well bounded. Then we obtain the original message u by inverting the first i bits of ũ.

10.8 Balanced Codes for Multi-Level Cells

In order to maximize the storage capacity of nonvolatile memories, multi-level cells (MLCs) are used,

where a cell of q discrete levels can store log2 q bits [17]. Flash memories with 4 and 8 levels have

been used in products, and MLCs with 16 levels have been demonstrated in prototypes. For PCMs,

cells with 4 or more levels have been in development.

The idea of balanced modulation and partial-balanced modulation can be extended to multi-

level cells. For instance, if each cell has 4 levels, we can construct a balanced code in which each

codeword has the same number of 0s, 1s, 2s, and 3s. When reading data from the block, we adjust

three reading thresholds such that the resulting word also has the same number of 0s, 1s, 2s, and



369

3s. The key question is how to construct balanced codes or partial-balanced codes for an alphabet

size q > 2.

10.8.1 Construction based on Rank

A simple approach of constructing balanced codes for a nonbinary case is to consider the message

as the rank of its codeword among all its permutations, based on the lexicography order. If the

message is u ∈ {0, 1}k, then the codeword length n is the minimum integer such that n = qm and(
qm

m m ... m

)
> 2k. The following examples are provided for demonstrating the encoding and

decoding processes.

Example 10.8. Assume the message is u = 1010010010 of length 10 and q = 3. Since

(
9

3 3 3

)
>

210, we can convert u to a balanced word x of length 9 and alphabet size q = 3. Let S denote the

set that consists of all the balanced words of length 9 and alphabet size q = 3. To map u into a

word in S, we write u into the decimal form r = 658 and let r be the rank of x in S based on the

lexicographical order.

Let us consider the first symbol of x. In S, there are totally

(
8

2 3 3

)
= 560 sequences starting

with 0, or 1, or 2. Since 560 ≤ r < 560 + 560, the first symbol in x would be 1, then we update r as

r − 560 = 98, which is the rank of x among all the sequences starting with 1.

Let us consider the second symbol of x. There are totally

(
8

2 2 3

)
sequences starting with 10,

and it is larger than r, so the second symbol of x is 0.

Repeating this process, we can convert u into a balanced word x = 101202102.

Example 10.9. We use the same notations as the above example. Given x = 101202102, it is easy

to calculate its rank in S based on the lexicographical order (via enumerative source coding [26]). It
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is

r =

(
8

2 3 3

)
+

(
6

1 2 3

)
+

(
5

1 1 3

)
+

(
5

2 0 3

)
+

(
3

0 1 2

)
+

(
3

1 0 2

)
+

(
2

0 1 1

)
= 656,

where

(
8

2 3 3

)
is the number of x’s permutations starting with 0,

(
6

1 2 3

)
is the number of

x′ permutations starting with 100, ...

Then from r, we can get its binary representation u = 1010010010. In [99], Ryabko and Matchik-

ina showed that if the length of x is n, then we can get the message u in O(n log3 n log log n) time.

The above approach is simple and information efficient, but the encoding is not computationally

fast.

10.8.2 Generalizing Knuth’s Construction

An alternative approach is to generalize Knuth’s idea to the nonbinary case due to its operational

simplicity. Generally, assume that we are provided a word u ∈ Gk
q with Gq = {0, 1, 2, ..., q − 1} and

k = qm, our goal is to generalize Knuth’s idea to make u being balanced.

Let us consider a simple case, q = 4. Given a word u ∈ Gk
4 , we let ni with 0 ≤ i ≤ 3 denote the

number of is in u. To balance all the cell levels, we first balance the total number of 0s and 1s, such

that n0 + n1 = 2m. It also results in n2 + n3 = 2m. To do this, we can treat 0 and 1 as an identical

state and treat 2 and 3 as another identical state. Based on Knuth’s idea, there always exists an

integer i such that by operating on the first i symbols (0 → 2, 1 → 3, 2 → 0, 3 → 1) it yields

n0 + n1 = 2m. We then consider the subsequence consisting of 0s and 1s, whose length is 2m. By

applying Knuth’s idea, we can make this subsequence being balanced. Similarly, we can also balance

the subsequence consisting of 2s and 3s. Consequently, we convert any word in Gk
4 into a balanced

word. In order to decode this word, three additional integers of length at most ⌈log k⌉ need to be

stored, indicating the locations of having operations. The following example is constructed for the



371

purpose of demonstrating this procedure.

Example 10.10. Assume u = 0110230210110003, we convert it into a balanced word with the

following steps:

(1) By operating the first 4 symbols in u, it yields 2332230210110003, where n0 + n1 = 8.

(2) Considering the subsequence of 0s and 1s, i.e., the underlined part in 2332230210110003.

By operating the first bit of this subsequence (0 → 1, 1 → 0), it yields 2332231210110003, where

n0 = n1 = 4.

(3) Considering the subsequence of 0s and 1s, i.e., the underlined part in 2332231210110003. By

operating the first 0 bit of this subsequence (2 → 3, 3 → 2), it yields 2332231210110003, which is

balanced.

To recover 0110230210110003 from 2332231210110003 (the inverse process), we need to record

the three integers [4, 1, 0] whose binary lengths are [log2 16, log2 8, log2 8].

It can be observed that the procedure above can be easily generalized for any q = 2a with a ≥ 2.

If m = 2b with b ≥ a, then the number of bits to store the integers (locations) is

log2 q−1∑
j=0

2j log2
qm

2j
= (q − 1)ab− q(a− 2)− 2.

For instance, if q = 23 = 8 and m = 27 = 128, then k = 1024 and it requires 137 bits to represent

the locations. These bits can be stored in 46 cells without balancing.

In fact, the above idea can be generalized for an arbitrary q > 2. For instance, when q = 3,

given an binary word u ∈ G3m
3 , there exists an integer i such that u+ 1i03m−i has exactly m 0s or

m 1s. Without loss of generality, we assume that it has exactly m 0s, then we can further balance

the subsequence consisting of 1s and 2s. Finally, we can get a balanced word with alphabet size 3.

More generally, we have the following result.

Theorem 10.4. Given an alphabet size q = αβ with two integers α and β, we divide all the levels

into β groups, denoted by {0, β, 2β, ...}, {1, β + 1, 2β + 1, ...}, ..., {β − 1, 2β − 1, 3β − 1, ...}. Given
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any word u ∈ Gqm
q , there exists an integer i such that u + 1i0qm−i has exactly αm symbols in one

of the first β − 1 groups.

Proof. Let us denote all the groups as S0, S1, ..., Sβ−1. Given a sequence u, we use nj denote the

number of symbols in u that belong to Sj . Furthermore, we let n′j denote the number of symbols

in u + 1qm that belong to Sj . It is easy to see that n′j+1 = nj for all j ∈ {0, 1, ..., β − 1}, where

(β − 1) + 1 = 0. We prove that that there exists j ∈ {0, 1, ..., β − 2} such that nj ≥ αm ≥ n′j or

nj ≤ αm ≤ n′j by contradiction. Assume this statement is not true, then either min(nj , n
′
j) > αm

or max(nj , n
′
j) < αm for all j ∈ {0, 1, ..., β − 2}. So if n1 > αm, we can get nj > αm for all

j ∈ {0, 1, ..., β− 1} iteratively. Similarly, if n1 < αm, we can get nj < αm for all j ∈ {0, 1, ..., β− 1}

iteratively. Both cases contradict with the fact that
∑β

j=0 nj = αmβ = qm.

Note that the number of symbols in u + 1i0qm−i that belong to Sj changes by at most 1 if we

increase i by one. So if there exists j ∈ {0, 1, ..., β − 2} such that nj ≥ αm ≥ n′j or nj ≤ αm ≤ n′j ,

there always exists an integer i such that u+ 1i0qm−i has exactly αm symbols in Sj .

This completes the proof.

Based on the above result, given any q, we can always split all the levels into two groups and

make them being balanced (the number of symbols belonging to a group is proportional to the

number of levels in that group). Then we can balance the levels in each group. Iteratively, all the

levels will be balanced. In order to recover the original message, it requires roughly

(q − 1) log2 q log2m

bits for storing additional information when m is large. If we store this additional information as a

prefix using a shorter balanced code, then we get a generalized construction of Knuth’s code. If we

follow the steps in section 10.7 by further adding parity-check bits, then we get a partial-balanced

code with error-correcting capability, based on which we can implement partial-balanced modulation

for multiple-level cells.
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Now, if we have a code that uses ‘full’ sets of balanced codewords, then the redundancy is

log2 q
qm − log2

(
qm

m,m, ...,m

)
≃ q − log2 q

2
log2m

bits. So given an alphabet size q, the redundancy of the above method is about 2(q−1) log2 q
q−log2 q times

as high as that of codes that uses ‘full’ sets of balanced codewords. For q = 2, 3, 4, 5, ..., 10, we list

these factors as follows:

2.0000, 4.4803, 6.0000, 6.9361, 7.5694,

8.0351, 8.4000, 8.6995, 8.9539.

It shows that as q increases, the above method becomes less information efficient. How to construct

balanced codes for a nonbinary alphabet in a simple, efficient and computationally fast way is still

an open question. It is even more difficult to construct balanced error-correcting codes for nonbinary

alphabets.

10.9 Conclusion

In this chapter, we introduced balanced modulation for reading/writing in nonvolatile memories.

Based on the construction of balanced codes or balanced error-correcting codes, balanced modulation

can minimize the effect of asymmetric noise, especially those introduced by cell-level drifts. Hence, it

can significantly reduce the bit error rate in nonvolatile memories. Compared to the other schemes,

balanced modulation is easy to be implemented in the current memory systems and it does not require

any assumptions about the cell-level distributions, which makes it very practical. Furthermore, we

studied the construction of balanced error-correcting codes, in particular, balanced LDPC codes. It

has very efficient encoding and decoding algorithms, and it is more efficient than prior construction

of balanced error-correcting codes.
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Chapter 11

Systematic Error-Correcting Codes
for Rank Modulation

This chapter explores systematic error-correcting codes for rank modulation while consid-

ering the Kendall τ -distance. It presents (k + 2; k) systematic codes for correcting a single

error, and proves that systematic codes for rank modulation can achieve the same capacity

as general error-correcting codes.1

11.1 Introduction

The rank modulation scheme has been proposed recently for efficiently and robustly writing and

storing data in nonvolatile memories (NVMs) [58, 60]. Its applications include flash memories [20],

which are currently the most widely used family of NVMs, and several emerging NVM technologies,

such as phase-change memories [18]. The rank modulation scheme uses the relative order of cell levels

to represent data, where a cell level denotes a floating-gate cell’s threshold voltage for flash memories

and denotes a cell’s electrical resistance for resistive memories (such as phase-change memories).

