论文成果
Classification of large-scale stellar spectra based on the non-linearly assembling learning machine
点击次数:
发表刊物:MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
关键字:methods; data analysis - methods; statistical - techniques; spectroscopic - astronomical data bases; miscellaneous - stars; fundamental parameters - stars; statistics
摘要:An important problem to be solved of traditional classification methods is they cannot deal with large-scale classification because of very high time complexity. In order to solve above problem, inspired by the thinking of collaborative management, the non-linearly assembling learning machine (NALM) is proposed and used in the large-scale stellar spectral classification. In NALM, the large-scale dataset is firstly divided into several subsets, and then the traditional classifiers such as support vector machine (SVM) runs on the subset, finally, the classification results on each subset are assembled and the overall classification decision is obtained. In comparative experiments, we investigate the performance of NALM in the stellar spectral subclasses classification compared with SVM. We apply SVM and NALM respectively to classify the four subclasses of K-type spectra, three subclasses of F-type spectra and three subclasses of G-type spectra from Sloan Digital Sky Survey (SDSS). The comparative experiment results show that the performance of NALM is much better than SVM in view of the classification accuracy and the computation time.
全部作者: Zhao Wenjuan,Song Lipeng
通讯作者:Liu Zhongbao
卷号:455
期号:4
页面范围:4289-4294
ISSN号:0035-8711
是否译文:
发表时间:2016-02-01

宋礼鹏

教授 博士生导师 硕士生导师

性别:男

出生日期: 1975-11-09

毕业院校: 中北大学

学历: 研究生(博士)毕业

学位: 博士生

在职信息: 在职

所在单位: 机电与信息工程学院

入职时间: 2020-07-15

办公地点: 知行南楼501A

联系方式: 13593150713

电子邮箱: slp880@sdu.edu.cn

曾获荣誉:

2016-11-01    山西省自然科学奖

版权所有   ©山东大学 地址:中国山东省济南市山大南路27号 邮编:250100 
查号台:(86)-0531-88395114
值班电话:(86)-0531-88364731 建设维护:山东大学信息化工作办公室   
访问量: 手机版 English 登录 山东大学

最后更新时间: ..