HLDdm6CUTbeDq0vC97fit7e30xcZ70YvDD5xwKuZDQVUfzaNAKMKqdvWr9X4
王峻
Professor
Visit:
Personal Information
  • Name (Pinyin):
    Wang Jun
  • E-Mail:
  • Date of Employment:
    2020-06-12
  • School/Department:
    School of software, Joint SDU-NTU for Artificial Intelligence Research(C-FAIR)
  • Administrative Position:
    Professor
  • Education Level:
    With Certificate of Graduation for Doctorate Study
  • Business Address:
    1500 ShunHua Road, High Tech Industrial Development Zone, Jinan, China 250101
  • Gender:
    Female
  • Contact Information:
  • Degree:
    Doctoral Degree in Engineering
  • Status:
    Employed
  • Alma Mater:
    Harbin Institute of Technology
  • Supervisor of Master's Candidates
  • Supervisor of Doctorate Candidates
Discipline:
Other Majors of Software Engineering;
Honor:

2023    山东计算机学会自然科学一等奖;
2019    重庆市科技进步三等奖;
2020    重庆市自然科学三等奖;
Biography

Professor, ACM/IEEE Member, CCF Senior Member

Expertise: 

Bioinformatics (Biomarker&Genetic interaction identification, Genetic association analysis on multi-omics)

Computational Systems Biology (Pathway discovery and analysis, Biological network construction and analysis)

Artificial Intelligence for Science (Causality learning&Clustering&Network modeling and analysis for diseases analysis and plant breeding)


Selected Papers:

Full list

Journal Paper:

[1]. Jiaxuan Liang, Jun Wang*, Guoxian Yu, Carlotta Domeniconi, Xiangliang Zhang, Maozu Guo. Gradient-based Local Causal Structure Learning. IEEE Transactions on Cybernetics (CCF B, SCI, IF=19.118) ,  2024, 54(1): 486-495.

[2]. Jun Wang, Xing Wang, Guoxian Yu*, Carlotta Domeniconi, Zhiwen Yu, Zili Zhang. Discovering Multiple Co-Clusterings with Matrix Factorization, IEEE Transactions on Cybernetics (CCF B,SCI, IF=19.118), 2021, 51(7): 3576-3587.

[3]. Guoxian Yu, Yuehui Wang, Jun Wang*, Carlotta Domeniconi, Maozu Guo, Xiangliang Zhang. Attributed Heterogeneous Network Fusion via Collaborative Matrix Tri-factorization, Information Fusion (CCF B,SCI, IF=18.6), 2020, 63: 153-165.

[4]. Yunfeng Zhao, Guoxian Yu, Jun Wang*, Carlotta Domeniconi, Maozu Guo, Xiangliang Zhang, Lizhen Cui. Personalized Federated Few-Shot Learning. IEEE Transactions on Neural Networks and Learning Systems (CCF B, SCIIF=14.255) , 2024, 35(2): 2534-2544.

[5]. Guoxian Yu, Yuying Xing+, Jun Wang*, Carlotta Domeniconi, Xiangliang Zhang. Multi-view Multi-instance Multi-label Active Learning. IEEE Transactions on Neural Networks and Learning Systems (CCF B, SCIIF=14.255), 2022, 33(9): 4311-4321.

[6]. Guoxian Yu, Xuanwu Liu, Jun Wang*, Carlotta Domeniconi, Xiangliang Zhang. Flexible Cross-Modal Hashing, IEEE Transactions on Neural Networks and Learning Systems (CCF B, SCIIF=14.255), 2022, 33(1): 304-314. 

[7]. Guoxian Yu, Jinzheng Tu, Jun Wang*, Carlotta Domeniconi, Xiangliang Zhang. Active Multi-Label Crowd Consensus, IEEE Transactions on Neural Networks and Learning Systems (CCF B, SCIIF=14.255), 2021, 32(4): 1448-1459.

[8]. Jiaxuan Liang, Jun Wang*, Guoxian Yu, Wei Guo, Carlotta Domeniconi, Maozu Guo. Directed Acyclic Graph Learning on Attributed Heterogeneous Network. IEEE Transactions on Knowledge and Data Engineering (CCF A, SCI, IF=9.235), 2023,35(9): 10845-10856.

