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Abstract—Homomorphic encryption, aimed at enabling com-
putation in the encrypted domain, is becoming important to a
wide and growing range of applications, from cloud computing
to distributed sensing. In recent years, a number of approaches
to fully (or nearly fully) homomorphic encryption have been
proposed, but to date the space and time complexity of the
associated schemes has precluded their use in practice. In
this work, we demonstrate that more practical homomorphic
encryption schemes are possible when we require that not all
encrypted computations be supported, but rather only those of
interest to the target application. More specifically, we develop
a homomorphic encryption scheme operating directly on integer
vectors that supports three operations of fundamental interest in
signal processing applications: addition, linear transformation,
and weighted inner products. Moreover, when used in combina-
tion, these primatives allow us to efficiently and securely compute
arbitrary polynomials. Some practically relevant examples of
the computations supported by this framework are described,
including feature extraction, recognition, classification, and data
aggregation.

I. INTRODUCTION

Homomorphic encryption techniques hold the promise of

enabling truly secure ways to gather, share, and process

information in distributed settings. For instance, in data cloud

applications, users typically want to keep their data private

while still allowing remote servers to perform tasks such as fil-

tering or search. As another example, in biometric authentica-

tion applications, users want to successfully authenticate with

remote servers while maintaining the privacy of their requests.

Finally, in remote and distributed sensing applications, there

is a need to be able fuse and process acquired data directly in

the encrypted domain, sometimes while further disguising the

nature of such processing.

The notion of homomorphic encryption—encryption that

supports computation on encrypted data—dates back to late

1970’s [1]. Later, homomorphic encryption schemes that sup-

port either addition or multiplication operations (but not both)

were proposed by, e.g., Goldwasser and Micali [2], El-Gamal

[3], and Paillier [4]. A key breakthrough was the relatively

recent development by Gentry of a fully homomorphic en-

cryption (FHE) scheme [5], which is capable of evaluating an

arbitrary function in the encrypted domain. Since then, several

variants and improvements on Gentry’s method have been
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developed; see, e.g., [6]–[14]. Among them, the Brakerski-

Gentry-Vaikuntanathan (BGV) scheme [9] is among the most

promising (somewhat) FHE scheme. However, it is still rather

impractical due to its high computational complexity and large

communication cost [15].

Several aspects of current homomorphic encryption schemes

make them difficult to realize in practice. First, most ho-

momorphic encryption schemes are bit-by-bit encryption

schemes, i.e., each ciphertext represents a single bit. The

advantage of such a bit-by-bit encryption scheme is that it is

easy to be fully homomorphic: if the scheme supports both

binary addition and multiplication operations on encrypted

bits, then it can compute an arbitrary Boolean function in

the encrypted domain. This is because any Boolean function

can be represented by a collection of binary addition and

multiplication operations. At the same time, however, bit-

by-bit encryption makes the practical applications of homo-

morphic encryption problematic, since it significantly reduces

the storage and communication efficiency and increases the

computational time. For example, in data-cloud applications,

where users store their private data in remote servers, it

is unacceptably inefficient to store each single bit with an

entire ciphertext of thousands (or more) bits. Furthermore,

bit-by-bit encryption schemes require applications to convert

computation tasks into binary addition and multiplication op-

erations, which makes the computation more complex—even

for simple elementary operations such as the multiplication

of two 8-bit integers, its execution demands hundreds of bit

operations with multiplication depth of 16 [15]. And we know

that, for homomorphic encryption, it is much more difficult

to handle multiplications than additions, especially when the

multiplication depth is large.

In order to reduce the complexity of homomorphic compu-

tation, several ciphertext-packing techniques have been devel-

oped to combine multiple ciphertexts into a single ciphertext.

In [16], Smart and Vercauteren develop a technique to pack

ciphertexts based on polynomial-CRT. In [17], Yasuda, et al.,

develop a technique to pack ciphertexts based on ideal lattices

and apply it to biometrics. In [18], Cheon, et al., extend

the scheme of van Dijk, et al., [12] to support encrypting

and processing a binary vector. In [11], Naehrig, Lauter, and

Vaikuntanathan present a ciphertext-packing technique whose

security is based on the Ring Learning With Errors (Ring
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LWE) problem. A similar ciphertext-packing technique whose

security is based on the Learning With Error (LWE) problem,

was introduced by Peikert, Vaikuntanathan and Waters (PVW)

[19]. Later, Brakerski, Gentry and Halevi [20] showed how

to apply the PVW technique to perform SIMD-type (Single

Instruction Multiple Data) operations, and their goal was trying

to parallelize any given repeated operations, by encrypting

multiple bits within the same ciphertext and performing the

same operations on these bits. However, these techniques have

their application limitations, and they still need to decompose

computation tasks into many binary operations. Even with

these techniques, the computation and communication require-

ments are still difficult to accommodate in most practical

applications.

