个人简介
韩超,2014年于中国科学院武汉植物园获得博士学位,2014-2016年在比利时根特大学弗兰德斯生物技术研究所植物系统生物学研究中心做博士后研究。2016年入职山东大学生命科学学院,现为山东大学杰出青年特聘教授。入选国家高层次人才特支计划,山东省泰山学者青年专家,山东省优秀青年基金获得者。近年来以通讯作者和第一作者在Molecular Plant、Nature Plants、Nature Communications和Plant Cell等期刊上发表代表性研究论文,受邀在Journal of Integrative Plant Biology、Journal of Genetics and Genomics和New Crops等期刊上发表综述论文,多篇论文为高被引用论文,专文评述或F1000推荐。兼任中国遗传学会农业蛋白质组学分会委员,《New Crops》和《植物学报》青年编委。
研究方向
植物高效利用碳氮磷等营养元素是植物在有限资源条件下生存和作物高效生产的关键。实验室主要以模式植物拟南芥和粮食作物小麦为材料,利用遗传学、生物化学、基和蛋白组学等技术手段研究植物养分协同的分子机制,包括:1)植物碳磷协同分子机制;2)植物菌根共生调控碳氮代谢分子机制;3)氮磷营养调控光合效率的分子机制。
招生招聘
实验室每年招收硕士研究生1-2名,博士生1名,博士后常年招聘,待遇从优,欢迎加入。
主持项目
1. 国家高层次人才特支计划建设经费(2026.1-2028.12)
2. E3泛素连接酶PUB4调控植物硝态氮信号转导的分子机理解析(2026.1-2029.12),国家自然科学基金面上项目
3. SnRK1复合体调控表皮细胞不对称分裂的分子机理研究(2023.1-2026.12),国家自然科学基金面上项目
4. 细胞微环境调控植物能量感受器SnRK1复合体的组装与功能(2023.1-2025.12),山东省自然科学基金优秀青年基金
5. 山东省泰山学者青年专家建设经费(2023.1-2025.12)
6. 西北干旱区转基因耐旱耐盐碱棉花新品种培育(2018.1-2019.12),农业农村部转基因重大专项子课题
7. NAC家族转录因子BRT3调控植物抗旱的分子机理研究 (2019.1-2021.12),国家自然科学基金青年项目
8. 山东大学青年学者未来计划建设经费(2020.9-2025.8)
代表研究论文
1. Yao L, Liu S, Shi W, Gan Y, Fan M, Rolland F, Bai MY*, Han C*. (2025). Dampened nuclear localization of SnRK1 by brassinosteroid signaling inhibits stomatal development in Arabidopsis. Molecular Plant 18, 1490-1504. *通讯作者
2. Mu J, Wang H, Wang D, Yang F, Lyu J, Yang X, Sun N, Zheng G, Zhou R, Xu B, Xing S, Han C, Xia GM, Li G, Xiao J*, Fan M*, Bai MY*. (2025). Nitrogen enhances post-drought recovery in wheat by modulating TaSnRK2.10-mediated regulation of TaNLP7. Nature Plants 11, 1810-1826.
3. Shi W, Liu Y, Zhao N, Yao L, Li J, Fan M, Zhong B, Bai MY, Han C*. (2024). Hydrogen peroxide is required for light-induced stomatal opening across different plant species. Nature communications 15, 5081. *通讯作者
4. Han C*, Wang HL, Shi W, Bai MY*. (2024). The molecular associations between the SnRK1 complex and carbon/nitrogen metabolism in plants. New Crops 1, 100008. *共同通讯作者
5. Lyu J#, Wang D#, Sun N#, Yang F, Li X, Mu J, Zhou R, Zheng G, Yang X, Zhang C, Han C, Xia GM, Li G, Fan M*, Xiao J*, Bai MY*. (2024). The TaSnRK1-TabHLH489 module integrates brassinosteroid and sugar signalling to regulate the grain length in bread wheat. Plant biotechnology journal 22, 1989–2006.
