李晓丽
教授
所属院部: 数学学院
访问次数:
基本信息
  • 教师拼音名称:
    Li Xiaoli
  • 电子邮箱:
  • 入职时间:
    2020-12-15
  • 所在单位:
    数学学院
  • 学历:
    研究生(博士后)
  • 办公地点:
    B850
  • 性别:
  • 学位:
    理学博士学位
  • 在职信息:
    在职
  • 博士生导师
  • 硕士生导师
教师简介

李晓丽,山东大学教授,博士生导师,入选国家高层次青年人才计划,山东省杰出青年基金获得者,山东大学杰出中青年学者。目前担任中国数学会计算数学分会常务理事以及CSIAM油水资源数值方法专委会秘书长。2013-2018年在山东大学硕博连读,期间赴美国普渡大学联合培养,博士毕业后跟随国际知名数值分析专家沈捷教授从事博后研究工作。主要研究领域为偏微分方程数值解与计算流体力学。在SIAM J. Numer. Anal., SIAM J. Sci. Comput., Math. Comp., J. Fluid Mech., Math. Mod. Meth. Appl. Sci.及J Comput. Phys.等计算数学高水平期刊上发表学术论文多篇,多次在国际国内学术会议上作邀请报告。2019年入选“博士后创新人才支持计划”,主持国家自然科学基金面上项目、重点项目子课题、青年项目等多个国家及省部级项目。

                          

News:招收博士后及硕士博士研究生,待遇从优,在站博士后还可申领济南市生活及住房补贴,欢迎邮件咨询


联系方式:xiaolimath@sdu.edu.cn            

地址:山东大学中心校区知新楼B850

 

研究领域    

Ø 偏微分方程数值解法、计算流体力学、油藏数值模拟、多相流保结构算法、机器学习


科研成果    

▪ D.M. Hou, X.L. Li, Z.H. Qiao, and N. Zheng, Energy stable and maximum bound principle preserving schemes for the Q-tensor flow of liquid crystals. SIAM Journal on Numerical Analysis 63(2) (2025): 824-880.

▪ X.L. Li, Y. Yu and H. Chen, A class of high-order physics-preserving schemes for thermodynamically consistent model of incompressible and immiscible two-phase flow in porous media. Journal of Computational Physics  529 (2025):113864.

▪ X.L. Li, H. Liu and N. Zheng, Second-order, energy-stable and maximum bound principle preserving schemes for two-phase incompressible flow. Journal of Scientific Computing (2025).

▪ X.L. Li, Z.G. Liu, J. Shen and N. Zheng, On a Class of Higher-Order Fully Decoupled Schemes for the Cahn–Hilliard–Navier–Stokes System. Journal of Scientific Computing (2025).

▪  Y.J. Yan, H.X. Chen and X.L. Li, The first- and second-order energy stable, mass conservative and bounds-preserving schemes for two-phase incompressible flow with rock compressibility. Communications in Computational Physics (2025).

▪ Z.G. Liu, N. Zheng, X.L. Li, An enhanced and highly efficient semi-implicit combined Lagrange multiplier approach preserving original energy law for dissipative systems. International Journal for Numerical Methods in Engineering (2024).

▪ X.H. Wang, X. Guo, X.L. Li, A class of new linear, efficient and high-order implicit-explicit methods for the unsteady Navier-Stokes-Darcy model based on nonlinear Lions interface condition. Journal of Scientific Computing (2024).

▪ Z. Liu, Y. R. Zhang, X.L. Li, A novel energy-optimized technique of SAV-based (EOP-SAV) approaches for dissipative systems. Journal of Scientific Computing (2023).

▪ X.L. Li, W. L. Wang, and J. ShenStability and error analysis of IMEX SAV schemes for the magneto-hydrodynamic equations. SIAM Journal on Numerical Analysis 60(3) (2022): 1026-1054.