In this paper, we approach the problem from a somewhat

different perspective. In particular, while almost all the current

homomorphic encryption schemes are aimed at enabling arbi-

trary computation tasks so as to be “universal,” we instead

restrict our attention to important and broadly useful—but

more limited—classes of computation tasks in order to obtain

schemes more amenable to implementation in practice. More

specifically, we develop an efficient homomorphic encryption

scheme that encrypts data directly in the form integer vectors,

and supports practically important forms of computation on

such data in the encrypted domain. Without the need to

decompose the processing of such data into binary operations,

the computational complexity is significantly reduced.

The paper is organized as follows. Section II describes the

scenario of interest with applications in cloud storage and

sensing systems. Section III presents a scheme that encrypts

integer vectors directly, as a natural extension of the recently

developed homomorphic encryption schemes based on the

learning with errors (LWE) formalism. In Section IV, we

demonstrate that this scheme supports three types of funda-

mental operations on integer vectors in the encrypted domain:

addition, linear transformation, and weighted inner products.

Used in combination, these allow us to efficiently compute an

arbitrary polynomial in a secure manner. Section V provides

examples of the kinds of practical computations possible with

this scheme, including feature extraction, recognition, classifi-

cation, and data aggregation. Finally, Section VI contains some

concluding remarks.

II. APPLICATION SCENARIO

In this section, we introduce a scenario that has important

applications in cloud storage and sensing systems. However,

before that, we first describe the different but more traditional

scenario that has been the focus of much of the homomor-

phic encryption literature to date. As depicted in Fig. 1,

in this traditional scenario there are two parties involved

in a computational procedure process. The user (party B)

sends an encrypted request x, which is some privacy-sensitive

information like biometrics or medical records, to the server

(Party A). The server has the processing algorithm f , but

cannot or does not want to disclose f to the user due to some

Fig. 1. A homomorphic-encryption scenario widely studied in literatures.

Fig. 2. A homomorphic-encryption scenario considering in the current paper.

computational or privacy reasons. As a result, the server com-

putes f(x) in the encrypted domain, and returns the encrypted

answer to the user. This scenario has promising applications

in search engines, biometric authentication, privacy-protected

face recognition, etc. [21]

By contrast, in this paper our interest is in the scenario

depicted in Fig. 2. In this scenario, party A receives or

stores the encryption of a large amount of data x, which is

confidential and can be decrypted only by party B, e.g., x is a

user’s private data stored in data clouds in the encrypted form.

Some time, Party B wants to get some information f(x) from

x without revealing the function f to party A, e.g., performing

search. A trivial approach is that party A sends the whole

encryption of x back to party B directly, and party B evaluates

the function f based on the received encryption of x. However,

this approach is not wise in most applications, since the data

x is large and the communication between the two parties is

not cheap. Hence, we consider the following approach: party

B sends an encrypted version of f to party A, and party A

performs certain processes (without knowing x and f ) and

returns a small amount of encrypted data back to party B,

from which party B further obtains the result f(x).

An important difference between the scenario depicted in

Fig. 2 and that in Fig. 1 is that, in the new scenario, the

processing function f is known by party B, which also owns

the secret key. This property allows us to directly perform

operations on integer vectors in the encrypted domain, such

as linear transformations and weighted inner products (see

Section IV), but these operations are much more difficult to

implement in the scenario of Fig. 1, where the processing

function f and the secret key are separated. There is another

benefit of the property: if f(x) contains some operations

that are difficult to realize in the encrypted domain, these

operations can be executed at the side of party B. For example,

assume that f(x) is a linear classifier such that f(x) = 0 if

and only if w · x < t for a constant t; otherwise, f(x) = 1.

In this case, w · x can be computed in the encrypted domain
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at the party A side, and the comparison between w · x and t
can be performed at the party B side.

The scenario of Fig. 2 is applicable to a wide range of con-

texts involving data clouds and sensor networks. Depending

on specific applications, there are a few factors that should be

considered. They include: 1) the privacy requirement of x and

f , namely, how secure the encryptions of x and f are; 2) the

storage cost of x, i.e., the number of encrypted bits required

to represent x; 3) the computation cost of f , i.e, the amount

of computations needed at party A and party B for computing

f(x) in the encrypted domain; and 4) the communication cost,

i.e., the number of transmitted bits between party A and party

B. In what follows, we describe several application examples

of the scenario.

A. Encrypted Cloud Storage

A major concern of users when weighing the adoption of

cloud data storage solutions, such as provided by companies

such as Dropbox, Google, and Microsoft, is the loss of

privacy of their data. Homomorphic encryption can help users

preserve the privacy while allowing them to perform certain

computations on their own data or to retrieve some useful

information. Here, we treat party A as the server and party B

as the end user, where x is the user’s private data stored at

the server in the encrypted form. The user may want to get

some information from x, e.g., searching with a private query

string.

B. Medical Records Storage

One example of encrypted cloud storage is the private cloud

medical records storage system discussed in [11]. All data for

a patient’s medial records stored in the system is encrypted

by the healthcare providers. The patient can share or access

the records by sharing the secret key with trusted providers.

