0AwU7FUOJBkYbVyFRvrl0HMBaUoauyN7NFeahJdfCclI7SxgG0uXRDaiZRgW
Biography

研究方向:微分几何和偏微分方程。目前接触的研究课题在共形几何方向。目前研究暂时涉猎椭圆型偏微分方程。对椭圆型偏微分方程,抛物型偏微分方程,双曲型偏微分方程,含退化问题和混合型偏微分方程均有兴趣。尤其对非线性方程中的非线性结构有兴趣。自然造化,惊叹欣喜,以诚探知。欢迎交流!

Education Background
  • 2008-09-01-2013-06-01
    南京大学
    Mathematics
  • 2006-09-01-2008-06-30
    南京大学
    应用数学
  • 2009-08-28-2013-05-13
    University of Notre Dame
    微分几何与偏微分方程
  • 2002-09-10-2006-06-28
    南京大学
    数学与应用数学
Work Experience
  • 2015-07 — Now
    山东大学数学学院
  • 2013-07 — 2015-07
    北京大学
Publication
Research direction
Papers

(1)李刚. On uniqueness and existence of conformally compact Einstein metrics with homogeneous conformal infinity. II .Science China: Mathematics .2024

(2)李刚. A flow approach to the generalized Loewner-Nirenberg problem of the σk -Ricci equation .Calculus of Variations and Partial Differential Equations .2022 ,61 (5)

(3)李刚. Two Flow Approaches to the Loewner–Nirenberg Problem on Manifolds .JOURNAL OF GEOMETRIC ANALYSIS .2022 ,32 (1)

(4) A COMPACTNESS THEOREM ON BRANSON'S Q-CURVATURE EQUATION .2019 ,302 (1):119

(5)李刚. A flow approach to the generalized Loewner-Nirenberg problem of the sigma(k)-Ricci equation .CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS Journal .2022 ,61 (5)

(6)李刚. On uniqueness and existence of conformally compact Einstein metrics with homogeneous conformal infinity .Calculus of Variations and Partial Differential Equations .2022 ,61 (2)

(7)李刚. Two Flow Approaches to the Loewner-Nirenberg Problem on Manifolds .JOURNAL OF GEOMETRIC ANALYSIS .2022 ,32 (1)

(8)李刚. On uniqueness of conformally compact Einstein metrics with homogeneous conformal infinity .Advances in Mathematics .2018 ,340 :983

(9)李刚. GAP PHENOMENA AND CURVATURE ESTIMATES FOR CONFORMALLY COMPACT EINSTEIN MANIFOLDS .Transactions of the American Mathematical Society .2017 ,369 (6):4385

(10) A compactness theorem on Branson's Q-curvature equation .Pacific J. Math. 302 (2019), no. 1, 119–179.

(11)李刚. Constant Q-curvature metrics near the hyperbolic metric .Annales de l'Institut Henri Poincaré. Analyse Non Linéaire .2014 ,31 (3):591

(12)Xavier, Frederico. Non-positive curvature and global invertibility of maps .Journal of Geometric Analysis .2014 ,24 (3):1181

Student Information
  • 徐超  2025-10-15 Hits:[] Times
  • 徐超  2023-09-23 Hits:[] Times
  • Copyright All Rights Reserved Shandong University Address: No. 27 Shanda South Road, Jinan City, Shandong Province, China: 250100
    Information desk: (86) - 0531-88395114
    On Duty Telephone: (86) - 0531-88364731 Construction and Maintenance: Information Work Office of Shandong University