高珂
教授
所属院部: 化学与化工学院
访问次数:
基本信息
  • 教师英文名称:
    Ke Gao
  • 教师拼音名称:
    Gao Ke
  • 电子邮箱:
    kegao@sdu.edu.cn
  • 入职时间:
    2020-10-21
  • 所在单位:
    化学与化工学院
  • 学历:
    研究生(博士)毕业
  • 办公地点:
    山东大学(青岛)会文北楼
  • 性别:
  • 联系方式:
    kegao@sdu.edu.cn
  • 学位:
    工学博士学位
  • 在职信息:
    在职
  • 毕业院校:
    华南理工大学
  • 博士生导师
  • 硕士生导师
曾获荣誉:

2023-12-29    Cell出版社最佳论文奖;
中国光学十大进展;
中国百篇最具影响国际学术论文;
国家奖学金;
广东省优秀学生;
学术荣誉:

2021    国家优秀青年基金获得者;
2021    省高端人才;
教师简介

高珂,教授,博士生导师,首届国家海外优青获得者,山东省高层次人才,山东大学杰出中青年学者(第一层次)。2011-2020年,曾在有机半导体领域以及高分子物理领域的多个著名研究团队学习与工作。2011年至2016年在华南理工大学发光材料与器件国家重点实验室曹镛院士团队攻读博士学位,2015-2016年赴UC Berkeley/LBNL Thomas P Russell院士课题组联合培养。作为华南理工历来首个以第一作者在化学与材料领域top期刊JACS与AM同时发表论文的研究生,2016年被省教育厅授予“广东省优秀学生称号。2017-2020年在华盛顿大学(西雅图)Alex Jen院士课题组从事博士后研究工作,随后加入山东大学李玉良院士团队。截止2020年年底,发表SCI论文近70篇,H因子40,他引6000余次,其中以第一/通讯作者在Joule,Matter,Adv. Mater.(9篇),JACS(3篇),Nat. Photonics, Nat. Commun.(1篇), AEM(4篇)等期刊发表论文35篇,含影响因子IF>20的20余篇,14篇ESI热点/高被引论文。担任Science Bulletin等三个期刊编委,Journal of Semiconductors期刊青年编委,FWF(奥地利自然基金会)、NSFC、JYB、KJB等多类基金或人才项目评委,为多省重大、重大技术攻关等项目会评专家,为**地区重点实验室会评、现场评估评委专家,**省科技奖励(自然科学奖、科技进步奖、技术发明奖)评委、国家高新技术企业资格认定评审专家等。


受邀担任Nature系列期刊在内的60余本知名期刊的审稿人。研究成果先后获“中国光学十大进展”,“中国百篇最具影响的国际学术论文”(2次)等,并被《科技日报》《央广网》《Solar Magazine》等媒体报道。受邀做各类邀请报告30余场,其中包含中国科学技术大学工程科学论坛2022年第8讲(有超过11000人在线参与),M-Talk公益学术讲座(中科院宁波材料所庆祝柴之芳院士80岁生日公益讲座)第21期,发光材料与器件国家重点实验室有机光电学术讲座第47讲等。目前,课题组承担10余项国家/省/学校等面上及重点项目。


研究兴趣:有机光伏材料、器件与机理;有机二阶非线性光学材料及器件;石墨炔。诚邀有机/无机化学合成、高分子化学、高分子物理、碳材料、有机二阶非线性光学材料与器件、器件物理等背景的同学加入本课题组攻读硕士/博士研究生或从事博士后研究,也欢迎本科生入组进行科研培训。

课题组内有良好的学术和生活氛围,课题组坚持并践行人性化管理,注重成员的职业规划及长远发展。让我们携手努力,潜心学术,共创未来!

前期的主要学术成绩:(1)研发噻吩基卟啉类高性能窄带隙电子给体材料,显著提高器件的短路电流,同时降低能量损失,构成特色材料体系,位列目前窄带隙给体材料的最高水平,低能量损失的研究成为近几年能量损失研究热点的引发剂之一。(2)首次发现小分子太阳能电池的多维尺度形貌,并在实空间与倒易空间同时验证,实现共混薄膜的形貌解析与调控;研究结晶与相分离的互动机制,构建基于非平衡态热力学相图的普适性新模型。(3)精细调控形貌,构建小分子太阳能电池,实现最高认证效率;拓展窄带隙卟啉材料的光伏应用,创造多种类型器件光电转换效率新纪录。


来山大工作后,截止2023年年初,课题组已经在Joule/Matter/Adv. Mater./Angew Chem. Int. Ed./Adv. Energy Mater.等知名期刊发表论文多篇。多篇工作入选“OPV发展史里程碑事件”,论文先后入选“Cell出版社年度最佳论文奖(物质领域共10篇)”,“中国百篇最具影响国际学术论文”。