While the amount of medical records for a patient is usually

big, the trusted providers may only want to get some useful

information extracted from the patient’s records. In this case,

the storage system is party A, and the trusted providers are

party B in Fig. 2.

C. Sensor Networks

In sensor networks or other sensing systems, especially

those related to military applications, sensed data is expected

to be protected (encrypted) immediately when it is generated

at sensors, and the base station is interested in only a small

amount of information from the sensed data, e.g., some

features of a sensed image or some statistics about the data.

Hence, certain computations are required to perform at the

sensors and relay nodes for data processing and aggregation

to reduce the communication load. Here, the sensors and relay

nodes are the party A, and the base station is the party B.

This problem, secure aggregation in sensor networks, has been

studied in [22], but their adopted encryption scheme only

supports addition operations, which limits its applications in

sensor networks. In contrast, the encryption scheme studied in

the current paper can support much wider computation tasks.

III. ENCRYPTION SCHEME

A. Encryption Scheme

The encryption scheme that we study is a natural extension

of the PVW scheme [19] from binary vectors to integer

vectors. We let x ∈ Z
m
p be the integer vector to encrypt, and it

has length m and alphabet size p. Let c ∈ Z
n
q be the ciphertext

of x with length n > m and alphabet size q � p. Typically, q
is super-polynomial in the ciphertext length n. The secret key

is a matrix S ∈ Z
m×n
q , and it satisfies

Sc = qk+ wx+ e, (1)

for some integer vector k and noise vector e. Here, w is an

integer parameter such that w > 2|e|. We call the maximum

absolute value of the entries in a vector v or a matrix M as

its magnitude, denoted by |v| or |M|.
The process of encrypting x is to find a ciphertext c such

that Sc satisfies (1) for some integer vector k and noise vector

e. For the convenience of description, we first present the

decryption process, as follows, and then present the public-

key encryption process in Section III-C.

According to (1), decryption of ciphertext c based on the

secret key S is done by computing

x = �Sc
w

�q, (2)

where �a�q means the nearest integer to a with modulus q.

The decryption succeeds if the magnitude of e, i.e., |e|, is

smaller than w
2 . In order to further support computations in

the encrypted domain, we assume that both |S| and |e| are

much smaller than w.

B. Key-Switching Technique

In [7], Brakerski and Vaikuntanathan introduced a very

useful re-linearization technique that can switch the secret key

in the PVM scheme to any other secret key when they are both

vectors. Later, Brakerski, Gentry and Halevi developed a tech-

nique to switch two secret keys of matrices [20]. In general,

Brakerski and Vaikuntanathan’s re-linearization method has

two steps, and we apply it to switch a secret key S ∈ Z
m×n
q

to another secret key S′ ∈ Z
m×n′
q as follows, and meanwhile,

we get a new ciphertext c′ that still encrypts the same integer

vector x.

1) Step 1: Switch the secret key S to an intermediate

secret key S∗ such that its corresponding new ciphertext

c∗ has a much smaller magnitude than c. The idea is to

represent each element ci in c with a binary vector (its binary

representation), hence it results in a new ciphertext c∗ with

|c∗| = 1. Assume that ci = bi0 + bi12 + ... + bi(�−1)2
�−1,

then by writing each ci as [bi0, bi1, ..., bi(�−1)]
T , we get c∗.

For instance, given a ciphertext c = [1, 5]T ∈ Z
2
8, we convert

it to c∗ = [1, 0, 0, 1, 0, 1]T . Now, we construct a secret key

S∗ ∈ Z
m×n� such that

S∗c∗ = Sc. (3)

This can be done by replacing each element Sij in S with

a vector [Sij , Sij2, ..., Sij2
�−1]. For example, if the original
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secret key is S = [4, 3; 1, 2] ∈ Z
2×2
8 , then the new secret key

is S∗ = [4, 8, 16, 3, 6, 12; 1, 2, 4, 2, 4, 8]. It is easy to check

that, in the above example, S∗c∗ = Sc is satisfied.

2) Step 2: Switch the intermediate secret key S∗ ∈ Z
m×n�

to the desired secret key S′ ∈ Z
m×n′
q . In order to do this, we

construct an integer matrix M ∈ Z
n′×n� such that

S′M = S∗ +E mod q (4)

for a noise matrix E with small magnitude. If S′ = [I,T] with

an identity matrix I, this integer matrix M can be constructed

by

M =

( −TA+ S∗ +E
A

)
mod q, (5)

where A ∈ Z
(n′−m)×n�
q is a random matrix.

Then we define a new ciphertext

c′ = Mc∗ mod q, (6)

which can be further written as

c′ = qk∗ +
( −TAc∗ + S∗c∗ +Ec∗

Ac∗

)
, (7)

where k∗ is an integer vector, and |k∗| is much smaller than

q when |T| and |S| are much smaller than q.

