Education Background
Work Experience
Research Focus |
Personal Information
刘鸿志,教授、博士生导师、国家重点研发首席科学家,山东大学国际倍半硅氧烷交叉学科研究与创新中心主任,倍半硅氧烷基功能材料国际学术研讨会(SFM)发起人。 联系方式:liuhongzhi@sdu.edu.cn, 山东大学中心校区 研究领域和兴趣: 主要从事有机硅化学与材料、功能高分子和纳米杂化材料等方面的研究。面向新能源、高端装备、生物医药和环境保护等国家战略性新兴产业的重大需求,系统开展相关材料的结构设计、可控合成、性能调控与应用基础研究,并致力于推进产业化关键技术研发。主要研究方向包括功能涂层材料(如超浸润与耐高温涂层)、多孔材料(如共价有机框架、水凝胶和气凝胶)、光电材料(荧光材料与光催化材料)、环境材料(吸附与分离)和生物医用材料(抗菌及光热材料)等前沿领域。研究工作旨在贯通从基础理论创新到工程应用转化的完整链条,为相关产业技术升级与可持续发展提供科学支撑。 主持项目: 1) 国家重点研发计划,倍半硅氧烷基超浸润涂层的设计、制备及其应用研究, 2022YFE0197000,2023.1-2024.12。 2) 国家自然科学基金面上项目,近红外倍半硅氧烷基杂化多孔材料的制备及性能研究, 21975144,2020/01-2023/12。 3) 国家自然科学基金面上项目,POSS基多孔聚合物的设计合成及性能研究,21574075,2016/01-2019/12。 4) 国家自然科学基金面上项目,以笼型硅氧烷为核心的新型功能性树枝状分子的设计合成及其在高分子纳米杂化材料中的应用研究, 21274081,2013.1-2016.12。 5) 国家自然科学基金,具有TADF特性的倍半硅氧烷基杂化聚合物的制备及性能研究,国际合作交流项目,22111530285,2022.1-2023.12。 6) 山东省重点研发计划,新型含氟POSS拓扑高分子的可控合成及其在表面结构化的有机杂化复合膜制备中的应用研究, 2020.1-2022.12。 7) 山东省重点研发计划,新型倍半硅氧烷基纳米杂化多孔材料的设计、合成及其应用,2018.4-2020.12。 8) 奥地利科学基金委员会(FWF)Hybrid materials based on a novel POSS, 12万欧元,2009-2011。 学术业绩: 在倍半硅氧烷基纳米杂化材料的设计、制备及其应用方面做了深入和系统的研究,主持包括国家重点研发计划在内的多个国家级和省部级课题,在国际主流期刊发表第一或通讯作者100余篇,其中封面9篇,邀请论文5篇,授权专利18件,做出令国际学术界认可的系列原创性、引领性工作,多次应邀在国际知名的学术会议上作报告,发起并主办“倍半硅氧烷基功能材料国际学术研讨会(SFM2017, SFM2018)”,在中国、日本、韩国和波兰等成功举办,成为业内重要学术会议。 学术亮点: 1) 在国际上率先提出Heck反应、Friedel-Crafts反应和阳离子聚合等方法来制备POSS基多孔聚合物,实现了低成本、高效、批量制备及功能多样性,成为业内公认的普适性方法。受高分子领域顶级期刊Progress in Polymer Science邀请,发表倍半硅氧烷基多孔聚合物的长篇综述(2021,119,101419),ESI 高被引。 2) 受Dalton Trans.邀请,发表倍半硅氧烷杂化材料方面的展望性综述(2020, 49, 5396-5405),封面论文,ESI 高被引。 3) 二茂铁功能化POSS基多孔聚合物表现出优秀的水处理能力(Chem. Eur. J., 2018, 24, 13504-13511),入选“Hot Paper”并被WilleyView进行亮点评述。 4) 首次利用阳离子聚合制备POSS基多孔聚合物(Macromol. Chem. Phys., 2019, 220, 1800536), 入选封面。 5) 吡咯和磷腈功能化的倍半硅氧烷基多孔材料用作Knoevenagel 缩合反应的无金属催化剂(Chem. Asia. J. 2021, 16, 1901-1905),被WileyChem作亮点评述。 6) 倍半硅氧烷基有机近红外多孔聚合物实现对抗生素的同时检测和光降解的工作(ACS Sustainable Chem. Eng. 2022, 10, 7309–7320),入选封面。 7) 磺酸功能化倍半硅氧烷基多孔材料催化环氧开环的工作(ACS Applied Materials & Interfaces, 2023, 15, 6657-6665), 入选封面。 8) 卟啉功能化倍半硅氧烷基多孔聚合物实现了苯乙烯在光照条件下的高选择性氧化的工作(ACS Applied polymer materials, 2022, 4, 5471–5481), 入选封面。 9) 倍半硅氧烷/壳聚糖荧光杂化气凝胶用于高效回收电子废液中金离子(J. Mater. Chem. A. 2024, 12, 5679-5691), 入选封面。 10) 近红外倍半硅氧烷/壳聚糖杂化气凝胶用于抗生素的检测和降解(Adv. Funct. Mater 2023, 33, 2214875), 入选封面。 11)基于卟啉的聚酰亚胺功能化COF实现了苯乙烯和苯硼酸在光照条件下的高选择性氧化(ACS Applied polymer materials, 2026, ), 入选封面。 12)成功构筑基于芘和硅四苯甲醛的光多孔聚合物实现染料的有效去除(Inorg.Chem.2024,27,e202400399), 入选Hot Paper和封面。 13) 首次合成含八个羧酸基团的POSS单体,发表在化学类顶级期刊美国化学会杂志) (J. Am. Chem. Soc. 2008, 130, 10074-10075)。 ü美国科学院院士,美国麻省理工学院(MIT)Timothy M. Swager教授在(SYNFACTS, 2008, 11, 1157)进行亮点评述。 ü美国耶鲁大学J. Parr 教授将其选入英国皇家化学会主办的2009 年«年度化学进展» (Annu. Rep. Prog. Chem., Sec. A, 2009, 105, 117-139)。 邀请报告:
u 2025年11月,在韩国釜山举办的the 9th Asian Symposium on Advanced Material (ASAM-9) 上作邀请报告。 u 2025年7月,在济南举办的International Symposium on Innovation and Future Perspective in Silsesquioxane Chemistry上作邀请报告。 u 2025年6月,在济南举办的Chinese-Russian on Green Chemistry and Technology of Organosilicon Polymers and Materials上作邀请报告。 u 2025年6月,在泰国举办的20th Asian Chemical Congress (20ACC, ASIACHEM2025)上作邀请报告。 u 2024年5月,在20届国际硅化学会议暨亚洲硅化学会议上(The 20th International Symposium on Silicon Chemistry (ISOS-20)作邀请报告 u 2024年7月,在波兰举办的 6th International Symposium on Silsesquioxanes-Based Functional Materials (SFM)上作邀请报告。 u 2023年7月,在法国举办的欧洲硅化学会议 (10th European Silicon Days)作邀请报告。 u 2021年8月,在法国举办的19届国际硅化学会议上(The 19 th International Symposium on Silicon Chemistry (ISOS-19)作邀请报告。 