Education
  • 1994/09/01-1997/07/01
    西北大学
    自然科学史(数学史)
  • 1991/09/01-1994/07/01
    曲阜师范大学
    数学
  • 1987/04/01-1991/07/01
    曲阜师范大学
    数学
Professional Experience
  • 2010-12 — Now
    山东大学
  • 1997-07 — 2010-11
    山东工业大学-山东大学数学院
Publication
Research direction
Papers

(1)宋刚. Small object detection in unmanned aerial vehicle images using multi-scale hybrid attention .Engineering Applications of Artificial Intelligence .2024 ,128

(2)Zhang, Qiuyue. Incorporating stock prices and text for stock movement prediction based on information fusion .Engineering Applications of Artificial Intelligence .2024 ,127

(3)Chen, Weilin. Pact-Net: Parallel CNNs and Transformers for medical image segmentation .Computer Methods and Programs in Biomedicine .2023 ,242

(4)包芳勋. An image denoising method based on the nonlinear Schr?dinger equation and spectral subband decomposition .COMPUTER VISION AND IMAGE UNDERSTANDING .2023 ,237 (103840)

(5)张欣悦. 可变参数的有理分形插值曲线建模 .Journal of Graphics .2020 ,42 (02):245-255

(6)Zhang, Yunfeng. A weighted bivariate blending rational interpolation function and visualization control .Journal of Computational Analysis and Applications .2012 ,14 (7):1303-1320

(7)Fan Qinglan. A New Interpolation Algorithm Based on the Frequency Transform .2016 :217-222

(8)Fan, Qinglan. Adaptive Mutation PSO Based SVM Model for Credit Scoring .2018

(9)雷一凡. 基于非线性薛定谔方程的时间序列去噪 .《计算机辅助设计与图形学学报(中国科学院)》 .2021 ,33 (08):1202-1209

(10)张余娟. 双变量有理样条分形插值的单调数据可视化 .《计算机辅助设计与图形学学报(中国科学院)》 .2017 ,29 (5):882-894

(11)Qin, Chao. XGBoost Optimized by Adaptive Particle Swarm Optimization for Credit Scoring .MATHEMATICAL PROBLEMS IN ENGINEERING .2021 ,2021

(12)孙庆华. 具有函数尺度因子的有理分形曲线 .《计算机辅助设计与图形学学报(中国科学院)》 .2020 ,32 (5):721-729

(13)Sun, Ziyi. SADnet: Semi-supervised Single Image Dehazing Method Based on an Attention Mechanism .ACM Transactions on Multimedia Computing Communications and Applications .2022 ,18 (2)

(14)Yang, Shu. A Mixed Transmission Estimation Iterative Method for Single Image Dehazing .IEEE Access .2021 ,9 :63685

(15)Shao, Kai. Noisy Single Image Super-Resolution Based on Local Fractal Feature Analysis .IEEE Access .2021 ,9 :33385

(16)张云峰. A weighted bivariate bl-ending rational interpolation function and visualization control .Journal of Computational Analysis and Applications .2012 ,14 (7):1303

(17)范清兰. 参数优化的有理函数图像插值算法 .计算机辅助设计与图形学学报》 .2016 ,28 (11):2034

(18)张云峰. 一类有理插值曲面模型及其可视化约束控制 .中国科学:数学 .2014 ,44 (7):1

(19)杜宏伟. Retinal blood vessel segmentation by using the MS-LSDNet network and geometric skeleton reconnection method .Computers in Biology and Medicine .2023 ,153

(20)张欣悦. X-ray coronary centerline extraction based on C-UNet and a multifactor reconnection algorithm .Computer Methods and Programs in Biomedicine .2022 ,226

(21)Zhang, Qiuyue. Transformer-based attention network for stock movement prediction .Expert Systems with Applications .2022 ,202

(22)Sun, Ziyi. ICycleGAN: Single image dehazing based on iterative dehazing model and CycleGAN .COMPUTER VISION AND IMAGE UNDERSTANDING .2021 ,203