For this new group of secret key S′ and ciphertext c′, they

satisfy

S′c′ = qS′k∗ + Sc+Ee∗ = qk′ + wx+ e′, (8)

with

k′ = k+ S′k∗, e′ = e+Ec∗. (9)

Both k and e are specified in (1), and Ec∗ is the additional

noise vector introduced by the key-switching process. Since

|S′|, |k∗|, |e|, |E|, and |c∗| are much smaller than q, |k′| and

|e′| are also much smaller than q. We can correctly obtain x
by decrypting c′ with the new secret key S′. Therefore, we

have successfully switched the secret key S to a new secret

key S′, and meanwhile the original ciphertext c is converted

to a new ciphertext c′.
To implement the key-switching technique in the scenario

depicted in Fig. 2. Party B first generates the key-switching

matrix M based on the two secret keys S and S′, and then

sends M to party A. With the received matrix M, party A

computes the new ciphertext c′ based on (6). We see that

the key-switching matrix forms a public key. In fact, this

key-switching technique plays an important role in both the

encryption process and the computation process, which will

be further discussed.

C. Security and Encryption

The security of the encryption relies on the security of

the key-switching matrix (matrices) M, which is based on

the hardness assumption of the extended Learning With Error

(LWE) problem: It is difficult to get S′ from S and M by

solving (4), where both S′ and E are random matrices with

elements independently drawn from a noise distribution χ on

Zq . In fact, this problem is equivalently difficult as the standard

LWE problem [20], [23], which tries to get a vector s′ from

s and M by solving

s′M = s+ e mod q (10)

when s′ is a uniform random vector and e is a noise vector.

The process of encrypting an integer vector x can be done

based on the key-switching technique. Let I be an m × m
identity matrix, then I(wx) = wx, which is actually in the

form of (1) with a zero noise vector. In a sense, we can treat I
as a secret key and wx as a ciphertext, although both are not

secret, and hence we can switch I to a secret key S with the

key-switching technique, and by which we get a new ciphertext

c instead of wx. The ciphertext c is an encryption of x based

on the secret key S. We see that this is a public-key encryption

scheme, since we can use the key-switching matrix M as the

public key to generate the ciphertext c, and this public key M
can be constructed based on the secret key S.

IV. OPERATIONS ON ENCRYPTED DATA

In this section, we describe three types of fundamental

operations on integer vectors that can be easily performed

based on the encryption scheme described above, including

addition, multiplication, and weighted inner products. Many

practical tasks can be represented by a combination of these

three types of fundamental operations. We demonstrate that

given the encrypted integer vectors, any polynomial (within

a certain degree) on integers can be computed secretly and

efficiently in the scenario of Fig. 2.

A. Three Fundamental Operations

Let x1,x2 be two integer vectors, then the three types

of fundamental operations are: (1) addition, i.e, x1 + x2,

which requires x1 and x2 having the same length; (2) linear

transformation, i.e., Gx1 for an arbitrary matrix G, and (3)

weighted inner products, i.e., {xT
1 Hjx2} for a group of weight

matrices {Hj}. Here, we assume that all the values appeared

in these operations are between zero and � q
w �, i.e., there are

no integer overflows in our computation.

Let c1, c2 be the two ciphertexts of the integer vectors

x1,x2 with secret keys S1,S2, respectively, and they satisfy

Sici = qki + wxi + ei, (11)

with |Si|, |ki| and |ei| much smaller than q. In what follows,

we demonstrate how these three types of fundamental opera-

tions work.

1) Addition Operation: The addition operation x1 + x2 is

straightforward: if c1 and c2 have the same secret key, i.e.

S1 = S2 = S, then c′ = c1 + c2 mod q is an encryption of

x1 + x2, since

Sc′ = qk′ + w(x1 + x2) + (e1 + e2), (12)

where k′ is an integer vector with a small magnitude. However,

x1 and x2 may have different secret keys, so the first thing

that we need to do is to switch one secret key to the other, e.g.,

from S1 to S = S2. Note that if S1 and S2 are correlated, for

the purpose of guaranteeing security, we should create a new
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secret key S and switch both S1 and S2 to S. We use c′1 and

c′2 to denote the ciphertexts obtained after key switching, and

they satisfy Sc′i = qk′
i +wxi + e′i with |k′

i| and |e′i| small. If

we let c′ = c′1 + c′2 mod q, then

Sc′ = qk′ + w(x1 + x2) + e′ (13)

with |k′| ≤ |k′
1|+ |k′

2| and e′ = e′1 + e′2. Hence, c′ is a valid

encryption of x1 + x2.

There is a special case: if one wants to compute x1+a with

a constant vector a, which is known by public, then a valid

encryption of x1 + a is c = c1 + w[aT , 0, ..., 0]T mod q. It

works since in our construction the secret key S is in the form

of [I,T] with an identity matrix I, and hence Sc = Sc1+wa.

2) Linear Transformation: The linear transformation Gx1

follows the observation that

GSc1 = qGk1 + wGx1 +Ge1. (14)

So if |G| is much smaller than q, we can treat c′ = c1 as the

ciphertext of Gx1, with secret key S′ = GS.