Consider n memory cells, where for i = 1, 2, ..., n, let ci ∈ R denote the level of the ith cell. It is

assumed that no two cells have the same level, which is easy to realize in practice. Let Sn denote the

set of all n! permutations of {1, 2, ..., n}. The n cell levels induce a permutation [x1, x2, ..., xn] ∈ Sn,

where cx1 > cx2 > ... > cxn . The rank modulation scheme uses such permutations to represent

1Some of the results presented in this chapter have been previously published in [147].
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data. It enables memory cells to be programmed efficiently and robustly from lower levels to higher

levels, without the risk of overprogramming. It also makes it easier to adjust cell levels when noise

appears without erasing/resetting cells, and makes the stored data be more robust to asymmetric

errors that change cell levels in the same direction [58,60].

Error-correcting codes for rank modulation are very important for data reliability [20,59]. Errors

are caused by noise in cell levels, and the smallest error that can happen is for two adjacent cell levels

to switch their order in the permutation, which is called an adjacent transposition [29]. An adjacent

transposition changes a permutation [x1, x2, ..., xn] ∈ Sn to [x1, ..., xi−1, xi+1, xi, xi+2, ..., xn] for

some i ∈ {1, 2, ..., n − 1}. In this chapter, as in [10, 59, 60], we measure the distance between two

permutations x = [x1, x2, ..., xn] ∈ Sn and y = [y1, y2, ..., yn] ∈ Sn by the minimum number of

adjacent transpositions needed to change x into y (and vice versa), and denote it by dτ (x,y).

This distance metric is called the Kendall’s τ -distance [29]. For example, if x = [2, 1, 3, 4] and

y = [3, 1, 4, 2], then dτ (x,y) = 4, because to change the permutation from x to y (or vice versa), we

need at least 4 adjacent transpositions: [2, 1, 3, 4] → [1, 2, 3, 4] → [1, 3, 2, 4] → [1, 3, 4, 2] → [3, 1, 4, 2].

Based on this distance metric, an error-correcting code that can correct t errors is a subset of Sn

whose minimum distance is at least 2t+ 1.

There have been some results on error-correcting codes for rank modulation equipped with the

Kendall’s τ -distance. In [59], a one-error-correcting code is constructed based on metric embedding,

whose size is provably within half of the optimal size. In [10], the capacity of rank modulation codes

is derived for the full range of minimum distance between codewords, and the existence of codes

whose sizes are within a constant factor of the sphere-packing bound for any fixed number of errors

is shown. Some explicit constructions of error-correcting codes have been proposed and analyzed

in [80] and [81]. There has also been some work on error-correcting codes for rank modulation

equipped with the L∞ distance [104, 112]. The distance metric is more appropriate for cells where

the noise in cell levels has limited magnitudes.

In this chapter, we study systematic error-correcting codes for rank modulation as a new approach

for code design. Let k and n be two integers such that 2 ≤ k < n. In an (n, k) systematic code,
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we use the permutation induced by the levels of n cells to store data. The first k cells are called

information cells, whose induced permutation has a one-to-one mapping to information bits. The

last n − k cells are called redundant cells, which are used to add redundancy to the codewords.

Compared to the existing constructions of error-correcting codes for rank modulation, systematic

codes have the benefit that they support efficient data retrieval, because when there is no error (or

when error correction is not considered), data can be retrieved by only reading the information cells.

And since every permutation induced by the information cells represents a unique value of the data,

the permutations can be mapped to data (and vice versa) very efficiently via enumerative source

coding (e.g., by ordering permutations alphabetically and map them to data) [26, 79]. In addition,

the encoding algorithm of the error-correcting code can potentially be made very efficient by defining

the positions of the redundant cells in the permutation as a function of the corresponding positions

of the information cells.

We study the design of systematic codes, and analyze their performance. We present a family of

(k+2, k) systematic codes for correcting one error, where either k or k+1 is a prime number. We show

that they have optimal rates among systematic codes, unless perfect systematic one-error-correcting

codes, which meet the sphere-packing bound, exist. We also study the design of systematic codes

that correct multiple errors, and prove that for any 2 ≤ k < n, there exists a systematic code of

minimum distance n − k. Furthermore, we prove that for rank modulation, systematic codes have

the same capacity as general error-correcting codes. This result establishes that asymptotically,

systematic codes are as strong in their error correction capability as general codes.

The rest of the chapter is organized as follows. In section 11.2, we define some terms and show

properties of systematic codes. In section 11.3, we study systematic codes that correct one error. In

section 11.4, we study codes that correct multiple errors. In section 11.5, we present the capacity

of systematic codes, which matches the capacity of general codes. In section 11.7, we present the

concluding remarks.
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11.2 Terms and Properties

In this section, we define some terms for systematic codes, and show its basic properties. Let C ⊆ Sn

denote a general (n, k) systematic error-correcting code for rank modulation. Given a codeword

x = [x1, x2, ..., xn] ∈ C, we call the permutation induced by the first k cells (i.e., the information

cells) a = [a1, a2, ..., ak] ∈ Sk the information sector of the codeword x. More specifically, if

c1, c2, ..., cn are the n cells’ levels that induce the permutation [x1, x2, ..., xn] ∈ C, then we have

ca1
> ca2

> ... > cak
. Clearly, the information sector [a1, a2, ..., ak] is a subsequence of its codeword

[x1, x2, ..., xn]; namely, [a1, a2, ..., ak] = [xi1 , xi2 , ..., xik ] for some 1 ≤ i1 < i2 < ... < ik ≤ n.

Example 11.1. Let k = 4 and n = 6. Let c1 = 1.0, c2 = 2.1, c3 = 0.8, c4 = 0.2, c5 = 1.5, c6 = 0.6.

Then the permutation induced by the n = 6 cells is [2, 5, 1, 3, 6, 4]. The permutation induced by the

k = 4 information cells is [2, 1, 3, 4]. We can see that [2, 1, 3, 4] is a subsequence of [2, 5, 1, 3, 6, 4]. �

Given a permutation x = [x1, x2, ..., xn] ∈ Sn, we can see it as constructed by sequentially

inserting 1, 2, ..., n into an initially empty permutation. Hence, we define the insertion vector of x

as the positions of inserting 1, 2, ..., n. Specifically, for 1 ≤ i ≤ n, let gi(x) denote the position of the

insertion of the integer i. That is, if p ∈ {1, 2, ..., n} denotes the integer such that xp = i, then

gi(x) = |{j|1 ≤ j < p, xj < i}|.

Then we have the insertion vector

g(x) = [g1(x), g2(x), ..., gn(x)] ∈ Z1 × Z2 × ...× Zn,

where Zi = {0, 1, 2, ..., i − 1}. Note that given g(x), we can reconstruct x uniquely. It has been

shown that for any x,y ∈ Sn [10],

dτ (x,y) ≥
n∑

i=1

|gi(x)− gi(y)|.
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For an (n, k) systematic code, it is required that for every permutation a = [a1, a2, ..., ak] ∈ Sk,

there is exactly one codeword with a as its information sector, which we will denote by xa. The

code has k! codewords, and we define its rate as ln k!
lnn! . Given an information sector a ∈ Sk, we can

get the insertion vector of its codeword xa, namely,

g(xa) = [g1(xa), g2(xa), ..., gn(xa)]

= [g1(a), ..., gk(a), gk+1(xa), ...gn(xa)].

It means that xa can be constructed from a in the following way: First, we insert k+1 (namely, the

(k + 1)th cell) into the permutation [a1, a2, ..., ak] at the position gk+1(xa) ∈ Zk+1; next, we insert

the integer k + 2 (namely, the (k + 2)th cell) at the position gk+2(xa) ∈ Zk+2; and so on. (The

last integer to insert is n.) To design good systematic codes, given the information permutation

a, we need to find [gk+1(xa), gk+2(xa), ..., gn(xa)] appropriately to maximize the code’s minimum

distance.

Example 11.2. Let k = 4 and n = 6. If a = [1, 3, 2, 4], g5(xa) = 3 and g6(xa) = 0, then

xa = [6, 1, 3, 2, 5, 4]. �

The following theorem shows how the insertion of redundant cells into the information sector

affects the Kendall’s τ -distance between codewords.

Theorem 11.1. Given two permutations a,b ∈ Sk, the Kendall’s τ -distance between xa and xb

satisfies the inequality

dτ (xa,xb) ≥ dτ (a,b) +
n∑

i=k+1

|gi(xa)− gi(xb)|.

Proof. The proof is by induction. As the base case, the inequality is clearly satisfied if n = k. Now

consider the inductive step. Suppose that the inequality holds for any integer n with n < k + r.

(Here r is a nonnegative integer.) We need to show that it also holds for n = k + r.

Consider a sequence of dτ (xa,xb) adjacent transpositions that changes the permutation xa ∈ Sn
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into the permutation xa ∈ Sn. Among them, assume that α adjacent transpositions involve the

integer n, and β adjacent transpositions do not involve n. (Clearly, dτ (xa,xb) = α+ β.) Since the

integer n needs to be moved from position gn(xa) to position gn(xb), we get α ≥ |gn(xa)− gn(xb)|.

Note that those adjacent transpositions that involve n do not change the relative order of the integers

{1, 2, ..., n− 1} in the permutation. So to transform the integers {1, 2, ..., n− 1} from their relative

order in permutation xa to their relative order in permutation xb, by the induction assumption, we

get

β ≥ dτ (a,b) +
n−1∑

i=k+1

|gi(xa)− gi(xb)| .

That leads to the conclusion.

Example 11.3. Let n = 3 and k = 2. If a = [1, 2], b = [2, 1], g3(xa) = 1 and g3(xb) = 2, then

xa = [1, 3, 2] and xb = [2, 1, 3]. In this case, the inequality in theorem 11.1 becomes equality:

dτ (xa,xb) = dτ (a,b) + |g3(xa)− g3(xb)| = 2.

The equality, however, does not always hold. For instance, if a = [1, 2], b = [2, 1] and g3(a) =

g3(b) = 1, then xa = [1, 3, 2] and xb = [2, 3, 1]. We have

dτ (xa,xb) = 3 > dτ (a,b) + |g3(xa)− g3(xb)| = 1.

�

We now present an inequality for ball sizes in Sn, which will be useful for the analysis of systematic

codes. Given a permutation x ∈ Sn, the ball of radius r centered at x, denoted by Br(x), is the set of

permutations in Sn that are within distance r from x. Namely, Br(x) = {y ∈ Sn|dτ (x,y) ≤ r}, for

0 ≤ r ≤ n(n−1)
2 . (The maximum Kendall’s τ -distance for any two permutations in Sn is n(n−1)

2 . [60])

A simple relabeling argument suffices to show that the size of a ball does not depend on the choice

of its center. So we use |Br(n)| to denote |Br(x)| for any x ∈ Sn.