▪ X.L. Li, J. Shen, and Z. G. Liu, New SAV-pressure correction  methods  for the Navier-Stokes equations: stability and error analysis. Mathematics of Computation 91(333) (2022): 141-167.

▪ X.L. Li, and J. Shen, On fully decoupled MSAV schemes  for the Cahn-Hilliard-Navier-Stokes model of Two-Phase Incompressible Flows. Mathematical Models and Methods in Applied Sciences 32(03) (2022): 457-495.

▪ S.M. Guo, C. Li, X.L. Li, and L.Q. Mei, Energy-conserving and time-stepping-varying ESAV-Hermite-Galerkin spectral scheme for nonlocal Klein-Gordon-Schrodinger system with fractional Laplacian in unbounded domains. Journal of Computational Physics 458 (2022)111096.

 X.L. Li, and J. Shen, Efficient Linear and Unconditional Energy Stable Schemes for the Modified Phase Field Crystal Equation. SCIENCE CHINA Mathematics (2022).

▪ X.L. Li, and H.X. RuiSuperconvergence of MAC scheme for a Coupled Free Flow-Porous Media System with Heat Transport on Non-uniform Grids. Journal of Scientific Computing  90(3) (2022): 1-32.

▪ Z.G. Liu, and X.L. Li*, A highly efficient and accurate exponential semi-implicit scalar auxiliary variable (ESI-SAV) approach for dissipative system. Journal of Computational Physics 447 (2021)110703.

 X.L. Li, and J. ShenError analysis of the SAV-MAC scheme for the Navier-Stokes equations. SIAM Journal on Numerical Analysis 58(5) (2020): 2465-2491.

▪ Z.G. Liu, and X.L. LiThe exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing. SIAM Journal on Scientific Computing 42(3) (2020): B630-B655.

  X.L. Li, and J. Shen, On a SAV-MAC Scheme for the Cahn-Hilliard-Navier-Stokes Phase Field Model and its Error Analysis for the Corresponding Cahn-Hilliard-Stokes Case. Mathematical Models and Methods in Applied Sciences  30(12)  (2020): 2263-2297.

▪ X.L. Li, and H.X. RuiSuperconvergence of a fully conservative finite difference method on nonuniform staggered grids for simulating wormhole propagation with the Darcy-Brinkman-Forchheimer framework. Journal of Fluid Mechanics 872 (2019): 438-471.

▪ X.L. Li, J. Shen, and H.X. Rui, Energy stability and convergence of SAV block-centered finite difference method for gradient flows. Mathematics of Computation 88(319) (2019): 2047-2068.

▪ X.L. Li, and H.X. RuiSuperconvergence of Characteristics Marker and Cell Scheme for the Navier-Stokes Equations on Nonuniform Grids. SIAM Journal on Numerical Analysis 56(3) (2018): 1313-1337.

▪ X.L. Li, and H.X. RuiBlock-Centered Finite Difference Method for Simulating Compressible Wormhole Propagation.  Journal of Scientific Computing 74(2) (2018): 1115-1145.

▪ H.X. Rui, and X.L. Li, Stability and Superconvergence of MAC Scheme for Stokes Equations on Non-uniform Grids. SIAM Journal on Numerical Analysis 55(3)(2017): 1135-1158.

▪ X.L. Li, and H.X. RuiA Two-grid Block-centered Finite Difference Method for the Nonlinear Time-fractional Parabolic Equation. Journal of Scientific Computing 72(2) (2017)863-891.

▪ Z.G. Liu, and X.L. Li*A Parallel CGS Block-centered Finite Difference Method for a Nonlinear Time-fractional Parabolic Equation. Computer Methods in Applied Mechanics and Engineering 308(2016)330-348.


 

  


 





科研成果
版权所有   ©山东大学 地址:中国山东省济南市山大南路27号 邮编:250100 
查号台:(86)-0531-88395114
值班电话:(86)-0531-88364731 建设维护:山东大学信息化工作办公室