There is a special case: if one wants to compute ax1 for a

small integer a known by public, then its ciphertext is

c = ac1 mod q. (15)

3) Weighted Inner Products: A group of weighted inner

products {xT
1 Hjx2} can be computed by applying the tech-

nique for multiplication via tensor products in [7]. Note that

(S1c1)
THj(S2c2) = vec(ST

1 HjS2) · vec(c1cT2 ), (16)

where vec(A) denote the vector that consists of all the entries

in a matrix A. Substituting Sici with (11) in the left side of

the above equation, we get

(S1c1)
THj(S2c2)

=q(qkT
1 Hjk2 + wkT

1 Hjx2 + wxT
1 Hjk2)

+ w2(xT
1 Hjx2) + (qkT

1 Hje2 + qeT1 Hjk2

+ wxT
1 Hje2 + weT1 Hjx2 + eT1 Hje2). (17)

Let s′j = vec(ST
1 HjS2)

T be the jth row of the new secret

key S′, and let c′ = �vec(c1c
T
2 )

w �q be the new ciphertext.

Assume that q = wl+ r with an integer l and a very small

remainder r. Since |k1|, |k2|, |Hj |, |e1|, |e2| are much smaller

than w, we have

s′jc
′ = qk′j + w(xT

1 Hjx2) + e′j , (18)

where k′j is an integer, and k′j , e
′
j are much smaller than w.

By decrypting c′ with the secret key S′, we can compute the

group of weighted inner products {xT
1 Hjx2}.

So far, the dimension of the ciphertext c′ is big: it is

the square of the original dimension n. Fortunately, the key-

switching technique can be used to reduce this dimension,

by switching the secret key S′ to a new secrete key, and

meanwhile, the dimension of the ciphertext is reduced to n.

As a result, we get the final ciphertext M�vec(c1c
T
2 )

w �q , where

M is the key-switching matrix.

We see that the noise magnitude grows much faster in the

weighted-inner-products operations than that in the addition

and linear-transformation operations. In addition, to perform a

weighted-inner-products operation, it takes O(n3) times; and

as a contrast, it only takes O(n2) time for an addition or

linear-transformation operation. So, in practice, we need to

minimize the number (in particular the depth) of weighted-

inner-products operations in computation.

B. Polynomial Computation

Based on the three types of fundamental operations above,

we can compute an arbitrary polynomial (within a certain de-

gree) on integers efficiently. For instance, in order to compute

x2
2−4x1x3 with each variable an integer of 8 bits, the bit-by-bit

encryption schemes require 322 binary addition operations and

302 binary multiplication operations [15], with computation

depth 43 and multiplication depth 16. However, with the

encryption scheme on integer vectors, this function can be

computed with a single weighted-inner-products operation

xTH1x by simply setting

H1 =

⎛
⎝ 0 0 −2

0 1 0
−2 0 0

⎞
⎠ .

In fact, an arbitrary degree-2 polynomial can be computed

based on a single weighted-inner-products operation. In order

to do this, we need to execute the operation on [1,xT ]T instead

of x, since every degree-2 polynomial can be represented by

[1,xT ]H[1,xT ]T for some matrix H. If the ciphertext of x
is c with a secret key S, then the ciphertext of [1,xT ]T is

[w, cT ]T with a secret key

S′ =
(

1 0
0 S

)
. (19)

It is also worth mentioning that the structure of the

weighted-inner-products operation allows us to parallelize

the computation of multiple distinct polynomials, and hence

reducing the computational time. For example, if we want to

compute 2x3
1 + x1x2x3 − 2x3 + 4x3

3, we can first compute

[2x2
1, x1x2,−2, 4x2

3] with a weighted-inner-products opera-

tion, and based on which we further compute 2x3
1+x1x2x3−

2x3+4x3
3 = [2x2

1, x1x2,−2, 4x2
3]·[x1, x3, x3, x3] with another

weighted-inner-products operation.

In general, for an arbitrary polynomial of degree d > 0, we

can compute it with �log2 d� weighted-inner-products opera-

tions and some number of addition and linear-transformation

operations. But, how to divide a computation task into the

three types of fundamental operations to minimize the compu-

tation and communication cost is still an interesting unsolved

problem.

To compute a polynomial in the encrypted domain, party B

first generates all the secret keys and key-switching matrices

ahead, and then sends the key-switching matrices to party A,

as the public key. Based on the key-switching matrices, party

A can further evaluate the polynomial. When there is only a

single ciphertext stored at or received by party A, this approach

is less efficient than transmitting the ciphertext directly to party

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on July 16,2022 at 04:29:29 UTC from IEEE Xplore.  Restrictions apply. 



B. It becomes very useful when the number of the ciphertexts

is large and we have to execute the same computation on these

ciphertexts, since we can keep using the same set of key-

switching matrices, i.e., the public key.

C. Secrecy Analysis

As described in Section II, in many applications, party B

wants to preserve the privacy of the processing function f to

party A. Here, we show that the encrypted computation based

on the three types of fundamental operations can actually

achieve this goal, i.e., the processing function f is secret to

party A in the computation process. The only information that

party A (see Fig. 2) can get is the order of the types of the

performed operations, not their exact expressions. For instance,

in the example of computing x2
2 − 4x1x3 in the previous

subsection, party A only knows that the computation is in

the form of xTH1x (without knowing what H1 is), i.e., the

computation function is a homogeneous polynomial of degree

2.