The value of |Br(n)| is provided in [60]. It is shown that |Br(n)| =
∑r

i=0 ei, where ei is the
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coefficient of xi in the polynomial
∏n−1

j=1
xj+1−1
x−1 . When 1 ≤ r ≤ n, er can be obtained explicitly [10].

In this chapter, we will use the following inequality for ball sizes in the analysis of systematic codes.

Lemma 11.2. For any 0 ≤ r ≤ n(n−1)
2 ,

|Br(n)| ≤
(
n+ r − 1

n− 1

)
.

Proof. Given a permutation x = [x1, x2, ..., xn] ∈ Sn, we have (g1(x), g2(x), ..., gn(x)) ∈ Z1 × Z2 ×

...× Zn.

For any two permutations x,y ∈ Sn, we have

dτ (x,y) ≥
n∑

i=1

|gi(x)− gi(y)|.

Let us consider a ball Br(x) with the center x = [n, n − 1, ..., 1]. Since g1(x) = g2(x) = ... =

gn(x) = 0, for any permutation y ∈ Sn, we have

dτ (x,y) ≥
n∑

i=1

|gi(y)− gi(x)| =
n∑

i=1

gi(y) =
n∑

i=2

gi(y),

with gi(y) ∈ Zi. (Note that g1(y) = 0.)

To compute |Br(x)|, we let dτ (x,y) ≤ r. It yields the relaxed condition

n∑
i=2

gi(y) ≤ r.

If we further relax the constraint that gi(y) ≤ i− 1 and only consider the constraint that gi(y) ≥ 0,

then there are

(
n+ r − 1

n− 1

)
different solutions to (g2(y), g3(y), ..., gn(y)) for the inequality

∑n
i=2 gi(y) ≤

r. (It is equivalent to the problem of placing r balls in n boxes.) Since every permutation y ∈ Sn

can be distinctly determined by its corresponding vector (g2(y), g3(y), ..., gn(y)), there are at most(
n+ r − 1

n− 1

)
permutations in Sn whose distance to x is at most r.
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11.3 One-Error-Correcting Codes

In this section, we analyze and design systematic codes for correcting one error. Such codes have

minimum distance 3. In particular, we present a family of (k + 2, k) systematic codes, where either

k or k+ 1 is a prime number. It will be shown that the codes have optimal rates among systematic

codes, unless perfect systematic one-error-correcting codes, which meet the sphere-packing bound,

exist.

11.3.1 Properties of One-Error-Correcting Codes

A r-error-correcting code C ⊆ Sn for rank modulation needs to satisfy the sphere-packing bound:

|C| ≤ n!
|Br(n)| . If the inequality in the above bound becomes equality, we call the code perfect. For

one-error-correcting codes, since |B1(n)| = n, the following result holds.

Theorem 11.3. A systematic (n, k) one-error-correcting code for rank modulation is perfect if and

only if n = k + 1. More generally, a perfect one-error-correcting code (systematic or not) of length

n has (n− 1)! codewords.

It is known that perfect codes are often rare. Well-known examples include binary codes,

where the only perfects codes are Hamming codes and Golay codes, and Lee metric codes in three-

dimensional and higher-dimensional spaces [48]. For rank modulation, there is a simple (3, 2) one-

error-correcting code that is perfect: {[1, 2, 3], [3, 2, 1]}. However, beside this trivial code, no other

perfect code has been found yet. If we add the requirement that the code needs to be systematic, it

will be even harder for such codes to exist. For instance, it can be proved that there does not exist

any perfect systematic one-error-correcting code when k = 3.

Theorem 11.4. There does not exist any (4, 3) systematic one-error-correcting code for rank mod-

ulation.

Proof. The proof is by contradiction. Suppose that there exists a perfect (4, 3) systematic one-error-

correcting code, which we denote by C. As before, for any permutation a ∈ S3, we let xa ∈ S4

denote the unique codeword in C with a as its information sector, and we write g4(xa) as h(a). And
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for convenience of expression in the following analysis, given any two information sectors a,b ∈ S3,

we denote the distance between their corresponding codewords by d
(f)
τ (a,b).

We first prove that at least one of the codewords in C does not start or end with 4; namely, there

exists a permutation a ∈ S3 such that h(a) /∈ {0, 3}. This statement can be proved by contradiction.

Assume that every codeword in C either starts with 4 or ends with 4. Without loss of generality,

we can let h([1, 2, 3]) = 3. Then the only possible choice for h([2, 1, 3]) and h([1, 3, 2]) is 0 because

otherwise, d
(f)
τ ([1, 2, 3], [2, 1, 3]) and d

(f)
τ ([1, 2, 3], [1, 3, 2]) would equal 1, which would contradict the

requirement C has minimum distance at least 3. Hence we get two codewords [4, 2, 1, 3] and [4, 1, 3, 2].

However, in this case, their distance equals 2, which contradicts our assumption.

So there exists at least one permutation a ∈ S3 such that h(a) ∈ {1, 2}. Without loss of generality

(by symmetry), we can let a = [1, 2, 3] and let h(a) = 2. Its corresponding codeword is [1, 2, 4, 3].

We now consider the codewords whose information sectors are [2, 1, 3], [1, 3, 2], [3, 1, 2], [3, 2, 1],

[2, 3, 1], respectively.

1. [2, 1, 3] is at distance one from [1, 2, 3]. Hence the only possible codeword with [2, 1, 3] as its

information sector is [4, 2, 1, 3] because otherwise, we would have d
(f)
τ ([2, 1, 3]), [1, 2, 3]) < 3.

2. [1, 3, 2] is also at distance one from [1, 2, 3]. To make d
(f)
τ ([1, 3, 2], [1, 2, 3]) ≥ 3, we have

h([1, 3, 2]) ∈ {0, 2}. Since it is required that d
(f)
τ ([1, 3, 2], [2, 1, 3]) ≥ 3, the only possible value

for h([1, 3, 2]) is 2. Therefore, the codeword with [1, 3, 2] as its information sector is [1, 3, 4, 2].

3. With a similar analysis, we get h([3, 1, 2]) = 0. Its corresponding codeword is [4, 3, 1, 2].

4. Since it is required that d
(f)
τ ([3, 2, 1], [3, 1, 2]) ≥ 3, we need h([3, 2, 1]) ∈ {2, 3}. Since it is

required that d
(f)
τ ([2, 3, 1], [2, 1, 3]) ≥ 3, we need h([2, 3, 1]) ∈ {2, 3}. However, in this case, by

enumerating all the possible values for h[3, 2, 1] and h([2, 3, 1]), we can see that

d(f)τ ([3, 2, 1], [2, 3, 1]) < 3,

which is a contradiction.
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Based on the above analysis, it can be concluded that there does not exists any (4, 3) systematic

code correcting one error for rank modulation.

For any given k ≥ 3, if the perfect (k + 1, k) code does not exist, then the (k + 2, k) code

becomes the optimal code. We show such an (6, 4) systematic code in the appendix. In the following

subsection, we present a family of (k + 2, k) systematic codes, where either k or k + 1 is a prime

number.

11.3.2 Construction of (k + 2, k) One-Error-Correcting Codes

We now present the construction that builds a family of (k + 2, k) systematic one-error-correcting

codes.

Construction 11.1. Let k ≥ 3 be an integer such that either k or k + 1 is a prime number.

Given any information sector a = [a1, a2, ..., ak] ∈ Sk, let gk+1(xa) ∈ Zk+1, gk+2(xa) ∈ Zk+2 be the

positions of inserting k + 1 and k + 2. We set

gk+1(xa) =
∑k

i=1(2i− 1)ai mod m,

gk+2(xa) =
∑k

i=1(2i− 1)2ai mod m,

(11.1)

where m = k if k is a prime number and m = k + 1 if k + 1 is a prime number. �

The following theorem shows that the above code can correct one error.

Theorem 11.5. The (k+2, k) systematic code in construction 11.1 has minimum distance at least

3. Hence it is a one-error-correcting code.

Proof. In the (k + 2, k) code of construction 11.1, either k or k + 1 is a prime number. Let us

first consider the case that k is a prime number. Assume that a = [a1, a2, ..., ak] ∈ Sk and b =

[b1, b2, ..., bk] ∈ Sk are two distinct information sectors, whose corresponding codewords are xa,xb ∈

Sn, respectively. Our goal is to prove that dτ (xa,xb) ≥ 3. We consider three cases:

1. Case 1: dτ (a,b) ≥ 3. In this case, we have dτ (x,y) ≥ dτ (a,b) ≥ 3.
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2. Case 2: dτ (a,b) = 1. In this case, we can write b as b = [b1, b2, ..., bk] = [a1, a2, ..., ai+1, ai, ..., ak]

for some i ∈ {1, 2, ..., k − 1}. If we define ∆ = ai+1 − ai, then we get

gk+1(xa)− gk+1(xb) = 2∆ (mod k).

Since 1 ≤ |∆| ≤ k − 1 and k ≥ 3 is a prime number, we know that 2∆ is not a multiple of k.

As a result, we get

|gk+1(xa)− gk+1(xb)| ≥ 1.

Similarly, we have

gk+2(xa)− gk+2(xb)

= (2i− 1)2ai + (2i+ 1)2(ai +∆)

−(2i− 1)2(ai +∆)− (2i+ 1)2ai

= 8i∆ (mod k),

where 8i∆ is not a multiple of k, either, because 1 ≤ i, |∆| ≤ k − 1 and k ≥ 3 is a prime

number. This implies that |gk+2(xa)− gk+2(xb)| ≥ 1.

So by theorem 11.1, we get dτ (xa,xb) ≥ dτ (a,b)+|gk+1(xa)− gk+1(xb)|+|gk+2(xa)− gk+2(xb)| ≥

1 + 1 + 1 = 3.

3. Case 3: dτ (a,b) = 2. In this case, it takes at least two adjacent transpositions to change the

permutation a into b. These two transpositions can be either separated (which means that

the two pairs of integers involved in the two transposition do not share any common integer)

or adjacent to each other (which means that the two pairs of integers involved in the two

transpositions share one common integer). We consider the two cases.
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In the first case that the two adjacent transpositions are separated, we can write b as

b = [a1, ..., ai+1, ai, ..., aj+1, aj , ..., ak]

for some 1 < i+ 1 < j < k. Let us define ∆1 = ai+1 − ai and ∆2 = aj+1 − aj . Then we get

gk+1(xa)− gk+1(xb) = 2(∆1 +∆2) (mod k).

