电子邮箱:wanghaosd@sdu.edu.cn
教育及工作经历:
研究员(山东大学,2021.09至今)
博士后(美国得克萨斯大学奥斯汀分校,2018.10-2021.08)
博士(美国杜克大学,2013.08-2018.09)
学士(山东大学,2009.09-2013.06)
研究方向:
生物大分子多尺度模拟,稀有事件模拟,科学机器学习。
个人主页(http://www.qitcs.qd.sdu.edu.cn/info/1034/1274.htm)
代表性论文:
1)X. Ji, R. Wang, H. Wang*, and W. Liu, On committor functions in Milestoning, J. Chem. Phys. 2023, 159, 244115.
2) R. Wang, H. Wang*, W. Liu, and R. Elber, Approximating first hitting point distribution in Milestoning for rare event kinetics, J. Chem. Theory Comput. 2023, 19, 19, 6816-6826.
3) Y. Chen, H. Li, B. Hou, A. Wu, W. Wu, C. Li*, H. Wang*, D. Chen,* and X. Wang*, NaYF4: Yb/Er@Mn3O4@GOX nanocomposite for upconversion fluorescence imaging and synergistic cascade cancer therapy by apoptosis and ferroptosis, Small, 2023, 20, 1, 2304438.
4) L. Ye, H. Wang*, Y. Zhang, Y. Xiao, and W. Liu*, Real-time time-dependent density functional theories with large time step and short simulation time, Comprehenseive Computational Chemistry (book chapter), 2023, Elsevier.
5) A. Cardenas, A. Hunter, H. Wang, and R. Elber*, ScMiles2: A script to conduct and analyze Milestoning trajectories for long time dynamcis, 2022, J. Chem. Theory Comput. 18, 11, 6952-6965.
6) L. Ye, H. Wang*, Y. Zhang, and W. Liu*, Self-adaptive real-time time-dependent density functional theory for core excitations, 2022, 157, 074106.
7) R. Elber*, A. Fathizadeh, P. Ma, and H. Wang, Modeling molecular kinetics with Milestoning, WIREs: Comput. Mol. Sci. 2021, 11, 4, e1512.
8) H. Wang and R. Elber*, Catalytic magnesium as a door stop for DNA sliding, J. Phys. Chem. B 2021, 125, 14, 3494-3500.
9) H. Wang and R. Elber*, Milestoning with wind: Exploring the impact of a biasing potential in exact calculation of kineitcs, J. Chem. Phys. 2020, 152, 224105.
10) H. Wang, N. Huang, T. Dangerfield, K. Johnson, J. Gao, and R. Elber*, Exploring the reaction mechanism of HIV reverse transcriptase with a nulceotide substrate, J. Phys. Chem. B 2020, 124, 21, 4270-4283.
11) H. Wang and W. Yang*, Toward building protein force feilds by residue-based systematic molecular fragmentation adn neural network, J. Chem. Theory Comput. 2019, 15, 2, 1409-1417.
12) H. Wang and W. Yang*, Force field for water based on neural network, J. Phys. Chem. Lett. 2018, 9, 12, 3232-3240.
13) H. Wang and W. Yang*, Determining polarizable force fields with electrostatic potentials from quantum mechanical linear response theory, J. Chem. Phys. 2016, 144, 224107.