[9]. Guoxian Yu, Xia Chen, Carlotta Domeniconi, Jun Wang*, Zhao Li, Zili Zhang, Xiangliang Zhang. CMAL: Cost-effective Multi-label Active Learning by Querying Subexamples, IEEE Transactions on Knowledge and Data Engineering (CCF A, SCI, IF=9.235), 2022, 34(5): 2091-2105.

[10].  Haojiang Tan, Maozu Guo, Jian Chen, Jun Wang*, Guoxian Yu*. HetFCM: Functional co-module discovery by heterogeneous network co-clustering. Nucleic Acids Research (SCI, IF=14.9) , 2024, 52, e62.

[11]. Guoxian Yu, Liangrui Ren, Jun Wang*, Carlotta Domeniconi, Xiangliang Zhang. Multiple Clusterings: Recent Advances and Perspectives. Computer Science Review, (SCI, IF=12.9),  2024, 52: 100621.

[12]. Liangrui Ren, Jun Wang*, Zhao Li, Qingzhong Li, Guoxian Yu. scMCs: a framework for single cell multi-omics data integration and multiple clusterings. Bioinformatics (CCF B, SCI, IF=6.931), 2023, 39(4): btad133.

[13]. Xingze Wang, Guoxian Yu*, Jun Wang*, Azlan Mohd Zain, and Wei Guo. Lung Cancer Subtype Diagnosis using Weakly-paired Multi-omics Data. Bioinformatics (CCF B, SCI, IF=6.931), 2022, 38(22):5092-5099. 

[14]. Guoxian Yu, Keyao Wang, Carlotta Domeniconi, Maozu Guo*, Jun Wang*. Isoform function prediction based on bi-random walks on a heterogeneous network, Bioinformatics (CCF B, SCI, IF=6.931), 2020, 36(1): 303-310.

[15]. Jun Wang, Xi Chen, Zhengtian Wu, Maozu Guo and Guoxian Yu*. Cooperative driver pathways discovery by multiplex network embedding. Briefings in Bioinformatics (CCF B, SCI, IF=13.994), 2023, 24(3): bbad112.

[16]. Zimo Huang, Jun Wang*, Xudong Lu, Azlan Mohd Zain, Guoxian Yu. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial n1etwork. Briefings in Bioinformatics (CCF B, IF=13.994), 2023, bbad040.

[17]. Zimo Huang, Jun Wang*, Zhongmin Yan, Maozu Guo. Differentially Expressed Genes prediction by multiple self-attention on epigenetics data. Briefings in Bioinformatics, (CCF B, SCI, IF=13.994), 2022, 23(4): bbac117.

[18]. Xin Wang, Xia Cao, Yuantao Feng, Maozu Guo, Guoxian Yu, Jun Wang*. ELSSI: parallel SNP-SNP interactions detection by ensemble multi-type detectors. Briefings in Bioinformatics (CCF B, SCI, IF=13.994), 2022, 23(4): bbac213. 

[19]. Jun Wang, Ziying Yang, Carlotta Domeniconi, Xiangliang Zhang, Guoxian Yu*. Cooperative driver pathway discovery via fusion of multi-relational data of genes, miRNAs, and pathways, Briefings in Bioinformatics (CCF B, SCI, IF=13.994), 2021, 22(2): 1984-1999.

[20]. Zimo Huang, Jun Wang*, Zhongmin Yan, Lin Wan, Maozu Guo. Differential gene expression prediction by ensemble deep networks on Histone Modification data. IEEE/ACM Transactions on Computational Biology and Bioinformatics (CCF B, SCI, IF=4.5), 2023, 20(1): 340-351. 

[21]. Jun Wang*, Huiling Zhang, Wei Ren, Maozu Guo, Guoxian Yu. EpiMC: Detecting Epistatic Interactions using Multiple Clusterings. IEEE/ACM Transactions on Computational Biology and Bioinformatics (CCF B, SCI, IF=4.5), 2022, 19(1): 243-254. 