If ∆1 +∆2 is not a multiple of k, then |gk+1(xa)− gk+1(xb)| ≥ 1. This leads to dτ (xa,xb) ≥

dτ (a,b) + |gk+1(xa)− gk+1(xb)| ≥ 2 + 1 = 3. If ∆1 +∆2 is a multiple of k, we can write ∆2

as ∆2 = tk −∆1 for some integer t ∈ {−1, 0, 1}. Hence

gk+2(xa)− gk+2(xb)

= (2i− 1)2ai + (2i+ 1)2(ai +∆1)

+(2j − 1)2aj + (2j + 1)2(aj + tk −∆1)

−(2i− 1)2(ai +∆1)− (2i+ 1)2ai

−(2j − 1)2(aj + tk −∆1)− (2j + 1)2aj

= 8(j − i)∆1 (mod k),

where 8(j − i)∆1 is not a multiple of k. So |gk+2(xa) − gk+2(xb)| ≥ 1, which leads to

dτ (xa,xb) ≥ dτ (a,b) + |gk+2(xa)− gk+2(xb)| ≥ 2 + 1 = 3.

In the second case that the two transpositions are adjacent to each other, we have either

b = [a1, ..., ai+2, ai, ai+1, ..., ak],

or

b = [a1, ..., ai+1, ai+2, ai, ..., ak],
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for some 1 ≤ i ≤ k − 2.

By defining ∆1 = ai+2 − ai+1 and ∆2 = ai+2 − ai (or ∆1 = ai+1 − ai and ∆2 = ai+2 − ai),

with the same argument as above, it can be proved that either |gk+1(xa) − gk+1(xb)| ≥ 1 or

|gk+2(xa)−gk+2(xb)| ≥ 1. Therefore we again have dτ (xa,xb) ≥ dτ (a,b)+|gk+1(xa)− gk+1(xb)|+

|gk+2(xa)− gk+2(xb)| ≥ 2 + 1 = 3.

Therefore, we can conclude that when k is a prime number, for any two distinct codewords xa,xb,

their distance is at least 3. When k+1 is a prime number, we can apply the same procedure for the

proof, with only replacing “mod k” by “mod k + 1”. And we get the result that dτ (xa,xb) ≥ 3.

This completes the proof.

We now present the encoding and decoding algorithms of the (k + 2, k) systematic code. Let

L = {0, 1, ..., k! − 1} denote the set of information symbols to encode. (If the input is information

bits, they can be easily mapped to the information symbols in L.) For encoding, given an information

symbol ℓ ∈ L, it can be mapped to its corresponding permutation (i.e., information sector) a ∈ Sk

in time linear in k [79]. Based on construction 11.1, the insertion vector (gk+1(xa), gk+2(xa)) can

be directly computed, which gives us the codeword xa. That completes the encoding algorithm.

We now describe the decoding algorithm. Let xa ∈ Sk+2 denote the correct codeword, and let

a = [a1, a2, ..., ak] ∈ Sk be its information sector. Let y ∈ Sk+2 denote the received (possibly noisy)

codeword, and let b = [b1, b2, ..., bk] ∈ Sk be its information sector. Suppose that there is at most

one error in y. A straightforward decoding algorithm is to check all the k + 2 permutations within

distance one from y (including y itself), and verify which one of them is the correct codeword.

There is, however, a more efficient decoding algorithm that avoids checking the k + 2 candidate

permutations, which we describe below.

Given the received codeword y, let g1 ∈ Zk+1 and g2 ∈ Zk+2 denote the positions of the insertion

of the integers k+1 and k+2, respectively. Let xb be the codeword corresponding to the information

sector b, which can be computed based on construction 11.1. If dτ (xb,y) ≤ 1, then xb = x is the

correct codeword and b = a is the correct information sector; otherwise, there is an error in b, which
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we will find as follows. We can write a as a = [b1, ..., bi+1, bi, ..., bk] for some i with 1 ≤ i ≤ k − 1.

In this case, we have gk+1(xa) = g1 and gk+2(xa) = g2 because

dτ (a,b) + |gk+1(xa)− g1|+ |gk+2(xa)− g2| ≤ dτ (xa,y) ≤ 1,

which implies |gk+1(xa)− g1| = 0 and |gk+2(xa)− g2| = 0.

According to the proof of theorem 11.5, we know that

g1 − gk+1(xb) = gk+1(xa)− gk+1(xb) = 2(bi − bi+1) (mod m),

g2 − gk+2(xb) = 8i(bi − bi+1) (mod m),

where m is the prime number in {k, k + 1}. Based on these two equations, we get

g2 − gk+2(xb) = 4i(g1 − gk+1(xb)) (mod m). (11.2)

By solving this equation, we can obtain the value for i ∈ {1, 2, ..., k − 1} that gives us the correct

information sector a and its codeword xa.

We illustrate the decoding algorithm with the following example.

Example 11.4. Let k = 4 and the correct information sector be a = [4, 1, 3, 2]. Based on equa-

tion (11.1) in construction 11.1, we get its codeword xa = [4, 5, 6, 1, 3, 2]. Assume that one error

happened and we receive the noisy word y = [4, 5, 6, 3, 1, 2], which we decode in the following way.

First, from y, we get b = [4, 3, 1, 2] and g1 = 1, g2 = 1. And we have gk+1(xb) = 2, gk+2(xb) = 4.

Since here

dτ (xb,y) ≥ |g1 − gk+1(xb)|+ |g2 − gk+2(xb)| > 1,

there is one error in b. From equation (11.2), we get 2 = −4i mod 5, which gives us i = 2 ∈ {1, 2, 3}.

So it is determined that the correct information sector is [4, 1, 3, 2]. �

Given k, the (k + 2, k) code uses the minimum amount of redundancy among systematic codes,
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unless there exists a perfect and systematic (k + 1, k) one-error-correcting code. And compared to

the one-error-correcting code presented in [60], the (k+2, k) codes presented here have more efficient

encoding and decoding algorithms.

11.4 Multi-Error-Correcting Codes

In this section, we study the design of systematic codes that correct multiple errors, and prove that

for any 2 ≤ k < n, there exists an (n, k) systematic code of minimum distance n− k.

The one-error-correcting code in construction 11.1 can be generalized for correcting multiple

errors in the following way. Given any information sector a = [a1, a2, ..., ak] ∈ Sk, we set its

insertion vector (gk+1(xa), gk+2(xa), ..., gn(xa)) as follows: For j = 1, 2, ..., n− k,

gk+j(xa) =
k∑

i=1

(2i− 1)jai mod m,

where m = k if k is a prime number and m = k + 1 if k + 1 is a prime number. This gives us

a sequence of codes, including a (10, 4) code of minimum distance 5, a (14, 4) code of minimum

distance 7, etc. In this section, we explore the existence of more efficient systematic codes.

We present a generic scheme for constructing an (n, k) systematic code of minimum distance

d. The scheme is based on greedy searching. Although it is beyond the scope of this chapter to

obtain efficient encoding and decoding algorithms for it, the analysis of this scheme is very useful for

proving the existence of codes with certain parameters, and for deriving the capacity of systematic

codes.

Construction 11.2. Let 2 ≤ k < n and d ≥ 1. In this scheme, we construct an (n, k) systemat-

ic code of minimum distance d. It uses a greedy approach for choosing codewords as follows. Let

s1, s2, ..., sk! denote the k! permutations in Sk, respectively. For i = 1, 2, ..., k!, we choose the code-

word xsi whose information sector is si as follows: Among all the permutations in Sn that contain
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si as their information sector, choose a permutation xsi such that

∀j ∈ {1, 2, ..., i− 1}, dτ (xsi ,xsj) ≥ d. (11.3)

If all the k! codewords xs1 ,xs2 , ...,xsk!
can be generated successfully this way, we obtain an (n, k)

systematic code of minimum distance d. �

Note that given any a ∈ Sk, there are (k + 1) × (k + 2) × ... × n = n!
k! permutations in Sn that

have a as their information sector. For the above code construction to succeed, n − k needs to be

sufficiently large. In the following theorem, we derive a bound for the parameters.

Theorem 11.6. Construction 11.2 can successfully build an (n, k) systematic code of minimum

distance d if
d−1∑
i=1

(
k + i− 2

i

)
2min (d−i−1,n−k)

(
d− i− 1 + n− k

n− k

)
<
n!

k!
. (11.4)

Proof. In construction 11.2, for any information sector si ∈ Sk (where 1 ≤ i ≤ k!), there are n!
k!

possible choices for the vector [gk+1(xsi), gk+2(xsi), ..., gn(xsi)]. Our goal is to make sure that at

least one of them, which will become the corresponding codeword xsi , can guarantee to satisfy the

requirement in (11.3).

Let us consider the maximum number of choices for the vector [gk+1(xsi), gk+2(xsi), ..., gn(xsi)]

whose corresponding permutations in Sn are at distance less than d from at least one permutation

in {xs1 ,xs2 , ...,xsi−1
}. Such insertion vectors cannot be chosen for the codeword xsi . For any word

b = su with u < i, if dτ (si,b) = j ≤ d− 1, to make dτ (xsi ,xb) ≥ d, it is enough to let

n−k∑
t=1

|gk+t(xsi)− gk+t(xb)| ≥ d− j.

Now we are interested in the number of solutions to [gk+1(xsi), gk+2(xsi), ..., gn(xsi)] that satisfy

the inequality
n−k∑
t=1

|gk+t(xsi)− gk+t(xb)| ≤ d− j − 1.
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We call such solutions unavailable combinations for [gk+1(xsi), gk+2(xsi), ..., gn(xsi)]. Note that there

are at most

(
d− j − 1 + n− k

n− k

)
possible choices for

[|gk+1(xsi)− gk+1(xb)|, |gk+2(xsi)− gk+2(xb)|,

..., |gn(xsi)− gn(xb)|].

Among them, at most min(d− j − 1, n− k) elements are not zero. Hence the number of unavailable

combinations for [gk+1(xsi), gk+2(xsi), ..., gn(xsi)] (due to the constraint imposed by y) is at most

2min (d−j−1,n−k)

(
d− j − 1 + n− k

n− k

)
.

Let Nj be the number of permutations in Sk whose distance to si is j. Based on the union

bound, the total number of unavailable combinations for [gk+1(xsi), gk+2(xsi), ..., gn(xsi)] is at most

N =
d−1∑
j=1

Nj2
min (d−j−1,n−k)

(
d− j − 1 + n− k

n− k

)
.

According to lemma 11.2, there are at most

(
k + j − 1

k − 1

)
permutations in Sk for which the

distance between their information sectors and si is at most j, namely,

1 +

j∑
t=1

Nt ≤
(
k + j − 1

k − 1

)
,

for 1 ≤ j ≤ d− 1.

In this case, it is not hard to prove that N is maximized when

Nj =

(
k + j − 1

k − 1

)
−
(
k + j − 2

k − 1

)
=

(
k + j − 2

k

)
,

for k ≥ 2 and 1 ≤ j ≤ d− 1 because 2min (d−j−1,n−k)

(
d− j − 1 + n− k

n− k

)
is a deceasing function of

j.
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As a result, we get

N ≤
d−1∑
j=1

(
k + j − 2

j

)
2min (d−j−1,n−k)

(
d− j − 1 + n− k

n− k

)
.