6. Wang P#, Liu WC#, Han C#, Wang S, Bai MY*, Song CP*. (2024). Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. Journal of integrative plant biology 66, 330–367. #共同第一作者 (ESI热点论文)
7. Wang L#, Ju C#, Han C#, Yu Z, Bai MY*, Wang C*. (2025). The interaction of nutrient uptake with biotic and abiotic stresses in plants. Journal of integrative plant biology 67, 455-487. #共同第一作者 (ESI高被引用论文)
8. Han C#, Wang L#, Lyu J, Shi W, Yao L, Fan M, Bai MY* (2023). Brassinosteroid signaling and molecular crosstalk with nutrients in plants. Journal of Genetics and Genomics 50, 541-553. #共同第一
9. Wang H#, Han C#, Wang JG, Chu X, Shi W, Yao L, Chen J, Hao W, Deng Z, Fan M, Bai MY* (2022). Regulatory functions of cellular energy sensor SnRK1 for nitrate signalling through NLP7 repression. Nature Plants 8, 1094–1107. #共同第一.
10. Han C, Hua W, Li J, Qiao Y, Yao L, Hao W, Li R, Fan M, De Jaeger G, Yang W, Bai MY*. (2022). TOR promotes guard cell starch degradation by regulating the activity of β-AMYLASE1 in Arabidopsis. Plant Cell 34, 1038–1053. (F1000推荐论文)
11. Han C*, Qiao Y, Yao L, Hao W, Liu Y, Shi W, Fan M, Bai MY*. (2022). TOR and SnRK1 fine tune SPEECHLESS transcription and protein stability to optimize stomatal development in response to exogenously supplied sugar. New Phytologist 234, 107–121. *共同通讯
12. Van Leene J, Eeckhout D, Gadeyne A, Matthijs C, Han C, De Winne N, Persiau G, Van De Slijke E, Persyn F, Mertens T, Smagghe W, Crepin N, Broucke E, Van Damme D, Pleskot R, Rolland F, De Jaeger G* (2022). Mapping of the plant SnRK1 kinase signalling network reveals a key regulatory role for the class II T6P synthase-like proteins. Nature Plants 8, 1245-1261. (ESI高被引用论文,F1000推荐论文)
13. Shi W, Wang L, Yao L, Hao W, Han C, Fan M, Wang W, Bai MY* (2022). Spatially patterned hydrogen peroxide orchestrates stomatal development in Arabidopsis. Nature Communications 13, 5040.
14. Chu X#, Wang JG#, Li M, Zhang S, Gao Y, Fan M, Han C, Xiang F, Li G, Wang Y, Yu X, Xiang CB, Bai MY* (2021). HBI transcription factor-mediated ROS homeostasis regulates nitrate signal transduction. Plant Cell 33, 3004-3021. (F1000推荐论文)
15. Han C, Liu Y, Shi W, Qiao Y, Wang L, Tian Y, Fan M, Deng Z, Lau OS, De Jaeger G, Bai MY* (2020). KIN10 promotes stomatal development through stabilization of the SPEECHLESS transcription factor. Nature Communications 11, 4214.
16. Van Leene J#, Han C#, Gadeyne A#, Eeckhout D, Matthijs C, Cannoot B, De Winne N, Persiau G, Van De Slijke E, Van de Cotte B, Stes E, Van Bel M, Storme V, Impens F, Gevaert K, Vandepoele K, De Smet I, De Jaeger G*. (2019). Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nature Plants 5, 316-327. #共同第一. (ESI高被引用论文,F1000推荐论文)
17. Tian Y, Fan M, Qin Z, Lv H, Wang M, Zhang Z, Zhou W, Zhao N, Li X, Han C, Ding Z, Wang W, Wang ZY, Bai MY. (2018). Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nat Communications 9, 1063. (ESI高被引用论文)
18. Han C, Yang P*. (2016). Two dimensional gel electrophoresis-based plant phosphoproteomics. Phospho-Proteomics: Methods and Protocols, 213-223.
19. Han C, Yang P*. (2015). Studies on the molecular mechanisms of seed germination. Proteomics 15, 1671-1679.
20. Han C, He D, Li M, Yang P*. (2014). In-depth proteomic analysis of rice embryo reveals its important roles in seed germination. Plant and Cell Physiology 55, 1826-1847.
21. Han C, Wang K, Yang P*. (2014). Gel-based comparative phosphoproteomic analysis on rice embryo during germination. Plant and Cell Physiology 55, 1376-1394.
22. Han C, Yang P, Sakata K, Komatsu S*. (2014). Quantitative proteomics reveals the role of protein phosphorylation in rice embryos during early stages of germination. Journal of Proteome Research 13, 1766-1782.
23. Han C, Yin X, He D, Yang P*. (2013). Analysis of proteome profile in germinating soybean seed, and its comparison with rice showing the styles of reserves mobilization in different crops. PLoS One 8, e56947.