[22]. Jun Wang, Long Zhang, An Zeng, Dawen Xia, Jiantao Yu, Guoxian Yu*. DeepIII: Predicting isoform-isoform interactions by deep neural networks and data fusion, IEEE/ACM Transactions on Computational Biology and Bioinformatics (CCF B, SCI, IF=4.5), 2022, 19(4): 2177-2187.

[23]. Guoxian Yu, Qiuyue Huang+, Xiangliang Zhang, Maozu Guo*, Jun Wang*. Tissue Specificity based Isoform Function Prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics (CCF B, SCI, IF=4.5), 2022, 19(5): 3048-3059.

[24]. Guoxian Yu, Yeqian Yang+, Yangyang Yan+, Maozu Guo, Xiangliang Zhang, Jun Wang*. DeepIDA: predicting isoform-disease associations by data fusion and deep neural networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (CCF B, SCI, IF=4.5), 2022, 19(4): 2166-2176.

[25]. Ziying Yang, Guoxian Yu, Maozu Guo, Jiantao Yu, Xiangliang Zhang, Jun Wang*. CDPath: Cooperative driver pathways discovery using integer linear programming and Markov clustering, IEEE/ACM Transactions on Computational Biology and Bioinformatics (CCF B, SCI, IF=4.5), 2021, 18(4): 1439-1450.

[26]. Guoxian Yu, Keyao Wang, Guangyuan Fu, Maozu Guo, Jun Wang*. NMFGO: Gene function prediction via nonnegative matrix factorization with Gene Ontology, IEEE/ACM Transactions on Computational Biology and Bioinformatics (CCF B, SCI, IF=4.5), 2020, 36(1): 303-310.

[27]. Lin Jiang, Guoxian Yu, Maozu Guo*, Jun Wang*. Feature selection with missing labels based on label compression and local feature correlation, Neurocomputing (CCF C, SCI, IF=6), 2020, 395: 95-106.

[28]. Long Zhang, Guoxian Yu, Dawen Xia, Jun Wang*. Protein-Protein Interactions Prediction based on Ensemble Deep Neural Networks, Neurocomputing (CCF C, SCI, IF=6), 2019, 324: 10-19.

[29]. Qiaoyu Tan, Yanming Yu, Guoxian Yu, Jun Wang*. Semi-supervised multi-label classification using incomplete label information, Neurocomputing (CCF C, SCI, IF=6), 2017, 260: 192-202.

[30]. Jun Wang, Guangjun Yao, Guoxian Yu*. Semi-supervised classification by discriminative regularization, Applied Soft Computing (CCF B, SCI, IF=8.7), 2017, 58: 245-255.

[31]. Xia Cao, Guoxian Yu, Wei Ren, Maozu Guo, Jun Wang*. DualWMDR: detecting epistatic interaction with dual screening and multifactor dimensionality reduction, Human Mutation (SCI, IF=3.9), 2020, 41(3): 719-734.

[32]. Long Zhang, Guoxian Yu, Maozu Guo, Jun Wang*. Predicting protein-protein interactions using high-quality non-interacting pairs, BMC Bioinformatics (CCF C, SCI, IF=3), 2018, 19(S19): 525.



Conference Paper:


[1]. Dezhi Yang, Xintong He, Jun Wang*, Guoxian Yu, Carlotta Domeniconi, Jinglin Zhang. Federated Causality Learning with Explainable Adaptive Optimization. 38th AAAI Conference on Artificial Intelligence (AAAI) (CCF A) , 2024, pp. 16308-16315

[2]. Zijun Gao, Jun Wang*, Guoxian Yu, Zhongmin Yan, Carlotta Domeniconi, Jinglin Zhang. Long-tail Cross Modal Hashing. 37th AAAI Conference on Artificial Intelligence (AAAI) (CCF A) , 2023.

[3]. Dezhi Yang, Guoxian Yu, Jun Wang*, Zhengtian Wu, Maozu Guo. Reinforcement Causal Structure Learning on Order Graph. 37th AAAI Conference on Artificial Intelligence (AAAI) (CCF A) , 2023.

[4]. Shaowei Wei, Jun Wang*, Guoxian Yu, Carlotta Domeniconi, Xiangliang Zhang. Multi-View Multiple Clusterings using Deep Matrix Factorization, 34rd AAAI Conference on Artificial Intelligence (AAAI) (CCF A), 2020, pp. 6348-6355.