Since the total number of possible combinations for [gk+1(xsi), gk+2(xsi), ..., gn(xsi)] is n!
k! , if

N < n!
k! , we can always find an available combination such that equation (11.3) is satisfied. And this

is true for all information sectors. So the conclusion holds.

Given k and d, we can calculate the minimum value of n that satisfies the inequality in theo-

rem 11.6.

Example 11.5. When d = 3 and n = k + 2, the inequality in theorem 11.6 can be simplified as

6

(
k − 1

1

)
+

(
k

2

)
< (k + 1)(k + 2),

which holds for any k ≥ 2. Therefore, there exists a (k+2, k) systematic code that corrects one error

for any k ≥ 2. (Note that this result is consistent with the (k+2, k) systematic one-error-correcting

code built in construction 11.1.) �

Example 11.6. When d = 4 and n = k + 3, the inequality in theorem 11.6 can be simplified as

40

(
k − 1

1

)
+ 8

(
k

2

)
+

(
k + 1

3

)
< (k + 1)(k + 2)(k + 3),

which holds for all k ≥ 2. Therefore, there exists a (k + 3, k) systematic code of minimum distance

4 for any k ≥ 2. �

We now prove that for any 2 ≤ k < n, there exists an (n, k) systematic code of minimum distance

n− k.

Theorem 11.7. For any k ≥ 2 and d ≥ 1, there exists a (k + d, k) systematic code of minimum

distance d.
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Proof. Based on theorem 11.6, to show that there exists a (k + d, k) systematic code of minimum

distance d, we only need to prove

d−1∑
i=1

(
k + i− 2

i

)
2d−i−1

(
2(d− 1)− i

d− 1

)
<

(k + d)!

k!
,

for k ≥ 2, d ≥ 2. (The case of d = 1 is trivial.)

Here, we consider a stronger condition,

d−1∑
i=1

(
k + i

i

)
2d−i−1

(
2(d− 1)− i

d− 1

)
<

(k + d)!

k!
. (11.5)

We define

ψd(k) =

∑d−1
i=1

(
k + i

i

)
2d−i−1

(
2(d− 1)− i

d− 1

)
(k+d)!

k!

.

Then we would like to show that the ratio between ψ(k+1) and ψ(k) is at most 1. That is true

because

ψd(k + 1)

ψd(k)
=

∑d−1
i=1

(
k + 1 + i

i

)
2d−i−1

(
2(d− 1)− i

d− 1

)
∑d−1

i=1

(
k + i

i

)
2d−i−1

(
2(d− 1)− i

d− 1

)
×

(k+d)!
k!

(k+1+d)!
(k+1)!

≤ d−1
max
i=1

(
k + 1 + i

i

)
(
k + i

i

) (k+d)!
k!

(k+1+d)!
(k+1)!

≤ d−1
max
i=1

k + 1 + i

1 + k

1 + k

1 + k + d
≤ 1.

This implies that given any d ≥ 2, ψd(k) is a nonincreasing function of k. If ψd(2) < 1 for all

d ≥ 2, then for any k, d ≥ 2, we have ψd(k) < 1, which proves the condition in equation (11.5). So

our task is to prove ψd(2) < 1, namely,

d−1∑
i=1

(
2 + i

i

)
2d−i−1

(
2(d− 1)− i

d− 1

)
<

(2 + d)!

2!
,
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for d ≥ 2.

The left side of the inequality is

d−1∑
i=1

(
2 + i

i

)
2d−i−1

(
2(d− 1)− i

d− 1

)

≤
d−1∑
i=1

3× 2d−2

(
2d− 3

d− 1

)

×(
(i+ 2)(i+ 1)

6
21−i

i∏
j=2

d− j

2d− 1− j
)

≤
d−1∑
i=1

3× 2d−2

(
2d− 3

d− 1

)
(
1

2
)i−1

≤ 6× 2d−2

(
2d− 3

d− 1

)
.

Now, we need to show that

6× 2d−2

(
2d− 3

d− 1

)
<

(2 + d)!

2!
,

for any d ≥ 2. When 2 ≤ d ≤ 8, we can show that the inequality holds by computing the exact

values. When d ≥ 8, we define

ϕ(d) =

6× 2d−2

(
2d− 3

d− 1

)
(2+d)!

2!

.

Then

ϕ(d+ 1)

ϕ(d)
=

2(2d− 1)(2d− 2)

d(d+ 1)(d+ 3)
≤ 8

d
≤ 1.

Since ϕ(8) < 1, we get ϕ(d) < 1 when d ≥ 8.

Based on the above analysis, we see that the condition in equation (11.5) always holds when

d, k ≥ 2. That leads to the conclusion.

Now, we present an explicit construction of systematic multi-error-correcting codes, by slightly

modifying the multi-error-correcting codes derived in [80]. The idea is that given any two integers
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gi(xa), gi(xb) < 2m, there exists a function ϕm : Z2m → {0, 1}m (called Gray map) such that

|gi(xa)− gi(xb)| ≥ dH(ϕm(gi(xa)), ϕm(gi(xb))),

where dH indicates the Hamming distance between two binary vectors. As a result, we can convert

the problem of constructing rank modulation codes to the problem of constructing binary error-

correcting codes in Hamming space. To make the code being systematic, we use ϕ⌈log2 i⌉ with

1 ≤ i ≤ k for the mapping of information part, instead of using ϕ⌊log2 i⌋ in the original construction.

Construction 11.3. Let 2 ≤ k < n, we construct an (n, k) systematic rank modulation code,

denoted by Cτ ⊂ Sn. Given any information sector a ∈ Sk, to construct its codeword xa ∈ Cτ , we

first construct xa’s image in a binary systematic code CH , that is

f(xa) =[ϕ⌈log2 1⌉(g1(a)), ..., ϕ⌈log2 k⌉(gk(a)),

ϕ⌊log2(k+1)⌋(gk+1(xa)), ..., ϕ⌊log2 n⌋(gn(xa))].

In f(xa), the first k′ =
∑k

i=1⌈log2 i⌉ bits are the information bits and they can be obtained from the

information sector a directly. The rest r′ =
∑n

i=k+1⌊log2 i⌋ bits are the parity-check bits based on

the encoding of CH . Then we can get xa ∈ Sn from f(xa) uniquely. If CH is an (k′ + r′, k′) binary

systematic code correcting t errors, then Cτ is an (n, k) systematic rank modulation code correcting

t errors.

11.5 Capacity of Systematic Codes

In this section, we prove that for rank modulation, systematic error-correcting codes achieve the

same capacity as general error-correcting codes. So they have the same asymptotic performance in

terms of the error correction capability.

In [10], Barg and Mazumdar have derived the capacity of general error-correcting codes for rank

modulation. Let A(n, d) denote the maximum size of a code of length n and minimum distance d.
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(So the code is a subset of Sn.) Define the capacity of error-correcting codes of minimum distance

d as

C(d) = lim
n→∞

lnA(n, d)

lnn!
.

It is shown in [10] that

C(d) =


1, if d = O(n),

1− ϵ, if d = Θ(n1+ϵ) with 0 < ϵ < 1,

0, if d = Θ(n2).

(11.6)

For systematic codes, let k(n, d) denote the maximum number of information cells that can exist

in systematic codes of length n and minimum distance d. (Such codes are (n, k(n, d)) systematic

codes, and have k(n, d)! codewords.) The capacity of systematic codes of minimum distance d is

Csys(d) = lim
n→∞

ln k(n, d)!

lnn!
.

The following theorem shows that systematic codes have the same capacity as general codes.

Theorem 11.8. The capacity of systematic codes of minimum distance d is

Csys(d) =


1, if d = O(n),

1− ϵ, if d = Θ(n1+ϵ) with 0 < ϵ < 1,

0, if d = Θ(n2).

Proof. Since systematic codes are a special case of general error-correcting codes, by equation (11.6),

it is sufficient to prove

Csys(d) ≥


1, if d = O(n),

1− ϵ, if d = Θ(n1+ϵ) with 0 < ϵ < 1,

0, if d = Θ(n2).
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According to theorem 11.6, there exists an (n, k) systematic code of minimum distance d if k is

the maximum integer that satisfies

(
k + d

d

)
2n
(
d+ n− k

n− k

)
<
n!

k!
.

That is because (
k + d

d

)
2n
(
d+ n− k

n− k

)

≥
d−1∑
i=1

(
k + i− 2

i

)
2min (d−i−1,n−k)

(
d− i− 1 + n− k

n− k

)
,

for all n > k ≥ 2 and d ≥ 2.

For such k, we have k(n, d) ≥ k. For convenience, let α = limn→∞
k
n be a constant. In this case,

if α > 0,

Csys(d) = lim
n→∞

ln k(n, d)!

lnn!
≥ lim

n→∞

ln k!

lnn!

= lim
n→∞

αn log(αn)

n logn
= α.

To prove the final conclusion, we will show that if d = O(n), then α = 1; if d = Θ(n1+ϵ), then

α ≥ 1− ϵ. (If d = Θ(n2), the result α ≥ 0 is trivial).

Based on the definition of k, we can get

lim
n→∞

ln

(
k + d

d

)
2n
(
d+ n− k

n− k

)
ln n!

k!

= 1. (11.7)

We consider two cases:

1) If d = O(n), we have d ≤ βn for some β > 0. By Stirling’s approximation, the formula above

yields

lim
n→∞

(α+ β)n ln α+β
αβ + n ln 2 + (β + 1− α)n ln β+1−α

(1−α)β

n lnn− αn ln(αn)
≥ 1,

which shows that n lnn− αn ln(αn) = O(n). Hence α approaches 1 as n→ ∞.
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2) If d = Θ(n1+ϵ) for 0 < ϵ < 1, by applying Stirling’s approximation to equation (11.7), we get

lim
n→∞

n ln d− k ln k − (n− k) ln(n− k) +O(n)

n lnn− k ln k +O(n)
= 1.

Since k = αn and d = Θ(n1+ϵ), we get

lim
n→∞

(1 + ϵ)n lnn− αn lnn− (1− α)n ln

(1− α)n lnn
= 1.

That leads to α ≥ 1− ϵ.

Based on the above analysis and the fact that Ssys(d) ≥ α, we get the final conclusion.

11.6 Appendix

In this appendix, we present an alternative (6, 4) systematic code, and prove that it can correct one

error.

The code is constructed as follows. Let us first show the adjacency graph for the permutations

of Sk = S4 in figure 11.1 (a), where two permutations are connected by an edge if and only if

their Kendall’s τ -distance is 1. The permutations in S4 are the permutations induced by the k = 4

information cells. And for any two permutations a,b ∈ S4, their Kendall’s τ -distance dτ (xa,xb)

equals the shortest-path distance in the adjacency graph in figure 11.1 (a).