(23)Yao, Xunxiang. Weighted Adaptive Image Super-Resolution Scheme Based on Local Fractal Feature and Image Roughness . IEEE Transactions on Multimedia .2021 ,23 :1426

(24)Liu, Xinxin. Kernel-blending connection approximated by a neural network for image classification .COMPUTATIONAL VISUAL MEDIA .2020 ,6 (4):467

(25)Liu, Peipei. Multi-type data fusion framework based on deep reinforcement learning for algorithmic trading .Applied Intelligence .2022

(26)Jiang, Qun. Two-step domain adaptation for underwater image enhancement . Pattern Recognition .2022 ,122

(27)姜群. Two-step domain adaptation for underwater image enhancement .Pattern Recognition .2021

(28)雷一凡. 基于非线性薛丁格方程的时间序列去噪 .计算机辅助设计与图形学学报 .2021 ,33 (8):1202-1209

(29)邵凯. Noisy Single Image Super-resolution Based on Local Fractal Feature Analysis .IEEE Access .2021 ,9 :33385-33395

(30)秦超. XGBoost Optimized by Adaptive Particle Swarm Optimization for Credit Scoring .Mathematical Problems in Engineering .2021

(31)杜宏伟. Automated coronary artery tree segmentation in coronary CTA using a multiobjective clustering and toroidal model-guided tracking method .Computer Methods and Programs in Biomedicine .2021 ,199

(32)张欣悦. 可变参数的有理分形插值曲线建模 .图学学报 .2021 ,42 (2):245-255

(33)孙紫谊. ICycleGAN: Single image dehazing based on iterative dehazing model and CycleGAN .Computer Vision and Image Understanding .2020 ,203 (2)

(34)张云峰. Single Image Numerical Iterative Dehazing Method Based on Local Physical Features .IEEE Transactions on Circuits and Systems for Video Technology .2020 ,30 (10):3544-3557

(35)刘新新. Kernel Blending Connection Based on Approximation by Neural Network for Image Classification .Computational Visual Media .2020 :1-10

(36)张云峰. A Single Image Super-Resolution Method Based on Progressive-Iterative Approximation .IEEE Transactions on Multimedia .2020 ,22 (6):1407-1422

(37)张云峰. Particle swarm optimization with adaptive learning strategy .Knowledge-Based Systems .2020 ,196 :1-15

(38)孙庆华. 具有函数尺度因子的有理分形曲线 .计算机辅助设计与图形学学报 .2020 ,32 (5):721-729

(39)姚勋祥. Weighted adaptive image super-resolution scheme based on local fractal feature and image roughness .IEEE Transactions on Multimedia .2020 ,23 :1426-1441

(40)宋刚. Adaptive Interpolation Scheme for Image Magnification Based on Local Fractal Analysis .IEEE Access .2020 ,8 :34326-34338

(41)宋刚. 基于粒子群优化LSTM的股票预测模型 .北京航空航天大学学报 .2019 ,45 (12):2533-2542

(42)姚勋祥. Adaptive rational fractal interpolation function for image super-resolution via local fractal analysis .IMAGE AND VISION COMPUTING .2019 ,82 :39-49

(43)王平. A Novel Dehazing Method for Color Fidelity and Contrast Enhancement on Mobile Devices .IEEE TRANSACTIONS ON CONSUMER ELECTRONICS .2019 ,65 (1):47-56

(44)范清兰. Adaptive mutation PSO based SVM model for credit scoring .Proceedings of the 2nd International Conference on Computer Science and Application Engineering .2018

(45)baofangxun. Smooth fractal surfaces derived from bicubic rational fractal interpolation functions .SCIENCE CHINA-Information Sciences .2018 ,61 (9):099104:1-099104:3

(46)张云峰. Single-Image Super-Resolution Based on Rational Fractal Interpolation .IEEE Transactions on Image Processing .2018 ,27 (8):3782-3797

(47)刘甜甜. Rational fractal surface interpolating scheme with variable parameters .Computer aided geometric design .2018 ,64 :50-72

