UXotkNc4x9sCMjJJAgtmcY6VABRGvoDW8hEt4USIDfclk6Y2iE0KJ44gCZuf
黄巧龙
Associate Professor
Visit:
Personal Information
  • Name (Pinyin):
    huangqiaolong
  • E-Mail:
  • Date of Employment:
    2021-10-14
  • School/Department:
    数学学院
  • Education Level:
    Postgraduate (Postdoctoral)
  • Gender:
    Male
  • Degree:
    Doctoral Degree in Science
  • Status:
    Employed
  • Alma Mater:
    中国科学院大学
Discipline:
Applied Mathematics;
Biography

本人的专业方向主要是计算机代数(Computer Algebra)计算机代数在很多时候又被理解为“符号计算”(Symbolic Computation),是与“数值计算”(Numerical Computation)相对的概念。主要是利用计算机的智能化计算。研究的对象是整数,有理数,实数和复数,或者是多项式,函数,以及集合,群,环,代数等等。利用计算机代数,可以对一些代数方程组进行精确的求解,对多项式进行因子分解,对复杂代数表达式进行化简规约,对函数进行符号积分(求出原函数),对微分方程求出精确解等等。

Education
  • 2009-09 — 2013-06
    中国科学技术大学
    信息与计算科学
    Bachelor's Degree in Science
  • 2013-07 — 2019-01
    中国科学院大学
    应用数学
    Doctoral Degree in Science
Publication
Research Direction
Paper Publications

1. 黄巧龙. A New Sparse Polynomial GCD by Separating Terms .Proceedings of the International Symposium on Symbolic and Algebraic Computation.2024 (3666000.3669684):134

2. 黄巧龙. BIT COMPLEXITY OF POLYNOMIAL GCD ON SPARSE REPRESENTATION .MATHEMATICS OF COMPUTATION.2025

3. 黄巧龙. A New Sparse Polynomial GCD by Separating Terms .2024

4. 黄巧龙. New Sparse Multivariate Polynomial Factorization Algorithms over Integers .48th International Symposium on Symbolic and Algebraic Computation (ISSAC).2023 :315-324

5. 黄巧龙. Skew-polynomial-sparse matrix multiplication .JOURNAL OF SYMBOLIC COMPUTATION.2024,121

6. . Sparse multiplication for skew polynomials .Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation.2020

7. . Sparse Multiplication of Multivariate Linear Differential Operators .Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation.2021

8. . Sparse polynomial interpolation based on derivatives .JOURNAL OF SYMBOLIC COMPUTATION.2023,114 :359

9. Sparse Polynomial Interpolation over Fields with Large or Zero Characteristic. .ISSAC.2019

10. Faster Interpolation Algorithms for Sparse Multivariate Polynomials Given by Straight-Line Programs .Journal of Symbolic Computation.2020

11. Sparse polynomial interpolation based on diversification .Science China Mathematics.2020

12. Mark Giesbrecht. Sparse multiplication for skew polynomials .2020

13. Mark Giesbrecht. Sparse Multiplication of Multivariate Linear Differential Operators .2021

Copyright All Rights Reserved Shandong University Address: No. 27 Shanda South Road, Jinan City, Shandong Province, China: 250100
Information desk: (86) - 0531-88395114
On Duty Telephone: (86) - 0531-88364731 Construction and Maintenance: Information Work Office of Shandong University