Next, we insert a redundant cell (the 5th cell) into the permutations. For every permutation, we

place the 5th cell right in the middle. As a result, we get the permutations in figure 11.1 (b). For

any two permutations in figure 11.1 (b), they are connected by an edge if and only if their Kendall’s

τ -distance is 1. (An interesting thing to notice is that here every node has degree 2 and is in a cycle

of length 4.)

In the final step, we insert another redundant cell (the 6th cell) into the permutations. As a

result, we get the code in figure 11.1 (c), where the integer beside every codeword is the position

of the 6th cell in that codeword (which equals g6(a) + 1 with a being the information sector). The
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1234

2134

3124

4123

1243

2143

3142

4132

1423

2413

3412

4312

1432

2431

3421

4321

1342

2341

3241

4231

1324

2314

3214

4213

(a)

(b)

12534

21534

31524

41523

12543

21543

31542

41532

14523

24513

34512

43512

14532

24531

34521

43521

13542

23541

32541

42531

13524

23514

32514

42513

(c)

612534

215634

361524

416523

126543

215436

315462

641532

145236

264513

634512

435612

145632

245361

346521

435216

163542

236541

325416

462531

135264

623514

325614

425163

1 3 6 4 2 5

4 6 2 5 3 1

2 5 1 3 6 4

3 1 4 6 2 5

Figure 11.1. The construction of an (n, k) systematic one-error-correcting code for n = 6 and k = 4.

code is a (6, 4) systematic code. The following theorem shows that it has minimum distance 3, and

therefore is a one-error-correcting code.

Theorem 11.9. The (6, 4) systematic code in figure 11.1 (c) has minimum distance 3. So it is a

one-error-correcting code.
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Proof. Since inserting redundant cells into permutations will only increase the distance between

permutations, we just need to focus on the permutation pairs in figure 11.1 (a) that are at distance

at most 2 from each other, and show that after adding the n− k = 2 redundant cells, their distance

is at least 3.

First, consider the permutation pairs at distance one (i.e., adjacent permutations) in figure 11.1

(a). Every permutation a ∈ S4 in figure 11.1 (a) has three neighbors, and they are contained in

two cycles: a cycle of length 6 and a cycle of length 4. (For example, the permutation [1, 2, 3, 4] has

three neighbors: [1, 2, 4, 3], [1, 3, 2, 4] and [2, 1, 3, 4]. The permutations [1, 2, 3, 4], [1, 2, 4, 3], [1, 3, 2, 4]

are in a cycle of length 6: [1, 2, 3, 4] − [1, 2, 4, 3] − [1, 4, 2, 3] − [1, 4, 3, 2] − [1, 3, 4, 2] − [1, 3, 2, 4].

The permutations [1, 2, 3, 4], [1, 2, 4, 3], [2, 1, 3, 4] are in a cycle of length 4: [1, 2, 3, 4] − [1, 2, 4, 3] −

[2, 1, 4, 3]− [2, 1, 3, 4].) We consider the two cases:

• Consider a cycle of length 6. Let S = (s1, s2, s3, s4, s5, s6) denote the positions of the number

“6” in the final permutations in figure 11.1 (c). (Those positions are the numbers beside

the permutations in figure 11.1 (c).) We can see that either S = (1, 3, 6, 4, 2, 5) or S =

(6, 4, 1, 3, 5, 2) (or its cyclic shifts or inversions).

For example, consider the cycle [3, 4, 1, 2]−[3, 4, 2, 1]−[3, 2, 4, 1]−[3, 2, 1, 4]−[3, 1, 2, 4]−[3, 1, 4, 2]

in figure 11.1 (a). The corresponding set of permutations in figure 11.1 (c) is [6, 3, 4, 5, 1, 2]−

[3, 4, 6, 5, 2, 1] − [3, 2, 5, 4, 1, 6] − [3, 2, 5, 6, 1, 4] − [3, 6, 1, 5, 2, 4] − [3, 1, 5, 4, 6, 2]. For this cycle,

we have S = (1, 3, 6, 4, 2, 5).

As another example, consider the cycle [2, 1, 4, 3]−[2, 1, 3, 4]−[2, 3, 1, 4]−[2, 3, 4, 1]−[2, 4, 3, 1]−

[2, 4, 1, 3] in figure 11.1 (a). The corresponding set of permutations in figure 11.1 (c) is

[2, 1, 5, 4, 3, 6]− [2, 1, 5, 6, 3, 4]− [6, 2, 3, 5, 1, 4]− [2, 3, 6, 5, 4, 1]− [2, 4, 5, 3, 6, 1]− [2, 6, 4, 5, 1, 3].

For this cycle, we have S = (6, 4, 1, 3, 5, 2).

We see that any two adjacent numbers in the cycle S differ by at least 2. The two corresponding

permutations in figure 11.1 (a) have distance 1. (Also note that the adjacency graph has no

cycle of length less than 4.) So after inserting the redundant cells, their distance is at least
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2 + 1 = 3.

• Similarly, consider a cycle of length 4. Let S = (s1, s2, s3, s4) denote the positions of the number

“6” in the final permutations in figure 11.1 (c). (Those positions are the numbers beside the

permutations in figure 11.1 (c).) We can see that either S = (1, 3, 6, 4) or S = (2, 5, 2, 5) (or

its cyclic shifts or inversions).

For example, consider the cycle [1, 2, 3, 4]− [1, 2, 4, 3]− [2, 1, 4, 3]− [2, 1, 3, 4] in figure 11.1 (a).

The corresponding set of permutations in figure 11.1 (c) is [6, 1, 2, 5, 3, 4] − [1, 2, 6, 5, 4, 3] −

[2, 1, 5, 4, 3, 6]− [2, 1, 5, 6, 3, 4]. For this cycle, we have S = (1, 3, 6, 4).

As another example, consider the cycle [2, 4, 1, 3]−[2, 4, 3, 1]−[4, 2, 3, 1]−[4, 2, 1, 3] in figure 11.1

(a). The corresponding set of permutations in figure 11.1 (c) is [2, 6, 4, 5, 1, 3]− [2, 4, 5, 3, 6, 1]−

[4, 6, 2, 5, 3, 1]− [4, 2, 5, 1, 6, 3]. For this cycle, we have S = (2, 5, 2, 5).

We see that any two adjacent numbers in the cycle S differ by at least 2. The two corresponding

permutations in figure 11.1 (a) have distance 1. So after inserting the redundant cells, their

distance is at least 2 + 1 = 3.

So for any two adjacent permutations in figure 11.1 (a), after inserting the redundant cells, their

distance is at least 3.

Next, consider the permutation pairs at distance two in figure 11.1 (a). Let a = [a1, a2, a3, a4] ∈

S4 and b = [b1, b2, b3, b4] ∈ S4 be two permutations at distance two in figure 11.1 (a). After inserting

the 5th cell into them, they become a′ = [a1, a2, 5, a3, a4] ∈ S5 and b′ = [b1, b2, 5, b3, b4] ∈ S5. (See

figure 11.1 (b).) After inserting the 6th cell into them, they become a′′ ∈ S6 and b′′ ∈ S6. Let

sa, sb ∈ {1, 2, 3, 4, 5, 6} denote the positions of the number “6” in a′′ and b′′, respectively. If sa ̸= sb,

then clearly dτ (a
′′,b′′) ≥ 2+1 = 3. So we only need to consider the case sa = sb. From figure 11.1,

we can see it happens only in a cycle of length 4. For example, consider the cycle [2, 4, 1, 3] −

[2, 4, 3, 1]− [4, 2, 3, 1]− [4, 2, 1, 3] in figure 11.1 (a). If a = [2, 4, 1, 3] and b = [4, 2, 3, 1], then we have

dτ (a,b) = 2, a′ = [2, 4, 5, 1, 3], b′ = [4, 2, 5, 3, 1], a′′ = [2, 6, 4, 5, 1, 3], b′′ = [4, 6, 2, 5, 3, 1], sa = 2,

sb = 2. It is easy to see that dτ (a
′′,b′′) = dτ ([2, 6, 4, 5, 1, 3], [4, 6, 2, 5, 3, 1]) > dτ ([2, 6, 4], [4, 6, 2]) =
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3. Similarly, if a = [2, 4, 3, 1] and b = [4, 2, 1, 3], then we have dτ (a,b) = 2, a′ = [2, 4, 5, 3, 1],

b′ = [4, 2, 5, 1, 3], a′′ = [2, 4, 5, 3, 6, 1], b′′ = [4, 2, 5, 1, 6, 3], sa = 5, sb = 5. It is easy to see that

dτ (a
′′,b′′) = dτ ([2, 4, 5, 3, 6, 1], [4, 2, 5, 1, 6, 3]) > dτ ([3, 6, 1], [1, 6, 3]) = 3. All the other permutation

pairs are in similar cases. (Note that either sa = sb = 2, or sa = sb = 5.) So for any two

permutations at distance two in figure 11.1 (a), after inserting the redundant cells, their distance is

at least 3.

Since [6, 1, 2, 5, 3, 4] and [1, 2, 6, 5, 4, 3] are two codewords, and their distance is 3, the minimum

distance of the code is exactly 3. It is a one-error-correcting code.

11.7 Conclusion

In this chapter, we study systematic error-correcting codes for rank modulation. We present (k+2, k)

systematic codes for correcting one error, and analyze systematic codes that correct multiple errors.

We prove that systematic codes have the same capacity as general codes. There are still many open

problems for systematic codes for rank modulation. It is important to design multi-error-correcting

codes of high rates with efficient encoding and decoding algorithms. It is also important to study

codes equipped with distance metrics other than the Kendall’s τ -distance, based on the different

types of noise that are common in nonvolatile memories.



402

Bibliography

[1] E. Abbe,“Polarization and randomness extraction,” in Proc. IEEE International Symposium

on Information Theory (ISIT), pp. 184–188, 2011.

[2] K. A. S. Abdel-Ghaffar and H. C. Ferreira, “Systematic encoding of the Varshamov-Tenengol’ts

codes and the Constantin-Rao codes,” IEEE Trans. Inform. Theory, vol. 44, pp. 340–345, 1998.

[3] J. Abrahams, “Generation of discrete distributions from biased coins,” IEEE Trans. Inform.

Theory, vol. 42, pp. 1541–1546, 1996.

[4] A. V. Aho, L. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algo-

rithms, Reading, MA: Addison-Wesley, 1976.

[5] Y. Akizawa, T. Yamazaki, A. Uchida, T. Harayama, S. Sunada, K. Arai, K. Yoshimura, and

P. Davis, “Fast random number generation with bandwidth-enhanced chaotic semiconductor

lasers at 8×50 Gb/s,” IEEE Photonics Technology Letters, vol. 24, no. 12, pp. 1042–1044,

2012.

[6] S. Al-Bassam and B. Bose, “On balanced codes,” IEEE Trans. Inform. Theory, vol. 36, pp.

406–408, Mar. 1990.