u 2020年11 月,受邀在韩国举办的International Symposium on Silsesquioxanes-Based Functional Materials (SFM2020)上做主旨演讲。 u 2020年11月,受邀在ICMMA2020国际会议上做邀请报告。 u 2020年8月,在美国化学会年会(ACS National Meeting Silicon Symposium)作邀请报告。 u 2019年8月,在新加坡举办亚洲硅化学会议上(Asian Silicon Symposium, ASiS-7)作邀请报告。 u 2019年7月,在日本群马大学举行的含硅聚合物会议(International Workshop on Silicon-Based Polymers (ISPO2019)作大会报告。 u 2018年7月,在泰国举行的2018 International Congress for Innovation in Chemistry作邀请报告 u 2018年11月,在韩国举行的the International Conference on Multi-functional Materials and Applications (ICMMA)作邀请报告。 u 2016年10月,在北京举办的中德双边会议上做大会邀请报告。 u 2016年6月, 在泰国化学会的主办的2016 International Congress for Innovation in Chemistry作邀请报告。 u 2015年12月,在日本群马大学5th International Symposium of Element Innovation做大会报告。 u 2015年10月,在北京举办的International Conference on Nanoscience & Technology (ChinaNANO 2015)做邀请报告。 u 2015年8月,在美国化学会年会ACS National Meeting上作邀请报告。 u 2015年6月,在俄罗斯科学院XIII-Andrianov Conference ORGANOSILICON COMPOUNDS: SYNTHESIS, PROPERTIES, APPLICATIONS 上做大会报告。 u 2015年6月,在泰国高分子年会the International Polymer Conference of Thailand (PCT-5)做基调演讲,担任泰国国际高分子会议的国际学术顾问团成员。 奖项: ü 获得奥地利科学基金委员会(FWF)授予的“Lise Meitner”研究奖学金 2009 年 ü 山东大学互联网+创新创业大赛 优秀指导教师 2020年 ü 山东大学优秀本科毕业论文指导奖 2024 年 产教融合,协同育人: ü “Porous polymeric materials, based on cage-like organosiloxanes, as adsorbents for water purification”,第六届全国大学生国际互联网+创新创业大赛国际主赛道 银奖 指导教师 ü “滴水不沾”—超疏水材料的绿色高效解决方案,第八届山东省大学生互联网创新创业大赛 银奖 指导教师 主办活动: ü 倍半硅氧烷基功能材料国际学术研讨会 (SFM2017, SFM2018) ü “倍半硅氧烷化学的创新与未来”国际会议暨暑期学校(2024,2025) ü 2023中白双边学术研讨会 新闻链接: l “倍半硅氧烷化学的创新与未来”国际会议暨暑期学校在山东大学举办 https://www.view.sdu.edu.cn/info/1023/205007.htm l “中外青年科学家论坛暨国际暑期学校”在山东大学举办 https://www.view.sdu.edu.cn/info/1023/194652.htm l 相聚山东,中外青年科学家达成了一项共识 https://www.media.sdu.edu.cn/info/1002/35592.htm l International Symposium and Summer School on Innovations and Future Perspectives in Silsesquioxane Chemis successfully held at Shandong University https://english.sdchina.com/show/1950847283377475586.html l 中国政府奖学金项目“倍半硅氧烷化学的创新与未来”在山东大学化学与化工学院举行 https://h5.sdchina.com/#/pages/news-detail/news-detail?id=1825735367328854018&lang=zh-Hans l 让更多的青年才俊到中国看看 https://www.media.sdu.edu.cn/info/1002/38494.htm l “倍半硅氧烷化学的创新与未来”国际会议暨暑期学校在山东大学圆满落幕 https://www.media.sdu.edu.cn/info/1002/38496.htm l 山大举办2018倍半硅氧烷基功能材料国际学术研讨会 https://www.view.sdu.edu.cn/info/1003/107858.htm l 山大发起并主办2017倍半硅氧烷基功能材料国际学术研讨会 https://www.view.sdu.edu.cn/info/1003/92779.htm l 化学与化工学院举办2023中白双边学术研讨会 https://www.view.sdu.edu.cn/info/1021/186403.htm l 刘鸿志教授团队在磺酸功能化倍半硅氧烷基催化材料方面取得新进展 https://www.view.sdu.edu.cn/info/1021/174476.htm l 环境友好型红外材料 检测降解抗生素只需一点阳光 https://www.media.sdu.edu.cn/info/1002/30129.htm l 刘鸿志教授课题组在金的快速、高效回收方面取得新成果 https://www.view.sdu.edu.cn/info/1021/188510.htm l 刘鸿志教授团队在倍半硅氧烷/壳聚糖杂化气凝胶制备和应用研究领域取得新突破 https://www.view.sdu.edu.cn/info/1021/180011.htm l 刘鸿志教授应邀撰写关于倍半硅氧烷基杂化材料方面的“展望性综述”并入选封面 https:// www.view.sdu.edu.cn/info/1021/136325.htm l 硕士研究生杨楠在第19届国际硅化学研讨会上获最佳墙报奖 https://www.chem.sdu.edu.cn/info/1066/15867.htm l 刘鸿志教授应邀在高分子领域权威综述期刊上撰写长篇综述文章 https://www.view.sdu.edu.cn/info/1021/152481.htm