《Cell》细胞出版社专访山大高珂教授:https://3g.163.com/dy/article/HP14OEAH0552LHQK.html

《IF:46.0!山东大学首篇Joule,小分子太阳电池领域新突破!》 https://www.163.com/dy/article/HLAJSUFJ05329TW8.html

InfoMat期刊(影响因子>20)专访链接:https://mp.weixin.qq.com/s/l7Jv44l0u9kxoPtRAa9MtQ https://www.163.com/dy/article/H3H2J5JE0552GRMJ.html

InfoMat期刊主编特邀撰写“小分子太阳电池”综述:https://onlinelibrary.wiley.com/doi/full/10.1002/inf2.12163

Advanced Materials期刊特邀“卟啉在有机光伏中的应用及机理”综述:https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201906129

山大物质与能量中心高珂教授课题组《Matter》:实现了机械性能优异的有机太阳能电池https://view.inews.qq.com/a/20220108A01TW900

高珂教授课题组论文获“Cell Press 2022中国年度论文“https://www.view.sdu.edu.cn/info/1021/185742.htm


长期招聘博士后及联合培养研究,欢迎垂询!

用心带好每一名学生:就业前景好,已经毕业的(联培)研究生均继续深造或已拿到大型上市公司Offer。


教育经历
  • 2011-9 — 2016-9
    华南理工大学发光材料与器件国家重点实验室
    材料学
    博士生
  • 2015-8 — 2016-8
    UC Berkeley/LBNL(加州大学伯克利分校/劳伦斯伯克利国家实验室)
    材料学
工作经历
  • 2020-10-至今
    山东大学
  • 2017-01-至今
    University of Washington(Seattle)/华盛顿大学(西雅图)
科研成果
论文

1.  . Side-chain symmetry-breaking strategy on porphyrin donors enables high-efficiency binary all-small-molecule organic solar cells.  SUSMAT,  2024. 

2.  . Regulating Crystallinity and Miscibility via Ternary Strategy Triggers Efficient All-Small-Molecule Organic Solar Cells.  ACS Materials Letters,  1920-1928, 2024. 

3.  Han, Chenyang. Enhancing efficiency and stability of organic solar cells through a simplified four-step synthesis of fully non-fused ring electron acceptor.  JOURNAL OF ENERGY CHEMISTRY,  93,  601-608, 2024. 

4.  . Synergy Effect of Symmetry-Breaking and End-Group Engineering Enables 16.06% Efficiency for All-Small-Molecule Organic Solar Cells.  ACS Materials Letters,  6,  713-719, 2024. 

5.  . Amino-Functionalized Graphdiyne Derivative as a Cathode Interface Layer with High Thickness Tolerance for Highly Efficient Organic Solar Cells.  ADVANCED MATERIALS,  2024. 

6.  . Two Completely Non-Fused Ring Acceptors Working in an Alloy-Like Model for Efficient and Stable Organic Solar Cells.  advanced energy materials,  2024. 

7.  Xu, Yixuan. Recent Progress in All-Solution-Processed Organic Solar Cells.  Chinese Journal of Chemistry,  2023. 

8.  王茜. Silane or Siloxane-Side-Chain Engineering of Photovoltaic Materials for Organic Solar Cells.  CHINESE JOURNAL OF CHEMISTRY Journal,  2023. 

9.  孙延娜. Flexible Organic Solar Cells: Progress and Challenges.  SMALL SCIENCE,  1,  2021. 

10.  . Porphyrin-based donor with asymmetric ending groups enables 16.31% efficiency for ternary all-small-molecule organic solar cells.  Chemical Engineering Journal,  469,  2023. 

11.  任毅. 石墨炔在光伏领域的研究进展.  44,  11-21, 2023. 

12.  . Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors.  MATTER,  5,  725, 2022. 

13.  . Structural Fusion Yields Guest Acceptors that Enable Ternary Organic Solar Cells with 18.77 % Efficiency.  ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,  2023. 

14.  . Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells.  JOULE,  6,  2835, 2022. 

15.  Shen, Haojiang. Enhanced Performance via pi-Bridge Alteration of Porphyrin-Based Donors for All-Small-Molecule Organic Solar Cells.  Chinese Journal of Chemistry,  41,  644, 2023. 

16.  . A Bithiazole-Substituted Donor for High-Efficiency Thick Ternary Organic Solar Cells via Regulation of Crystallinity and Miscibility.  Advanced Energy Materials,  2023. 

17.  . The Crystalline Behavior and Device Function of Nonfullerene Acceptors in Organic Solar Cells.  advanced energy materials,  2022. 

18.  . 16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend.  JOULE,  5,  914-930, 2021. 