(48)杜宏伟. 梯度优化的有理函数图像插值 .中国图象图形学报 .2018 ,23 (05):766-777

(49)王平. 基于雾天图像降质模型的优化去雾方法 .中国图象图形学报 .2018 ,23 (04):605-616

(50)王平. 雾天图像降质模型的优化去雾方法 .中国图像图形学报 .2018 ,23 (4):0605-0616

(51)杜宏伟. A texture preserving image interpolation algorithm based on rational function .International Journal of Multimedia Data Engineering and Management .2018 ,9 (2):36-56

(52)范清兰. 基于NSCT的区域自适应图像插值算法 .计算机研究与发展 .2018 ,53 (3):629-642

(53)刘甜甜. 有理分形曲面造型及其在图像超分辨中的应用 .计算机科学 .2018 ,45 (03):35-45

(54)姚勋祥. The blending interpolation algorithm based on image features .Multimedia Tools and Applications .2018 ,77 (2):1971-1995

(55)杜宏伟. A texture feature preserving image interpolation algorithm via gradient constraint .Communications in Information and Systems .2017 ,16 (4):203-227

(56)孙庆华. 有理分形插值曲线的约束和单调保持 .计算机辅助设计与图形学学报 .2017 ,29 (11):2037-2046

(57)张云峰. 基于纹理特征的自适应插值 .计算机研究与发展 .2017 ,54 (9):2077-2091

(58)张余娟. 双变量有理分形插值的单调数据可视化 .计算机辅助设计与图形学学报 .2017 ,29 (5):882-894

(59)姚勋祥. Rational spline image upscaling with constraint parameters .Mathematical and Computational Applications .2016 ,21 (4):1-11

(60)范清兰. 参数优化的有理函数图像插值算法 .计算机辅助设计与图形学学报 .2016 ,28 (11):2034-2042

(61)刘建顺. Visualization of constrained data by smooth rational fractal interpolation .International Journal of Computer Mathematics .2016 ,93 (9):1524-1540

(62)sunqinghua. A Surface Modeling Method by Using C2 Piecewise Rational Spline Interpolation .Journal of Mathematical Imaging and Vision .2015 ,53 (1):12-20

(63)潘建勋. Local shape control of a weighted interpolation surface .JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS .2015 ,19 (1):68-79

(64)baofangxun. A C2 rational interpolation for visualization of shaped data .Journal of Information and Computational Science .2015 ,12 (2):815-824

(65)张云峰. 一类有理插值曲面模型及其可视化约束控制 .中国科学: 数学 .2014 ,44 (7):729-740

(66)潘建勋. Shape Control of the Curves Using Rational Cubic Spline .Journal of Computational Information Systems .2013 ,14 (9):5861-5868

(67)孙庆华. Reconstruction of curves with minimal energy using a blending interpolator .Mathematical Methods in the Applied Sciences .2013 ,36 (10):1301-1309

(68)孙庆华. A new bivariate interpolation by rational triangular patch .Journal of Computational Analysis and Applications .2013 ,15 (4):633-646

(69)孙庆华. A bivariate rational interpolation based on scattered data on parallel lines .Journal of Visual Communication and Image Representation .2013 ,24 (1):75-80

(70)包芳勋. A New Bivariate Rational Interpolation over Triangulation .Journal of Information and Computational Science .2012 ,13 (9):3731-3743

(71)孙庆华. Shape-preserving Weighted Rational Cubic Interpolation .Journal of Computational Information Systems .2012 ,18 (8):7721-7728

(72)张云峰. A weighted bivariate blending rational interpolation function and visualization control .JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS .2012 ,14 (7):1303-1320

(73)baofangxun. A blending rational spline for value control of curves with minimal energy .Journal of Computational Analysis and Applications .2012 ,14 (1):90-100

(74)baofangxun. A bivariate blending interpolator and the properties .Journal of Computational Analysis and Applications .2012 ,14 (1):78-89

