论文成果
A Self-trained Spatial Graph Convolutional Network for Unsupervised Human-related Anomalous Event Detection in Complex Scenes
  • 所属单位:
    控制科学与工程学院
  • 发表刊物:
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS
  • 关键字:
    Anomaly detection;Event detection;Feature extraction;human skeleton;Human-related anomaly detection;self-training regression;Skeleton;spatial graph convolutional network;Task analysis;Training;Trajectory;video surveillance
  • 第一作者:
    李南君
  • 论文编号:
    1559363562041430018
  • 字数:
    10
  • 是否译文:
  • 发表时间:
    2022-01-01

上一条:AE-Net:Adjoint Enhancement Network for Efficient Action Recognition in Video Understanding

下一条:Anti-occlusion multi-target tracking with progressive spatio-temporal feature model

版权所有   ©山东大学 地址:中国山东省济南市山大南路27号 邮编:250100 
查号台:(86)-0531-88395114
值班电话:(86)-0531-88364731 建设维护:山东大学信息化工作办公室