19.  . The Molecular Ordering and Double-Channel Carrier Generation of Nonfullerene Photovoltaics within Multi-Length-Scale Morphology.  ADVANCED MATERIALS,  34,  e2108317, 2022. 

20.  徐化君. Recent Progress in Design of Organic Electro-optic Materials with Ultrahigh Electro-optic Activities(dagger).  CHINESE JOURNAL OF CHEMISTRY Journal,  40,  3001, 2022. 

21.  刘乐. Graphdiyne oxide-accelerated charge carrier transfer and separation at the interface for efficient binary organic solar cells 氧化石墨炔提升界面电荷传输及分离以构筑高效二元有机太阳能电池器件.  SCIENCE CHINA-MATERIALS,  2022. 

22.  孙延娜. Single-junction organic solar cell smashes performance record.  SCIENCE CHINA-MATERIALS,  65,  2609, 2022. 

23.  孙延娜. Simultaneously Enhanced Efficiency and Mechanical Durability in Ternary Solar Cells Enabled by Low-Cost Incompletely Separated Fullerenes.  MACROMOLECULAR RAPID COMMUNICATIONS,  2022. 

24.  Ma, Ruijie. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors.  MATTER,  5,  725, 2022. 

25.  刘乐. Graphdiyne oxide-accelerated charge carrier transfer and separation at the interface for efficient binary organic solar cells.  SCIENCE CHINA-MATERIALS,  2022. 

26.  Recent progress on all‐small molecule organic solar cells using small‐molecule nonfullerene acceptors.  InfoMat.,  3,  175, 2021. 

27.  The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances.  Nat. Commun.,  12,  332, 2021. 

28.  Low‐bandgap porphyrins for highly efficient organic solar cells: materials, morphology, and applications.  Adv. Mater.,  32,  1906129, 2020. 

29.  Approaching 16% Efficiency in All-Small-Molecule Organic Solar Cells Based on Ternary Strategy with a Highly Crystalline Acceptor.  Joule,  4,  2223, 2020. 

30.  Graphdiyne Derivative as Multifunctional Solid Additive in Binary Organic Solar Cells with 17.3% Efficiency and High Reproductivity.  Adv. Mater.,  32,  1907604, 2020. 

31.  Adding a third component with reduced miscibility and higher LUMO level enables efficient ternary organic solar cells.  ACS Energy Lett.,  5,  2711, 2020. 

32.  Over 12% efficiency nonfullerene all‐small‐molecule organic solar cells with sequentially evolved multilength scale morphologies.  Adv. Mater.,  13,  1807842, 2019. 

33.  Di‐Spiro‐Based Hole‐Transporting Materials for Highly Efficient Perovskite Solar Cells.  Adv. Energy Mater.,  8,  1800809, 2018. 

34.  Highly Efficient Porphyrin‐Based OPV/Perovskite Hybrid Solar Cells with Extended Photoresponse and High Fill Factor.  Adv. Mater.,  29,  1703980, 2017. 

35.  Thiophene rings improve the device performance of conjugated polymers in polymer solar cells with thick active layers.  Adv. Energy Mater.,  7,  1700519, 2017. 

36.  Solution-processed organic tandem solar cells with power conversion efficiencies> 12%.  Nat. Photon.,  11,  85, 2017. 

37.  Small‐Molecule Solar Cells with Simultaneously Enhanced Short‐Circuit Current and Fill Factor to Achieve 11% Efficiency.  Adv. Mater.,  29,  1700616, 2017. 

38.  New insight of molecular interaction, crystallization and phase separation in higher performance small molecular solar cells via solvent vapor annealing.  Nano Energy,  30,  639, 2016. 

39.  High‐performance polymer tandem solar cells employing a new n‐type conjugated polymer as an interconnecting layer.  Adv. Mater.,  28,  4817, 2016. 

40.  11% Efficient ternary organic solar cells with high composition tolerance via integrated near‐IR sensitization and interface engineering.  Adv. Mater.,  28,  8184, 2016. 

41.  Multi‐Length‐Scale Morphologies Driven by Mixed Additives in Porphyrin‐Based Organic Photovoltaics.  Adv. Mater.,  28,  4727, 2016. 

42.  Toward practical useful polymers for highly efficient solar cells via a random copolymer approach.  J. Am. Chem. Soc.,  138,  10782, 2016. 

43.  Deep Absorbing Porphyrin Small Molecule for High-Performance Organic Solar Cells with Very Low Energy Losses.  J. Am. Chem. Soc.,  137,  7282, 2015. 

学生信息
版权所有   ©山东大学 地址:中国山东省济南市山大南路27号 邮编:250100 
查号台:(86)-0531-88395114
值班电话:(86)-0531-88364731 建设维护:山东大学信息化工作办公室