Specifically, for an addition operation x1 + a, if a is

an encrypted parameter from party B, then party A cannot

determine a; for a linear-transformation operation Gx1, party

A cannot get the transformation matrix G; and similarly, the

matrices {Hj} are secret to party A in a weighted-inner-

products operation {xT
1 Hjx2}. Composing these three types

of operations result in a polynomial, and party A knows

nothing about the coefficients of the polynomial and the

number of terms in the polynomial. For instance, in the

example of computing 2x3
1 + x1x2x3 − 2x3 + 4x3

3 in the

previous subsection, party A only knows that the processing

function is a degree-3 polynomial, and nothing more, since

any degree-3 polynomial can be realized with the same set of

fundamental operations by choosing different parameters, i.e.,

a, G, and {Hj} in the fundamental operations.

From the discussion above, we see that party B preserves the

privacy of all the coefficients in the polynomial to party A, and

in this sense, the computation is secret. In fact, by adding few

redundant operations, we can guarantee that the information

known by party A about the polynomial is nothing more than

the degree of the polynomial. Assume that the processing

function f is a polynomial on the elements of an integer vector

x, which is encrypted as a ciphertext c with a secret key S.

According to (19), we can get a new ciphertext c′ that encrypts

[1,xT ]T with a secret key S′. If we evaluate the polynomial f
based on the encryption of [1,xT ]T instead of the encryption

of x, then we can prove that party A knows at most the degree

of the polynomial. For instance, in the first example above, in

order to compute x2
2 − 4x1x3, we can perform the operation

[1,xT ]H2[1,x
T ]T with

H2 =

(
0 0
0 H1

)
,

and in this case party A only knows that the processing

function is a degree-2 polynomial – nothing else.

V. EXAMPLES OF SUPPORTED PROCESSING

In this section, we describe several examples of computation

tasks based on homomorphic encryption, including feature ex-

traction, recognition, classification, and data aggregation. The

computational complexity of these tasks can be significantly

reduced with encryptions and computations on integer vectors

in the scenario of Fig. 2.

A. Feature Extraction

Let x ∈ Z
m be a long integer vector, such as an image,

whose encryption is stored at party A, e.g., data servers and

sensor nodes, and only party B has the secret key. Party B

is interested in getting the feature of x, i.e., y = Gx with

a feature matrix G ∈ Z
l×m (l 	 m). But party B does not

want to let party A know what feature it is interested in. Our

goal is to generate an encryption of the feature y at party A

while keeping the feature matrix G confidential.

Let c be the ciphertext of x with a secret key S. According

to the analysis for linear-transformation operations, see (14),

c is also a ciphertext of y but with another secret key GS.

Since y is much shorter than x, we can use the key-switching

technique to reduce the dimension of the ciphertext c. As a

result, we switch the secret key GS to S′, and convert the

ciphertext c to a new ciphertext c′ such that c′ is much shorter

than c.

In most applications, the vector x is very long, and it

is represented by multiple ciphertexts c1, c2, ..., ck, with ci
encrypts xi. The feature of x is

y =

k∑
i=1

Gixi (20)

for a collection of feature matrices {Gi}. We see that the

ciphertext of Gixi is ci with secret key GiS. Since all the

k ciphertexts have distinct secret keys, in order to continue

to perform addition operations over them, we need to switch

these secret keys to a common secret key, denoted by S′. With

this new secret key, the ciphertext of Gixi is converted to c′i
instead of ci. Finally, we obtain c′ =

∑k
i=1 c

′
i mod q as a

valid encryption of y, and its secret key is S′.
Let’s consider the following concrete example. Assume that

x is an image of 214 pixels with each pixel represented by an

integer of 8 bits. It is divided into 27 vectors, denoted by

x1,x2, ...,x27 , each contains 27 pixels and is encrypted by a

ciphertext of length 28. Assume that the length of the feature

y is 10, then we have 27 feature matrices with each matrix

Gi ∈ Z
10×27

28 .

We construct each ciphertext ci (that encrypts xi) with

the following parameters: the constant w = 220 and the

modulus q ≈ 250. Both the secret keys and noise matrices

are generated based on a noise distribution χ, which is the

uniform distribution on Z4. After the initial encryption (before

performing linear transformations), it has

Sci = qki + wxi +E1x
∗
i , (21)
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where S is the secret key, ki is an integer vector, E1 ∈ Z
27×210

4

is a noise matrix, and x∗
i ∈ {0, 1}210 is the binary represen-

tation of xi. Then we apply linear transformation and key

switching, by which, the ciphertext ci is converted into a new

ciphertext c′i of length 28 with a new secret key S′. According

to the analysis for the key-switching technique,

S′c′i = qk′
i + wGixi + (GiE1x

∗
i +E2c

∗
i ), (22)

where E2 ∈ Z
10×(28∗50)
4 is a noise matrix and c∗i ∈ {0, 1}28∗50

is the binary representation of ci. We see that the noise part

is ei = GiE1x
∗
i +E2c

∗
i , and its magnitude is

|ei| ≤ 27 × 210 × 4× 28 + 28 × 50× 4 ≈ 227. (23)