l 专访刘鸿志教授:科创路上,当自强不息,敢为人先 https://mp.weixin.qq.com/s/y-SH-2GTWBjVoFI5p-3xRw 论文发表: 2026 [1] Zhao, X.; Liu, H.*, Tunable sulfonate-functionalized silsesquioxane-based hybrid networks for efficient gold recovery and selective adsorption of cationic dyes. Separation and Purification Technology 2026, 380. [2] Hussain, S.; Liu, H.*, Three-dimensional covalent organic frameworks based on silsesquioxane for photocatalytic H2O2 production. Materials Today Nano 2026, 33. [3] Shi Y., Wang Q. Hussain, S.; Sun C. Liu, H.* Cobalt Porphyrin-Based Polyimide Covalent Organic Framework for Efficient Photocatalytic Oxidation of Styrene and Phenylboronic Acid ACS Appl. Polym. Mater. 2026, https://doi.org/10.1021/acsapm.5c03922 (封面). [4] Zhang T., Ge Q. , Fan S., Liu H., Liu, H.* Design and Fabrication of Hydrophobic Hybrid Coatings Based on Epoxy Acrylate and Silsesquioxane for Efficient Oil/Water Separation ACS Applied Engineering Materials 2026, DOI: 10.1021/acsaenm.5c01004. 2025 [1] Dong, J.; Liu, H.*, Silsesquioxane-crosslinked chitosan aerogels with highly selective adsorption for Au (III). International Journal of Biological Macromolecules 2025, 296. [2] Dong, J.; Yang, X.; Li, J.; Liu, H.*, Preparation of silsesquioxane/polyacrylamide/carboxymethyl chitosan hydrogel with ultra-stretchable properties for advanced flexible sensing applications. International Journal of Biological Macromolecules 2025, 322. [3] Fan, S.; Kunthom, R.; Meng, Y.; Kostjuk, S. V.; Liu, H.*, Superhydrophobic fabric coated with double-decker silsesquioxane-based hybrid polymer for efficient oil/water separation and enhanced antifouling performance. Cellulose 2025, 32 (10), 6269-6284. [4] Li, S.; Hussain, S.; Liu, H.*, Furfural-bridged silsesquioxane-based hybrid network rich in heteroatoms for selective adsorption and reduction of Au(III) in the aqueous phase. Chemical Engineering Journal 2025, 506. [5] Li, S.; Hussain, S.; Liu, H.*, Facile Synthesis of Silsesquioxane‐Based Hybrid Crosslinked Polymers via One‐Step Amine‐Ene Reaction for Efficient Adsorption of Various Pollutants. Chemistry – An Asian Journal 2025, 20 (5)(邀请). [6] Liu, M.-S.; Kunthom, R.; Dudziec, B.; Liu, H.*, Rational Design and Fabrication of Cyclotetrasiloxane-based Hybrid Superhydrophobic Fabrics for Oil/Water Separation and Self-cleaning. Chinese Journal of Polymer Science 2025, 43 (6), 1022-1031. [7] Zhang, M.; Liu, H.*, Silsesquioxane-Based Hybrid Semiconductor Polymers for Efficient Antibiotic Photodegradation and Detection Simultaneously. ACS Applied Polymer Materials 2025, 7 (7), 4633-4643. [8] Zhang, M.; Liu, H.*, AIE-derived fluorescent silsesquioxane-based hybrid aerogel for light-enhanced gold recovery. Desalination 2025, 593. [9] Zhao, X.; Ge, Q.; Liu, H.*, One-Pot Sequence Synthesis of a Silsesquioxane-Based Network via “Amine-ene” and “Thiol–ene” Reactions for Efficient Gold(III) Recovery. ACS Applied Engineering Materials 2025, 3 (7), 2031-2041. [10] Zhao, X.; Pakuła, D.; Frydrych, M.; Konieczna, R.; Sztorch, B.; Kozera, R.; Liu H.; Zhou, H.; Przekop, R. E., Treatment and Valorization of Waste Wind Turbines: Component Identification and Analysis. Materials 2025, 18 (2). 2024 [1] Li, W.; Liu, H.*, Rational design and facile preparation of hybrid superhydrophobic epoxy coatings modified by fluorinated silsesquioxane-based giant molecules via photo-initiated thiol-ene click reaction with potential applications. Chemical Engineering Journal 2024, 480. [2] Hussain, S.; Kunthom, R.; Liu, H.*, Hybrid Dendrimer Network based on Silsesquioxane and Glycidyl Methacrylate for Enhanced Adsorption of Iodine and Dyes in Environmental Remediation. Chemistry – An Asian Journal 2024, 19 (20). [3] Meng, Y.; Li, W.; Kunthom, R.; Liu, H.*, Rational design and application of superhydrophobic fluorine-free coating based on double-decker silsesquioxane for oil-water separation. Polymer 2024, 304(邀请). [4] Wang, Q.; Unno, M.; Liu, H.