[7] S. Al-Bassam, B. Bose, “Design of efficient error-correcting balanced codes,” IEEE Trans.

Comput., vol. 42, pp. 1261–1266, 1993.

[8] S. Al-Bassam, R. Venkatesan, and S. Al-Muhammadi, “New single asymmetric error-correcting

codes,” IEEE Trans. Inform. Theory, vol. 43, pp. 1619–1623, 1997.



403

[9] B. Barak, R. Impagliazzo, and A. Wigderson, “Extracting randomness using few independent

sources,” SIAM J. Comput., 36:1095–1118, 2006.

[10] A. Barg and A. Mazumdar, “Codes in permutations and error correction for rank modulation,”

IEEE Trans. Inform. Theory, vol. 56, no. 7, pp. 3158–3165, 2010.

[11] M. Ben-Or and N. Linial, “Collective coin flipping,” Randomness and Computation, New York,

Academic Press, pp. 91–115, 1990.

[12] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to flash memory,” Pro-

ceedings of the IEEE, vol. 91, pp. 489–502, 2003.

[13] L. Blum, M. Blum, and M. Shub, “A simple, unpredictable pseudorandom generator,” SIAM

J. Comput., vol. 15, no. 2, pp. 364–383, 1986.

[14] M. Blum, “Independent unbiased coin flips from a correlated biased source: A finite state

Markov chain,” Combinatorica, vol. 6, pp. 97–108, 1986.

[15] J. Bourgain, “More on the sum-product phenomenon in prime fields and its applications,”

International Journal of Number Theory, 1:1–32, 2005.

[16] B. Bose and S. Al-Bassam, “On systematic single asymmetric errorcorrecting codes,” IEEE

Trans. Inform. Theory, vol. 46, pp. 669–672, 2000.

[17] J. E. Brewer and M. Gill, Nonvolatile Memory Technologies with Emphasis on Flash, John

Wiley & Sons, Hoboken, New Jersey, 2008.

[18] G. W. Burr et al., “Phase change memory technology,” Journal of Vacuum Science and Tech-

nology, vol. 28, no. 2, pp. 223–262, March 2010.

[19] Y. Cai, E. F. Haratsch, O. Mutlu, K. Mai, “Error patterns in MLC NAND Flash memo-

ry: Measurement, characterization, and analysis,” in Proc. Design, Automation, and Test in

Europe (DATE), 2012.



404

[20] P. Cappelletti, C. Golla, P. Olivo and E. Zanoni (Ed.), Flash Memories, Kluwer Academic

Publishers, 1st Edition, 1999.

[21] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for asymmetric limited-

magnitude errors with application to multilevel flash memories,” IEEE Trans. Inform. Theory,

vol. 56, no. 4, pp. 1582–1595, 2010.

[22] L. Chakrapani, P. Korkmaz, B. Akgul, and K. Palem, “Probabilistic system-on-a-chip archi-

tecture,” ACM Transactions on Design Automation of Electronic Systems, vol. 12, no. 3, pp.

1–28, 2007.

[23] A. Cohen and A. Wigderson, “Dispersers, deterministic amplification, and weak random

sources,” in Proc. Annual IEEE Symposium on Foundations of Computer Science (FOCS),

1989.

[24] S. D. Constantin and T. R. N. Rao, “On the theory of binary asymmetric error-correcting

codes,” Inform. Contr., vol. 40, pp. 20–36, 1979.

[25] M. Cook, D. Soloveichik, E. Winfree, J. Bruck, “Programmability of chemical reaction net-

works,” Algorithmic Bioprocesses, Natural Computing Series, pp. 543–584, 2009.

[26] T. M. Cover, “Enumerative source coding,” IEEE Trans. Inform. Theory, vol. 19, no. 1, pp.

73–77, Jan. 1973.

[27] T. M. Cover, J. A. Thomas, Elements of Information Theory, Second Edition, Wiley, July

2006.

[28] P. Delsarte and P. Piret, “Bounds and constructions for binary asymmetric error-correcting

codes,” IEEE Trans. Inform. Theory, vol. 27, pp. 125–128, 1981.

[29] M. Deza and H. Huang, “Metrics on permutations, a survey,” J. Comb. Inf. Sys. Sci., vol. 23,

pp. 173–185, 1998.

[30] E. Dijkstra, “Making a fair roulette from a possibly biased coin,” Inform. Processing Lett.,

vol. 36, no. 4, pp. 193, 1990.



405

[31] Y. Dodis, “Impossibility of black-box reduction from non-adaptively to adaptively secure coin-

flipping,” Technical Report 039, Electronic Colloquium on Computational Complexity, 2000.

[32] Z. Dvir and A. Wigderson, “Kakeya sets, new mergers and older extractors,” in Proc. IEEE

Symposium on Foundations of Computer Science (FOCS), 2008.

[33] P. Elias, “The efficient construction of an unbiased random sequence,” Ann. Math. Statist.,

vol. 43, pp. 865–870, 1972.

[34] Y. El-Kurdi, D. Fernández, E. Souleimanov, D. Giannacopoulos, W. J. Gross, “FPGA ar-

chitecture and implementation of sparse matrix-vector multiplication for the finite element

method,” Computer Physics Communications 178(8): 558–570, 2008.

[35] T. Etzion, “Lower bounds for asymmetric and unidirectional codes,” IEEE Trans. Inform.

Theory, vol. 37, pp. 1696–1704, 1991.

[36] G. Fang and H. C. A. van Tilborg, “Bounds and constructions of asymmetric or unidirectional

error-correcting codes,” Appl. Algebra Engrg. Comm. Comput., vol. 3, no. 4, pp. 269–300,

1992.

[37] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear programming to decode binary

linear codes”, IEEE Trans. Inform. Theory, vol. 51, pp. 954–972, Mar. 2005.

[38] B. Fett, J. Bruck, and M. D. Riedel, “Synthesizing stochasticity in biochemical systems,” in

Proc. Annual Conference on Design Automation (DAC), pp. 640–645, 2007.

[39] F. Fu, S. Ling, and C. Xing, “New lower bounds and constructions for binary codes correcting

asymmetric errors,” IEEE Trans. Inform. Theory, vol. 49, pp. 3294–3299, 2003.

[40] E. Fujiwara, Code Design for Dependable Systems: Theory and Practical Applications, John

Wiley & Sons, 2006.

[41] A. Gabizon, R. Raz, and R. Shaltiel, “Deterministic extractors for bit-fixing sources by ob-

taining an independent seed,” SIAM J. Comput., 36:1072–1094, 2006.



406

[42] R. Gallager, “Low density parity check codes,” IRE Trans. Inform. Theory, vol. 8, no. 1, pp.

21–28, Jan. 1962.

[43] R. Gallager, Low Density Parity Check Codes, no. 21 in Research Monograph Series. Cam-

bridge, MA: MIT Press, 1963.

[44] A. Gill, “Synthesis of probability transformers,” Journal of the Franklin Institute, vol. 274, no.

1, pp. 1–19, 1962.

[45] A. Gill, “On a weight distribution problem, with application to the design of stochastic gen-

erators,” Journal of the ACM, vol. 10, no. 1, pp. 110–121, 1963.

[46] I. Ya. Goldbaum, “Bounds on the number of signals in codes with asymmetrical error correc-

tion,” Automat. Tekmekh., vol. 32, pp. 94–97, 1971.

[47] O. Goldreich, H. Krawczyk, and M. Luby, “On the existence of pseudorandom generators,”

SIAM J. Comput., vol. 22, no. 6, pp. 1163–1175, Dec. 1993.

[48] S. W. Golomb and L. R. Welch, “Perfect codes in the Lee metric and the packing of polyomi-

noes,” SIAM J. Appl. Math., vol. 18, no. 2, pp. 302–317, 1970.

[49] R. L. Graham, and N. J. A. Sloane, “Lower bounds for constant weight codes,” IEEE Trans.

Inform. Theory, vol. 26, no. 1, pp. 37–43, 1980.

[50] V. Guruswami, C. Umans, and S. Vadhan, “Unbalanced expanders and randomness extrac-

tors from Parvaresh-Vardy codes,” in Proc. IEEE Conference on Computational Complexity

(CCC), pp. 96–108, 2007.

[51] T. S. Han, “Folklore in source coding: Information-spectrum approach,” IEEE Trans. Inform.

Theory, vol. 51, no. 2, pp. 747–753, 2005.

[52] T. S. Han and M. Hoshi, “Interval algorithm for random number generation,” IEEE Trans.

Inform. Theory, vol. 43, No. 2, pp. 599–611, 1997.



407

[53] N. Hessler, A. Shirke, and R. Malinow, “The probability of transmitter release at a mammalian

central synapse,” Nature, 366, pp. 569–572, 1993.

[54] W. Hoeffding and G. Simon, “Unbiased coin tossing with a biased coin,” Ann. Math. Statist.,

vol. 41, pp. 341–352, 1970.

[55] K. S. Immink and J. Weber, “Very efficient balanced codes,” IEEE Journal on Selected Areas

in Communications, vol. 28, pp. 188–192, 2010.

[56] R. Impagliazzo, L. A. Levin, and M. Luby, “Pseudo-random generation from one-way func-

tions,” in Proc. Annu. ACM Symp. Theory of Computing (STOC), Seattle, WA, May 15-17,

pp. 12–24, 1989.

[57] P. Jeavons, D. A. Cohen, and J. Shawe-Taylor, “Generating binary sequences for stochastic

computing,” IEEE Trans. Inform. Theory, vol. 40, no. 3, pp. 716–720, 1994.

[58] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank modulation for flash memories,”

in Proc. IEEE International Symposium on Information Theory (ISIT), pp. 1731–1735, July

2008.

[59] A. Jiang, M. Schwartz and J. Bruck, “Correcting charge-constrained errors in the rank-

modulation scheme,” IEEE Trans. Inform. Theory, vol. 56, no. 5, pp. 2112–2120, 2010.

[60] A. Jiang, M. Schwartz and J. Bruck, “Error-correcting codes for rank modulation,” in Proc.

IEEE International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.

[61] A. Juels, M. Jakobsson, E. Shriver, B. K. Hillyer, “How to turn loaded dice into fair coins,”

IEEE Trans. Inform. Theory, vol. 46, pp. 911–921, 2000.

[62] B. Jun and P. Kocher, “The Intel random number generator,” http://www.cryptography.com/

resources/whitepapers/IntelRNG.eps, 1999.

[63] J. Kamp, A. Rao, S. Vadhan and D. Zuckerman, “Deterministic extractors for small-space

sources,” Journal of Computer and System Sciences, vol. 77, pp. 191–220, 2011.



408

[64] J. Kamp and D. Zuckerman, “Deterministic extractors for bit-fixing sources and exposure-

resilient cryptography,” SIAM J. Comput., 36:1231–1247, 2006.