Although |ei| is possible to be larger than w, it is much smaller

than |Gixi|. Since we are only interested in the significant bits

of the elements in the feature y, the effect of the noise part

is actually ignorable. Finally, by adding all the ciphertexts c′i
with 1 ≤ i ≤ 27, we get the ciphertext c for y such that

S′c = qk+ wy + e, (24)

with k an integer vector, |y| ≤ 230, |e| ≤ 234, and w|y| ≤
250 ≈ q. Typically, |wy| � |e|, hence y can be obtained with

sufficient precision by decrypting c.

In this example, it requires roughly 200K bytes space to

store a 16 KB image. The communication cost of each key-

switching matrix is at most 16 KB (when the random matrix

A in (5) is created with pseudo random bits). Hence, the total

communication cost is about 2 MB, which is a reasonable

amount of cost for large cloud storage applications, where a

user stores, e.g., more than 10 GB of images. In a sense, the

transmitted data (key-switching matrices) can be considered as

the encryption of the feature matrices, and the communication

cost is only 12 times of the total size of the feature matrices.

In addition, the computation cost is about 50 times of that in

the plaintext domain, which is usually acceptable in practical

applications.

B. Recognition

In the scenario of Fig. 2, assume that party A has the

encryptions of a collection of integer vectors x1,x2, . . . ,xk.

Party B wants to check whether there is a vector xi that is

similar to a private vector a, i.e., ‖xi−a‖ ≤ t for a threshold

t, where ‖xi − a‖ is the Euclid distance between xi and a.

The question is how to compute ‖xi − a‖ in the encrypted

domain when both xi and a are encrypted, so that party A

only needs to transmit the encryption of ‖xi − a‖ to party B.

For convenience, we write xi as x. Since

‖x− a‖2 = xTx+ aTa− 2aTx, (25)

we can compute xTx, aTa, and aTx, respectively, based on

weighted-inner-products operations. The secret key for xTx

is vec(STS) and the ciphertext is �vec(cxcx
T )

w �q; similarly,

the secret key for aTa is vec(STS) and the ciphertext is

�vec(caca
T )

w �q; the secret key for aTx is vec(STS) and the

ciphertext is �vec(cacx
T )

w �q . Since they have the same secret

key, we can directly perform addition operations on them. As

a result, we get the ciphertext of ‖x− a‖2, which is

c′ =
⌈
vec(cxcx

T + caca
T − 2cacx

T )

w

⌋
q

, (26)

and the secret key is vec(STS). Now, the dimension of the

ciphertext is still too high, we can further apply the key-

switching technique to reduce the dimension.

In what follows, we provide an example: the integer vector

x is in Z
27

26 , and the length of its ciphertext cx is 28. The

noise distribution χ is the uniform distribution on Z4. Based

on these parameters, the ciphertext cx satisfies

Scx = qk1 + wx+ e1, (27)

with |k1| ≤ 6 ∗ 216 and |e1| ≤ 6 ∗ 29. Then, we let w ≈
260 and q = 220w, and we compute xTx in the encrypted

domain based on a weighted-inner-products operation. As a

result, we get a secret key s′ = vec(STS), and the ciphertext

of xTx is c′x = �vec(cxcx
T )

w �q . According to the analysis for

the weighted-inner-products operation, we have

s′c′x = qk2 + wxTx+ e2, (28)

where k2 is an integer and |e2| ≤ 2 ∗ 220 ∗ 27|k1| ∗ |e1| ≤
259 < w. It implies that xTx can be correctly decrypted from

c′x based on the secret key s′. The same analysis applies to

all the terms in ‖x− a‖2 = xTx+ aTa− 2aTx, and in this

case, it is good to set w ≈ 260 and q = 220w with ciphertext

length n = 256 and integer-vector length m = 128. Although

there will be an extra noise introduced by the next-step key

switching, the magnitude of the extra noise is much smaller

than that of e2, hence ignorable in our analysis.

Our observation is that if we modify the encryption process,

then the computation can be further simplified. Instead of en-

crypting x, we assume that x′ = (1,xTx,xT )T is encrypted.

If we define a′ = (aTa, 1,−2aT )T for party B, then we can

get ‖x−a‖2 = a′Tx′. It implies that ‖x−a‖2 can be computed

based on a single linear-transformation operation on x′ with a

transform matrix G = a′, where a′ is only known by party B.

This method is computationally much more efficient than the

method above, as linear-transformation operations are much

simpler to implement than weighted-inner-product operations.

C. Classification

Classification has many important applications in data

clouds and sensing systems. For example, in email services, a

user may want to know whether an encrypted email at server

is a spam or not; and in sensor monitoring networks, the base

station may want to determine the existence of certain events,

such as fires, in a specific area.