*, Ultrafast and highly selective gold recovery with high capture capacity from electronic waste by upconversion of a silsesquioxane-based hybrid luminescent aerogel. Journal of Materials Chemistry A 2024, 12 (10), 5679-5691(封面). [5] Yang, N.; Kunthom, R.; Liu, H.*, Pyrene‐Functionalized Silicon Hybrid Porous Polymer for an Efficient Adsorption of Dyes. European Journal of Inorganic Chemistry 2024, 27 (31)(封面,邀请,热点). [6] Zhang, T.; Ge, Q.; Liu, H.*, Facile and Rapid Fabrication of (trifluoropropyl) Silsesquioxanes/Ethyl Cyanoacrylate-Based Hybrid Superhydrophobic Coatings for Oil–Water Separation and Metal Anticorrosion. ACS Applied Engineering Materials 2024, 2 (1), 215-223. [7] Guo, X.; Sun, C.; Liu, H.*, Triangular Triazine-Triphenylamine Functionalized Hybrid Fluorescent Porous Polymers for Detection and Photodegradation of Tetracycline Hydrochloride. Langmuir 2024, 40 (25), 13070-13081. [8] Sun, C.; Liu, H.*, Room temperature route to silsesquioxane-based porphyrin functional NIR porous polymer for efficient photodegradation of azo-dyes under sunlight. Next Materials 2024, 2. 2023 [1] Dong, J.; Kostjuk, S. V.; Liu, H.*, Epoxy SQ-based amine functionalized superhydrophilic hybrid network for Ag+ adsorption and catalytic degradation of Rhodamine B. Reactive and Functional Polymers 2023, 192. [2] Ge, Q.; Liu, H.*, Open/Closed Cage Silsesquioxane-based Thioamide-bridged Hybrid Networks with Unexpected Adsorption Abilities and Selectivity for Au (III). Chemical Engineering Journal 2023, 462. [3] Li, W.; Liu, H.*, Design and preparation of SQ-based superhydrophobic coatings with different substituents for multifunctional applications. Surface and Coatings Technology 2023, 457. [4] Li, W.; Liu, H.*, Novel organic–inorganic hybrid polymer based on fluorinated polyhedral oligomeric silsesquioxanes for stable superamphiphobic fabrics and aluminum corrosion protection. Materials Today Chemistry 2023, 29. [5] Wang, Q.; Unno, M.*; Liu, H.*, Dual‐Function Near‐Infrared Emitting Aerogel‐Based Device for Detection and Sunlight‐Driven Photodegradation of Antibiotics: Realizing the Processability of Silsesquioxane‐Based Fluorescent Porous Materials. Advanced Functional Materials 2023, 33 (38) (封面). [6] Wang, Z.; Kunthom, R.; Kostjuk, S. V.; Liu, H.*, Near-infrared-emitting silsesquioxane-based porous polymer containing thiophene for highly efficient adsorption and detection of iodine vapor and solution phase. European Polymer Journal 2023, 192. [7] Zhang, M.; Liu, Y.; Du, Y.; Liu, H.*, Tuning Topology and Scaffolding Units in Nanoporous Polymeric Materials for Efficient Iodine Adsorption and Detection. ACS Applied Nano Materials 2023, 6 (15), 13874-13884. [8] Zhao, X.; Liu, H.*, Hybrid porous polymers based on double‐decker and cage‐ype silsesquioxanes for the high‐efficiency removal of neonicotinoid insecticides and dyes. Journal of Polymer Science 2023, 62 (8), 1639-1646. [9]Zhao, X.; Wang, Q.; Kunthom, R.*; Liu, H.*, Sulfonic Acid-Grafted Hybrid Porous Polymer Based on Double-Decker Silsesquioxane as Highly Efficient Acidic Heterogeneous Catalysts for the Alcoholysis of Styrene Oxide. ACS Applied Materials & Interfaces 2023, 15 (5), 6657-6665 (封面). [10] Zhang, M.; Du, Y.; Liu, H.*, Porous Hybrid Triazine-Functionalized Polymers with High Capture Ability for I2 and Dyes. ACS Applied Polymer Materials 2023, 5 (1), 654-661. 2022 [1] Ge, Q.; Liu, H.