[65] I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random

bit generator,” Nat. Photon., vol. 4, no. 1, pp. 58–61, 2010.

[66] P. M. Kareiva and N. Shigesada, “Analyzing insect movement as a correlated random walk,”

Oecologia vol. 56, pp. 234–238, 1983.

[67] T. Kløve, “Error correcting codes for the asymmetric channel,” Technical Report, Dept. of

Informatics, University of Bergen, 1981. (Updated in 1995.)

[68] T. Kløve, “Upper bounds on codes correcting asymmetric errors,” IEEE Trans. Inform. The-

ory, vol. 27, no. 1, pp. 128–131, 1981.

[69] D. E. Knuth, “Efficient balanced codes,” IEEE Trans. Inform. Theory, vol. 32, no. 1, pp.

51–53, 1986.

[70] D. E. Knuth, Things a Computer Scientist Rarely Talks About, CSLI Publications, Stanford,

2001.

[71] D. E. Knuth and A. Yao, “The complexity of nonuniform random number generation,” Algo-

rithms and Complexity: New Directions and Recent Results, pp. 357–428, 1976.

[72] P. Lacharme, “Analysis and construction of correctors,” IEEE Trans. Inform. Theory, vol. 55,

pp. 4742–4748, 2009.

[73] P. Lacharme, “Post-processing functions for a biased physical random number generator,” in

Proc. FSE, vol. 5086, pp. 334–342, 2008.

[74] J. C. Lawrence, “A new universal coding scheme for the binary memoryless source,” IEEE

Trans. Inform. Theory, vol. 23, pp. 466–472, 1977.

[75] P. Loh, H. Zhou, and J. Bruck, “The robustness of stochastic switching networks,” in Proc.

IEEE International Symposium on Information Theory (ISIT), 2009.



409

[76] H. T. Lue et al., “Study of incremental step pulse programming (ISPP) and STI edge effect

of BE-SONOS NAND flash,” in Proc. IEEE Int. Symp. on Reliability Physics, pp. 693–694,

May 2008.

[77] P. A. MacMahon, “The combinations of resistances,” The Electrician, 28:601–602, 1892.

(Reprinted in: Discr. Appl. Math., 54:225–228, 1994.).

[78] F. J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland:

New York, NY, 1977.

[79] M. Mares and M. Straka, “Linear-time ranking of permutations,” Algorithms-ESA, pp. 187–

193, 2007.

[80] A. Mazumdar, A. Barg and G. Zémor, “Construction of rank modulation codes,” in Proc.

IEEE Internatinal Sympos. Inform. Theory, pp. 834–838, 2011.

[81] A. Mazumdar, A. Barg and G. Zémor, “Parameters of rank modulation codes: Examples,” in

Proc. Annual Allerton conference on communication, control and computing (Allerton), pp.

13–17, 2011.

[82] A. Mazumdar, R. M. Roth, and P. O. Vontobel, “On linear balancing sets,” in Proc. IEEE

Int. Symp. Information Theory, pp. 2699–2703, 2009.

[83] R. McEliece, D. MacKay, and J. Cheng, “Turbo decoding as an instance of Pearl’s belief

propagation algorithm,” IEEE J. Sel. Areas Commun., vol. 16, no. 2, pp. 140–152, Feb. 1998.

[84] N. Merhav and D. L. Neuhoff, “Variable-to-fixed length codes provide better large deviations

performance than fixed-to-variable length codes,” IEEE Trans. Inform. Theory, vol. 38, pp.

135–140, Jan. 1992.

[85] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi, E. Goodness,

and L. R. Nevill, “Bit error rate in NAND Flash memories,” in IEEE International Reliability

Physics Symposium, pp. 9–19, 2008.



410

[86] R. Motwani and P. Pgahavan, Randomized Algorithms, Cambridge University Press, 1995.

[87] N. Nisan, “Extracting randomness: How and why. A survey,” in Proc. IEEE conference on

Computational Complexity, pp. 44–58, 1996.

[88] S. Pae and M. C. Loui, “Optimal random number generation from a biased coin,” in Proc.

ACM-SIAM Symp. Discrete Algorithms, pp. 1079–1088, 2005.

[89] A. Pirovano, A. Redaelli, et al., “Reliability study of phase-change nonvolatile memories,”

IEEE Transactions on Device and Materials Reliability, vol. 4, pp. 422–427, 2004.

[90] Y. Peres, “Iterating von Neumann’s procedure for extracting random bits,” Ann. Statist., vol.

20, pp. 590–597, 1992.

[91] K. C. Pohlmann, Principles of Digital Audio, McGraw-Hill/TAB Electronics, 6 edition, 2010.

[92] W. Qian, M. D. Riedel, H. Zhou, and J. Bruck, “Transforming probabilities with combinational

logic,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 30,

pp. 1279–1292, 2011.

[93] J. Radhakrishnan and A. Ta-Shma, “Bounds for dispersers, extractors, and depth-two supper-

concentrators,” SIAM Journal on Discrete Mathmatics, 13(1): 2–24, 2000.

[94] A. Rao, “Extractors for a constant number of polynomially small min-entropy independent

sources,” in Proc. ACM Symposium on Theory of Computing (STOC), 2006.

[95] A. Rao, “Randomness extractors for independent sources and applications,” Ph.D. thesis,

Department of Computer Science, University of Texas at Austin, 2007.

[96] A. Rao, and D. Zuckerman, “Extractors for three uneven-length sources,” in Proc. Workshop

on Randomization and Computation (RANDOM), pp. 557–570, 2008.

[97] R. Raz, “Extractors with weak random seeds,” in Proc. Annual ACM Symposium on Theory

of Computing (STOC), pp. 11–20, 2005.



411

[98] I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh speed random number gener-

ation based on a chaotic semiconductor laser,” Phys. Rev. Lett., vol. 103, no. 2, pp. 024102-

1C024102-4, 2009.

[99] B. Y. Ryabko and E. Matchikina, “Fast and efficient construction of an unbiased random

sequence,” IEEE Trans. Inform. Theory, vol. 46, pp. 1090–1093, 2000.

[100] Y. Saitoh, K. Yamaguchi, and H. Imai, “Some new binary codes correcting asymmet-

ric/unidirectional errors,” IEEE Trans. Inform. Theory, vol. 36, pp. 645–647, 1990.

[101] P. A. Samuelson, “Constructing an unbiased random sequence,” J. Amer. Statist. Assoc, pp.

1526–1527, 1968.

[102] M. Santha and U. V. Vazirani, “Generating quasi-random sequences from semi-random

sources,” Journal of Computer and Symstem Science, 33:75–87, 1986.

[103] S. A. Savari and R. G. Gallager, “Generalized Tunstall codes for sources with memory,” IEEE

Trans. Inform. Theory, vol. 43, pp. 658–668, Mar. 1997.

[104] M. Schwartz and I. Tamo, “Optimal permutation anticodes with the infinity norm via perma-

nents of (0, 1)-matrices,” Journal of Combinatorial Theory, Series A, vol. 118, pp. 1761–1774,

2011.

[105] R. Shaltiel, “Recent developments in explicit constructions of extractors,” in Current trends

in theoretical computer science. The Challenge of the New Century, vol 1: Algorithms and

Complexity, 2004.

[106] C. E. Shannon. “A symbolic analysis of relay and switching circuits,” Trans. AIEE, 57:713–723,

1938.

[107] C. L. Sheng, “Threshold logic elements used as a probability transformer,” Journal of the

ACM, vol. 12, no. 2, pp. 262–276, April, 1965.

[108] D. Soloveichik, G. Seelig, and E. Winfree, “DNA as a universal substrate for chemical kinetics,”

PNAS 107, pp. 5393–5398, 2010.



412

[109] Q. Stout and B. Warren, “Tree algorithms for unbiased coin tosssing with a biased coin,” Ann.

Probab., vol. 12, pp. 212–222, 1984.

[110] L. G. Tallini, B. Bose, “On a new class of error control codes and symmetric functions,” in

Proc. IEEE International Symposium on Information Theory (ISIT), pp. 980–984, 2008.

[111] L. G. Tallini, R. M. Capocelli, and B. Bose, “Design of some new balanced codes,” IEEE

Trans. Inform. Theory, vol. 42, pp. 790–802, May 1996.

[112] I. Tamo and M. Schwartz, “Correcting limited-magnitude errors in the rank-modulation

scheme,” IEEE Trans. Inform. Theory, vol. 56, no. 6, pp. 2551–2560, June 2010.

[113] G. Taylor and G. Cox, “Behind Intel’s new random-number generator”, IEEE Spectrum, Sep.

2011.

[114] T. J. Tjalkens and F. M. J. Willems, “A universal variable-to-fixed-length source codes based

on Lawrence’s algorithm,” IEEE Trans. Inform. Theory, vol. 38, pp. 247–253, Mar. 1992.

[115] T. J. Tjalkens and F. M. J. Willems, “Variable to fixed-length codes for Markov sources,”

IEEE Trans. Inform. Theory, vol. 33, pp. 246–257, Mar. 1987.

[116] L. Trevisan and S. P. Vadhan, “Extracting randomness from samplable distributions,” in Proc.

IEEE Symposium on Foundations of Computer Science (FOCS), pp. 32–42, 2000.

[117] B. P. Tunstall, Synthesis of noiseless compression codes, Ph.D. dissertation, Georgia Inst.

Technol., Atlanta, GA, Sept. 1967.

[118] A. Uchida, et al., “Fast physical random bit generation with chaotic semiconductor lasers,”

Nat. Photon., vol. 2, no. 12, pp. 728–732, 2008.

[119] H. van Tilborg and M. Blaum, “On error-correcting balanced codes,” IEEE Trans. Inf. Theory,

vol. 35, no. 5, pp. 1091–1095, Sep. 1989.

[120] M. E. Van Valkenburg, Network Analysis, 3rd Edition, Prentice-Hall, Englewood Cliffs, NJ,

USA, 1974.



413

[121] R. R. Varshamov, “A class of codes for asymmetric channels and a problem from the additive

theory of numbers,” IEEE Trans. Inform. Theory, vol. 19, no. 1, pp. 92–95, 1973.

[122] R. R. Varshamov, “Some features of linear codes that correct asymmetric errors” (in Russian),

Doklady Akad. Nauk. SSSR, vol. 157, no. 3, pp. 546–548, 1964. (Trans: Soviet Physics-Doklady

9, pp. 538–540, 1965.)

[123] U. V. Vazirani, “Efficiency consideration in using semi-random sources,” in Proc. ACM Sym-

posium on the Theory of Computing (STOC), pp. 160–168, 1987.

[124] U. V. Vazirani and V. V. Vazirani, “Efficient and secure pseudo-random number generation,”

in Proc. IEEE Symp. Foundations of Computer Science (FOCS), Singer Island, FL, Oct. 24–26,

1984, pp. 458–463.
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