A simple and widely-used classifier is a linear classifier:

given a vector x ∈ Z
m
p , the classifier outputs 0 if and only

w · x ≤ t for a weight vector w and a threshold t, i.e, it is

described by a function

f(x) =

{
0 if w · x ≤ t
1 otherwise.

(29)
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In order to apply linear classification for spam or event

detection, the user or the base station only needs to collect

w · x instead of the original long vector x. Actually, w · x
can be computed with a single linear-transformation operation,

where wT is the transformation matrix from the user or the

base station. The computation process is simple and efficient.

Furthermore, we can implement a more sophisticated non-

linear classifier by replacing w ·x with a degree-2 polynomial

on x. Such a classifier can be designed based on the sup-

port vector machines (SVM), and the corresponding degree-2

polynomial can be evaluated based on a single weighted-inner-

products operation.

D. Data Aggregation

With the concerns of data security and privacy, in sensor net-

works, it is desired to encrypt data immediately at the sensor

nodes when the data is generated, and the encryption process

is based on a public key broadcasted by the base station. The

encrypted data is aggregated from thousands of nodes to the

base station via multiple hops. With limited communication

bandwidth and energy constraints, data processing is necessary

at relay nodes to reduce the amount of transmitted data.

Assume that each sensor node detects an integer value,

encrypts it and sends it to the base station. Some relay nodes

may receive multiple ciphertexts c1, c2, . . . , ck from different

sensor nodes, representing integer values x1, x2, . . . , xk, re-

spectively. The question is that how to pack them together to

form a single ciphertext c′, which encrypts (x1, x2, . . . , xk).
Let’s consider a secret key S and a ciphertext c constructed

as follows:

c =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c1
c2
...

ck

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, S =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s, 0, . . . , 0
0, s, . . . , 0

...

0, 0, . . . , s

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (30)

where s is the secret key of the original ciphertexts

c1, c2, . . . , ck. It is easy to see that

Sc = w(x1, x2, ..., xk)
T + e mod q (31)

with a noise vector e. It is clear to see that c is a ciphertext of

(x1, x2, ..., xk)
T , but its dimension is k times of the original

dimension n. With the key-switching technique, we can reduce

the dimension of the ciphertext by converting c to a new

ciphertext c′. As a result, we have packed a collection of

ciphertexts c1, c2, . . . ,xk as a single ciphertext c′.
In some other occasions, the base station may be only

interested in the statistics of the sensed values, such as

their mean, max and distribution. In order to extract these

information, we adopt another way of encrypting the sensed

values: at a sensor node, instead of encrypting a sensed value

xi, we represent xi as a binary vector and encrypt this binary

vector. Specifically, let xi be an integer in Zp, e.g., p = 128,

we encode xi into xi ∈ {0, 1}p such that only the (xi + 1)th
entry in xi is 1 and all other entries are 0s, and then we encrypt

xi with a ciphertext ci. For example, if a sensor node detects

xi = 3 ∈ Z8, then xi = [0, 0, 0, 1, 0, 0, 0, 0]. If a relay node

receives a collection of ciphertexts, denoted by c1, c2, . . . , ck,

it simply fuses them by adding them together, i.e., it generates

and forwards a new ciphertext

c =

k∑
i=1

ci mod q. (32)

Finally, the base station obtains a ciphertext c′ that encrypts

an integer vector n′ with n′ =
∑

i xi, which represents the

frequencies of all the integers in Zp detected by the sensor

nodes. Based on the frequency vector n′ = [n1, n2, ..., np], the

base station can obtain the statistics of all the sensed values,

including the mean, max, variance, etc. For example, the mean

is

mean(x) =

∑p
j=1(j − 1)nj∑p

j=1 nj
; (33)

and the max is

max(x) = max{j : 1 ≤ j ≤ p, nj > 0} − 1. (34)

VI. CONCLUDING REMARKS

In this paper, we studied a homomorphic encryption scheme

on integer vectors, as a natural extension of the recently

developed homomorphic encryption schemes based on the

learning with errors (LWE) assumption. In contrast to previous

work, we focused on a new scenario that has wide applications

in data clouds and sensing systems. We demonstrated that, in

this scenario, the encryption scheme supports three types of

fundamental operations on integer vectors, and based on which

we can compute an arbitrary polynomial on integers within

a certain degree efficiently and secretely. In addition, we de-

scribed a few examples of computation tasks, including feature

extraction, recognition, classification, and data aggregation. A

strong implication of this paper is that although it is difficult

to construct universal homomorphic-encryption schemes for

general computations in practice, for some specific applica-

tions we may find simple homomorphic-encryption schemes

with reasonable communication and computation costs.

The work in this paper also brings us many interesting

problems that require further studies. For example, how to

divide a computation task into the three types of fundamen-

tal operations that minimize the overall communication and

computation cost? How to reduce the public-key size, i.e.,

the total size of the key-switching matrices? Can any task

be represented as polynomials modulus l for an integer l, and

what is the best presentation?
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