*, Rational design and preparation of superhydrophobic photo-cured hybrid epoxy coating modified by fluorocarbon substituted silsesquioxane-based nanoparticles. Progress in Organic Coatings 2022, 172. [2] Ge, Q.; Liu, H.*, Tunable amine-functionalized silsesquioxane-based hybrid networks for efficient removal of heavy metal ions and selective adsorption of anionic dyes. Chemical Engineering Journal 2022, 428. [3] Ge, Q.; Liu, H.*, Au Nanoparticles in Silsesquioxane-Based Hybrid Networks by Simultaneous Recovery and Reduction of Au(III) in Wastewater. ACS Applied Nano Materials 2022, 5 (7), 9861-9870. [4] Sun, C.; Liu, H.*, Highly Selective Oxidation of Styrene to Styrene Oxide over a Tetraphenylporphyrin-Bridged Silsesquioxane-Based Hybrid Porous Polymer. ACS Applied Polymer Materials 2022, 4 (8), 5471-5481 (封面). [5] Wang, Q.; Unno, M.; Liu, H.*, Organic–Inorganic Hybrid Near-Infrared Emitting Porous Polymer for Detection and Photodegradation of Antibiotics. ACS Sustainable Chemistry & Engineering 2022, 10 (22), 7309-7320 (封面). [6] Wang, Y.; Yang, N.; Soldatov, M.; Liu, H.*, A novel phosphazene-based amine-functionalized porous polymer with high adsorption ability for I2, dyes and heavy metal ions. Reactive and Functional Polymers 2022, 173. [7] Wang, Z.; Mathew, A.; Liu, H.*, Silsesquioxane-based porous polymer derived from organic chromophore with AIE characteristics for selective detection of 2,4-dinitrophenol and Ru3+. Polymer 2022, 248. 2021 [1] Du, Y.; Liu, H.*, Triazine‐Functionalized Silsesquioxane‐Based Hybrid Porous Polymers for Efficient Photocatalytic Degradation of Both Acidic and Basic Dyes under Visible Light. ChemCatChem 2021, 13 (24), 5178-5190. [2] Soldatov, M.; Liu, H.*, Hybrid porous polymers based on cage-like organosiloxanes: synthesis, properties and applications. Progress in Polymer Science 2021, 119 (邀请). [3] Soldatov, M.; Wang, Y.; Liu, H.*, Preparation of Porous Polymers Based on the Building Blocks of Cyclophosphazene and Cage‐like Silsesquioxane and Their Use as Basic Catalysts for Knoevenagel Reactions. Chemistry – An Asian Journal 2021, 16 (14), 1901-1905. [4] Wang, Q.; Unno, M.; Liu, H.*, Silsesquioxane-Based Triphenylamine-Linked Fluorescent Porous Polymer for Dyes Adsorption and Nitro-Aromatics Detection. Materials 2021, 14 (14). [5] Wang, Y.; Soldatov, M.; Wang, Q.; Liu, H.*, Phosphazene functionalized silsesquioxane-based porous polymers for absorbing I2, CO2 and dyes. Polymer 2021, 218. [6] Yang, N.; Liu, H.*, Tetraphenylpyrene-bridged silsesquioxane-based fluorescent hybrid porous polymer with selective metal ions sensing and efficient phenolic pollutants adsorption activities. Polymer 2021, 230. 2020 [1] Chen, Z.; Sun, R.; Feng, S.; Wang, D.; Liu, H., Porosity-Induced Selective Sensing of Iodide in Aqueous Solution by a Fluorescent Imidazolium-Based Ionic Porous Framework. ACS Applied Materials & Interfaces 2020, 12 (9), 11104-11114. [2] Du, Y.; Liu, H.*, Cage-like silsesquioxanes-based hybrid materials. Dalton Transactions 2020, 49 (17), 5396-5405(邀请,封面). [3] Du, Y.; Unno, M.; Liu, H.*, Hybrid Nanoporous Materials Derived from Ladder- and Cage-Type Silsesquioxanes for Water Treatment. ACS Applied Nano Materials 2020, 3 (2), 1535-1541. [4] Shen, R.; Du, Y.; Yang, X.; Liu, H.*, Silsesquioxanes-based porous functional polymers for water purification. Journal of Materials Science 2020, 55 (17), 7518-7529. [5] Wang, Q.; Liu, H.*; Jiang, C.; Liu, H.