(75)baofangxun. A new rational interpolator and its value control .Proceedings 2011 World Congress on Engineering and Technology .2011 :422

(76)张云峰. Local shape control of a bivariate rational interpolating surface with mixing conditions .2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering .2011 :200-205

(77)baofangxun. A bivariate blending interpolator based on function values and its application .Journal of Computational Information Systems .2010 ,6 (10):3381-3389

(78)baofangxun. Point control of rational interpolating curves using parameters .Mathematical and Computer Modelling .2010 ,52 (1-2):143-151

(79)baofangxun. A blending interpolator with value control and minimal strain energy .Computers & Graphics .2010 ,33 (2):119-124

(80)段奇. Local shape control of the rational interpolating curves with quadratic denominator .INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS .2010 ,87 (3):541-551

(81)duanqi. Local control of interpolating rational cubic spline curves .Computer-Aided Design .2009 ,41 (11):825-829

(82)潘建勋. Constrained control of interpolating surfaces by parameters .CADDM .2009 ,19 (1):69

(83)baofangxun. Point control of the interpolating curve with a rational cubic spline .Journal of Visual Communication and Image Representation .2009 ,20 (4):275-280

(84)段奇. Shape control of a bivariate interpolating spline surface .INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS .2008 ,85 (5):813-825

(85)段奇. Hermite Interpolation by Piecewise Rational Surface .Applied Mathematics and Computation .2008 ,198 (1):59-72

Patens
Student Information
  • 张金烁  2023/09/23 Hits:[] Times
  • 宋佩博  2023/09/23 Hits:[] Times
  • 陈宇杰  2023/09/23 Hits:[] Times
  • 张欣  2023/09/23 Hits:[] Times
  • 应鑫浩  2023/09/23 Hits:[] Times
  • 刘旭  2023/09/23 Hits:[] Times
  • 李嘉翔  2023/09/23 Hits:[] Times
  • 穆钟雨  2023/09/23 Hits:[] Times
  • 李洋  2023/09/23 Hits:[] Times
  • 贾亦巧  2023/09/23 Hits:[] Times
  • 赵永琦  2023/09/23 Hits:[] Times
  • 孟伟  2023/09/23 Hits:[] Times
  • 黄富盛  2023/09/23 Hits:[] Times
  • 穆钟雨  2022/03/14 Hits:[] Times
  • 李洋  2022/03/14 Hits:[] Times
  • 贾亦巧  2022/03/14 Hits:[] Times
  • 孟伟  2022/03/14 Hits:[] Times
  • 赵永琦  2022/03/14 Hits:[] Times
  • 黄富盛  2022/03/14 Hits:[] Times
  • 宋刚  2020/08/07 Hits:[] Times
  • 张欣悦  2020/03/20 Hits:[] Times
  • 杜宏伟  2019/07/04 Hits:[] Times
  • 雷一凡  2019/04/18 Hits:[] Times
  • 胡声立  2019/04/18 Hits:[] Times
  • 杨晓梅  2019/04/18 Hits:[] Times
  • 刘甜甜  2019/04/17 Hits:[] Times
  • 王航雨  2019/04/17 Hits:[] Times
  • 张余娟  2019/04/17 Hits:[] Times
  • 朱蒙蒙  2019/04/17 Hits:[] Times
  • 刘建顺  2019/04/17 Hits:[] Times
  • 付琳  2019/04/17 Hits:[] Times
  • 王丽丽  2019/04/17 Hits:[] Times
  • 戴洪峰  2019/04/17 Hits:[] Times
  • 宋元平  2019/04/17 Hits:[] Times
  • 张鑫  2019/04/17 Hits:[] Times
  • 崔亦华  2019/04/17 Hits:[] Times
  • Copyright All Rights Reserved Shandong University Address: No. 27 Shanda South Road, Jinan City, Shandong Province, China: 250100
    Information desk: (86) - 0531-88395114
    On Duty Telephone: (86) - 0531-88364731 Construction and Maintenance: Information Work Office of Shandong University