*, Silsesquioxane-based triphenylamine functionalized porous polymer for CO2, I2 capture and nitro-aromatics detection. Polymer 2020, 186. [6] Yan, Y.; Yang, H.; Liu, H.*, Silsesquioxane-based fluorescent nanoporous polymer derived from a novel AIE chromophore for concurrent detection and adsorption of Ru3+. Sensors and Actuators B: Chemical 2020, 319. [7] Yang, H.; Liu, H.*, Pyrene-functionalized silsesquioxane as fluorescent nanoporous material for antibiotics detection and removal. Microporous and Mesoporous Materials 2020, 300. 2019 [1] Du, Y.; Ge, M.; Liu, H.*, Porous Polymers Derived from Octavinylsilsesquioxane by Cationic Polymerization. Macromolecular Chemistry and Physics 2019, 220 (5) (封面). [2] Li, W.; Jiang, C.; Liu, H.*; Yan, Y.; Liu, H.*, Octa[4‐(9‐carbazolyl) phenyl]silsesquioxane‐Based Porous Material for Dyes Adsorption and Sensing of Nitroaromatic Compounds. Chemistry – An Asian Journal 2019, 14 (19), 3363-3369. [3] Liu, H.*; Sun, R.; Feng, S.; Wang, D.; Liu, H.*, Rapid synthesis of a silsesquioxane-based disulfide-linked polymer for selective removal of cationic dyes from aqueous solutions. Chemical Engineering Journal 2019, 359, 436-445. [4] Soldatov, M.; Liu, H.*, A POSS‐Phosphazene Based Porous Material for Adsorption of Metal Ions from Water. Chemistry – An Asian Journal 2019, 14 (23), 4345-4351. [5] Yan, Y.; Laine, R. M.; Liu, H.*, In Situ Methylation Transforms Aggregation‐Caused Quenching into Aggregation‐Induced Emission: Functional Porous Silsesquioxane‐Based Composites with Enhanced Near‐Infrared Emission. ChemPlusChem 2019, 84 (10), 1630-1637. [6] Yang, X.; Liu, H.*, Diphenylphosphine-Substituted Ferrocene/Silsesquioxane-Based Hybrid Porous Polymers as Highly Efficient Adsorbents for Water Treatment. ACS Applied Materials & Interfaces 2019, 11 (29), 26474-26482. 2018 [1] Du, Y.; Liu, H.*, Silsesquioxane‐Based Hexaphenylsilole‐Linked Hybrid Porous Polymer as an Effective Fluorescent Chemosensor for Metal Ions. ChemistrySelect 2018, 3 (6), 1667-1673. [2] Ge, M.; Liu, H.*, Fluorine‐Containing Silsesquioxane‐Based Hybrid Porous Polymers Mediated by Bases and Their Use in Water Remediation. Chemistry – A European Journal 2018, 24 (9), 2224-2231. [3] Sun, R.; Feng, S.; Wang, D.; Liu, H., Fluorescence-Tuned Silicone Elastomers for Multicolored Ultraviolet Light-Emitting Diodes: Realizing the Processability of Polyhedral Oligomeric Silsesquioxane-Based Hybrid Porous Polymers. Chemistry of Materials 2018, 30 (18), 6370-6376. [4] Sun, R.; Huo, X.; Lu, H.; Feng, S.; Wang, D.; Liu, H., Recyclable fluorescent paper sensor for visual detection of nitroaromatic explosives. Sensors and Actuators B: Chemical 2018, 265, 476-487. [5] Yang, X.; Liu, H.*, Ferrocene‐Functionalized Silsesquioxane‐Based Porous Polymer for Efficient Removal of Dyes and Heavy Metal Ions. Chemistry – A European Journal 2018, 24 (51), 13504-13511 (热点). 2017 [1] Liu, H.; Liu, H.*, Selective dye adsorption and metal ion detection using multifunctional silsesquioxane-based tetraphenylethene-linked nanoporous polymers. Journal of Materials Chemistry A 2017, 5 (19), 9156-9162. [2] Shen, R.; Liu, Y.; Yang, W.; Hou, Y.; Zhao, X.; Liu, H.*, Triphenylamine‐Functionalized Silsesquioxane‐Based Hybrid Porous Polymers: Tunable Porosity and Luminescence for Multianalyte Detection. Chemistry – A European Journal 2017, 23 (54), 13465-13473. [3] Wang, D.; Sun, R.; Feng, S.*; Li, W.; Liu, H.*, Retrieving the original appearance of polyhedral oligomeric silsesquioxane-based porous polymers. Polymer 2017, 130, 218-229. 2016 [1] Ge, M.; Liu, H.*, A silsesquioxane-based thiophene-bridged hybrid nanoporous network as a highly efficient adsorbent for wastewater treatment. Journal of Materials Chemistry A 2016, 4 (42), 16714-16722. [2] Li, L.; Liu, H.*, Rapid Preparation of Silsesquioxane‐Based Ionic Liquids. Chemistry – A European Journal 2016, 22 (14), 4713-4716. [3] Shen, R.; Feng, S.; Liu, H.*, Silsesquioxane-based luminescent PMMA nanocomposites. RSC Advances 2016, 6 (64), 59305-59312. [4] Shen, R.; Liu, H.*, Construction of bimodal silsesquioxane-based porous materials from triphenylphosphine or triphenylphosphine oxide and their size-selective absorption for dye molecules. RSC Advances 2016, 6 (44), 37731-37739. [5] Wang, D.; Feng, S.*; Liu, H.*, Fluorescence‐Tuned Polyhedral Oligomeric Silsesquioxane‐Based Porous Polymers. Chemistry – A European Journal 2016, 22 (40), 14319-14327. [6] Wang, D.; Yang, W.; Feng, S.*; Liu, H.*, Amine post-functionalized POSS-based porous polymers exhibiting simultaneously enhanced porosity and carbon dioxide adsorption properties. RSC Advances 2016, 6 (17), 13749-13756. [7] Jiang, C., Yang, W., Liu, H.*, Hybrid azobenzenedoped nanoporous polymers derived fromcubic octavinylsilsesquioxane. Russian Chemical Bulletin, International Edition 2016, Vol. 65, No. 4, pp. 1076-1085.
2015 [1] Li, L.; Feng, S.; Liu, H.*, Novel hybrid luminescent materials derived from multicarboxy cage silsesquioxanes and terbium ion. Journal of the Ceramic Society of Japan 2015, 123 (1441), P9-1-P9-3. [2] Jiang, C.; Yang, W.; Li, L.; Hou, Y.; Zhao, X.; Liu, H.*, An Efficient Approach to Octabromophenylethyl‐Functionalized Cage Silsesquioxane and Its Use in Constructing Hybrid Porous Materials. European Journal of Inorganic Chemistry 2015, 2015 (23), 3835-3842. [3] Liu, Y.; Yang, W.; Liu, H.*, Azobenzene‐Functionalized Cage Silsesquioxanes as Inorganic–Organic Hybrid, Photoresponsive, Nanoscale, Building Blocks. Chemistry – A European Journal 2015, 21 (12), 4731-4738. [4] Wu, Y.; Li, L.; Yang, W.; Feng, S.; Liu, H.*, Hybrid nanoporous polystyrene derived from cubic octavinylsilsesquioxane and commercial polystyrene via the Friedel–Crafts reaction. RSC Advances 2015, 5 (17), 12987-12993. [5] Xue, L.; Li, L.; Feng, S.*; Liu, H.*, A facile route to multifunctional cage silsesquioxanes via the photochemical thiol–ene reaction. Journal of Organometallic Chemistry 2015, 783, 49-54. [6] Yang, W.; Jiang, X.; Liu, H.*, A novel pH-responsive POSS-based nanoporous luminescent material derived from brominated distyrylpyridine and octavinylsilsesquioxane. RSC Advances 2015, 5 (17), 12800-12806. 2014 [1] Li, L.; Feng, S.; Liu, H.*, Hybrid lanthanide complexes based on a novel β-diketone functionalized polyhedral oligomeric silsesquioxane (POSS) and their nanocomposites with PMMA via in situ polymerization. RSC Adv. 2014, 4 (74), 39132-39139. [2] Li, L.; Liu, H.*, Facile construction of hybrid polystyrene with a string of lantern shape from monovinyl-substituted POSS and commercial polystyrene via Friedel–Crafts reaction and its properties. RSC Adv. 2014, 4 (87), 46710-46717. [3] Wang, D.; Li, L.; Yang, W.; Zuo, Y.; Feng, S.*; Liu, H.*, POSS-based luminescent porous polymers for carbon dioxide sorption and nitroaromatic explosives detection. RSC Adv. 2014, 4 (104), 59877-59884. [4] Wang, D.; Yang, W.; Feng, S.*; Liu, H.*, Constructing hybrid porous polymers from cubic octavinylsilsequioxane and planar halogenated benzene. Polym. Chem. 2014, 5 (11), 3634-3642. [5] Wu, Y.; Wang, D.; Li, L.; Yang, W.; Feng, S*.; Liu, H.*, Hybrid porous polymers constructed from octavinylsilsesquioxane and benzene via Friedel–Crafts reaction: tunable porosity, gas sorption, and postfunctionalization. J. Mater. Chem. A 2014, 2 (7), 2160-2167. [6] Yang, W.; Gan, Y.; Jiang, X.; Liu, H.*, Cinnamate‐Functionalized Cage Silsesquioxanes as Photoreactive Nanobuilding Blocks. European Journal of Inorganic Chemistry 2014, 2015 (1), 99-103. [7] Yang, W.; Wang, D.; Li, L.; Liu, H.*, Construction of Hybrid Porous Materials from Cubic Octavinylsilsesquioxane through Friedel–Crafts Reaction Using Tetraphenylsilane as a Concentrative Crosslinker. European Journal of Inorganic Chemistry 2014, 2014 (18), 2976-2982. 2013 [1] Zhao, X.; Du, J.; Wu, Y.; Liu, H.; Hao, X., Synthesis of highly luminescent POSS-coated CdTe quantum dots and their application in trace Cu2+ detection. Journal of Materials Chemistry A 2013, 1 (38). [2] Wu, Y.; Li, L.; Feng, S.*; Liu, H.*, Hybrid nanocomposites based on novolac resin and octa(phenethyl) polyhedral oligomeric silsesquioxanes (POSS): miscibility, specific interactions and thermomechanical properties. Polymer Bulletin 2013, 70 (12), 3261-3277. [3] Wang, D.; Yang, W.; Li, L.; Zhao, X.; Feng, S.*; Liu, H.*, Hybrid networks constructed from tetrahedral silicon-centered precursors and cubic POSS-based building blocks via Heck reaction: porosity, gas sorption, and luminescence. Journal of Materials Chemistry A 2013, 1 (43). [4] Wang, D.; Xue, L.; Li, L.; Deng, B.; Feng, S.*; Liu, H.*; Zhao, X., Rational Design and Synthesis of Hybrid Porous Polymers Derived from Polyhedral Oligomeric Silsesquioxanes via Heck Coupling Reactions. Macromolecular Rapid Communications 2013, 34 (10), 861-866. [5] Li, L.; Xue, L.; Feng, S.; Liu, H.*, Functionalization of monovinyl substituted octasilsesquioxane via photochemical thiol-ene reaction. Inorganica Chimica Acta 2013, 407, 269-273. [6] Li, L.; Liang, R.; Li, Y.; Liu, H.*; Feng, S.*, Hybrid thiol–ene network nanocomposites based on multi(meth)acrylate POSS. Journal of Colloid and Interface Science 2013, 406, 30-36.
授权专利: 1)刘鸿志,李万里,一种新型POSS功能化的疏水硅烷涂层及其制备方法与应用,专利号:ZL 202310023739.3,授权。 2)刘鸿志,孟艳菲,李万里,一种烷氧基功能化的双夹板型POSS超疏水涂层及其制备方法与应用,专利号:ZL 202310254235.2,授权。 3)刘鸿志,李万里,一种巨型POSS分子掺杂的超疏水环氧树脂涂层及其制备方法与应用专利号:ZL 202310950371.5 授权。 4)刘鸿志,张天,葛倩,一种含氟有机硅树脂改性基体材料及其制备方法与应用专利号:ZL 202310095161.2 授权。 5)刘鸿志,葛倩,一种含氟倍半硅氧烷改性环氧树脂的油水分离材料及其制备方法与应用,专利号:ZL 202111203826.4 授权。 6)刘鸿志,李万里,一种稳定的全氟己基功能化活性POSS基超双疏涂层改性棉织物的制备方法,专利号:ZL 202111210122.X 授权。 7)刘鸿志,杜雅静,三嗪功能化倍半硅氧烷基杂化多孔聚合物、其制备方法及应用,专利号:ZL 202110149598.0 授权。 8)刘鸿志,葛倩,一种基于氨基功能化倍半硅氧烷重金属离子吸附剂的制备方法,专利号:ZL 202011395226.8 授权。 9)刘鸿志,王清正,一种基于咔唑基的有机双杂环近红外荧光探针及其制备方法与应用,专利号:ZL 202010915801.6 授权。 10)刘鸿志,王清正,杨慧中,一种基于三苯胺基的有机近红外荧光探针及其制备方法与应用,专利号:ZL 202011136750.3 授权。 11)刘鸿志,王清正,一种基于三苯胺基的有机双杂环近红外荧光探针及其制备方法与应用,专利号:ZL202010724461.9 授权。 12)刘鸿志,杜雅静,一种基于笼型和梯形结构倍半硅氧烷的杂化多孔聚合物的制备方法,专利号:ZL 201910745083.X 授权。 13)刘鸿志,杨晓茹,一种杂原子掺杂二茂铁功能化的POSS基杂化多孔聚合物的制备方法,专利号:ZL 201910074462 授权。 14)刘鸿志,米哈伊尔索尔达托夫,王奕淇,一种杂原子掺杂磷腈官能化POSS基杂化多孔聚合物及其制备方法与应用,专利号:ZL 201910813369.7 授权。 15)刘鸿志,刘环环,江春东,一种咔唑基POSS单体及其制备方法,专利号:ZL 201810232411.1 授权。 16)刘鸿志,沈蓉,含丙烯酸酯类功能基多面体低聚倍半硅氧烷稀土配合物的发光聚丙烯酸类材料的合成方法专利号:ZL 201510969705.9 授权。 授课情况: 本科生:高分子化学与物理, 有机化学实验,综合化学实验 博士生:高分子进展 招生情况: 招收化学、物理、材料方向的硕士研究生、博士研究生、博士后和访问学者。欢迎本科生来课题组进行创新实验或完成毕业论文。
| |