[5]. Xing Wang, Jun Wang*, Carlotta Domeniconi, Guoxian Yu, Guoqiang Xiao, Maozu Guo. Multiple Independent Subspace Clusterings, 33rd AAAI Conference on Artificial Intelligence (AAAI) (CCF A), 2019, pp. 5353-5360.

[6]. Shaowei Wei, Jun Wang*, Guoxian Yu, Carlotta Domeniconi, and Xiangliang Zhang. Deep Incomplete Multi-View Multiple Clusterings, IEEE International Conference on Data Mining (ICDM) (CCF B), 2020, pp. 651-660.

[7]. Xing Wang, Guoxian Yu, Carlotta Domeniconi, Jun Wang*, Zhiwen Yu, and Zili Zhang. Multiple Co-Clusterings, International Conference on Data Mining (ICDM) (CCF B), 2018, pp. 1308-1313.

[8]. Dezhi Yang, Guoxian Yu, Jun Wang*, Zhongmin Yan, Maozu Guo. Causal Discovery by Graph Attention Reinforcement Learning. SIAM International Conference on Data Mining (SDM) (CCF B) , 2023.

[9]. Shixin Yao, Guoxian Yu, Xing Wang, Jun Wang*, Carlotta Domeniconi, Maozu Guo. Discovering Multiple Co-Clusterings in Subspaces, SIAM Conference on Data Mining (SDM) (CCF B), 2019, pp. 423-431.

[10]. Haojiang Tan, Jun Wang*, Guoxian Yu, Wei Guo, and Maozu Guo. Phenotype Prediction by Heterogeneous Molecular Network Embedding. IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (CCF B) , 2022. 

[11]. Xin Wang, Jun Wang*, Guoxian Yu, Beibei Xin, and Maozu Guo. Maize Epistasis Detection by Multi-class Quantitative Multifactor Dimensionality Reduction. IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (CCF B) , 2021, pp. 314-319. 

[12]. Haojiang Tan, Sichao Qiu, Jun Wang*, Guoxian Yu, Wei Guo, and Maozu Guo. Genome-Phenome Association Prediction by Deep Factorizing Heterogeneous Molecular Network. IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (CCF B) , 2021, pp. 211-216. 

[13]. Huiling Zhang, Jun Wang*, Guoxian Yu, Lizhen Cui, Maozu Guo. Epistasis Detection using Heterogeneous Bio-molecular Network, IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (CCF B), 2020, pp. 194-199.

[14]. Sufang Li, Jun Wang*, Maozu Guo, and Xiangliang Zhang. Cooperative Driver Pathway Discovery byHierarchical Clustering and Link Prediction., IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (CCF B), 2020, pp. 194-199.

[15]. Ziying Yang, Guoxian Yu, Jiantao Yu, Maozu Guo, Jun Wang*. CoPath: discovering cooperative driver pathways using greedy mutual exclusivity and bi-clustering, IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (CCF B), 2019, pp. 165-170.

[16].Guoxian Yu, Yuehui Wang, Jun Wang*, Guangyuan Fu, Maozu Guo, and Carlotta Domeniconi. Weighted matrix factorization based data fusion for predicting lncRNA-disease associations, IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (CCF B), 2018, pp. 572-577.


Fundings:

Ongoing:

2020-08, Natural Science Fund of China

2022-09, Natural Science Fund of China

Finished:

2018-08, Natural Science Fund of China

2011-08, Natural Science Fund of China

2016-06, Natural Science Fund of Chongqing

2019-11, CAAI-Huawei MindSpore Open Fund


Professional Services:

Associate Editor: 

Journal of Beijing University of Civil Engineering and Architecture

Computational Biomedicine

Member:

CCF Bioinformatics, CCF Artificial Intelligence and Pattern Recognition

CAAI Bioinformatics, CAAI Machine Learning

IEEE, China Computer Federation(CCF)

SPC/PC

IJCAI19-24, AAAI19-24, PAKDD19-24, BIBM 19-24, ISBRA16-20,  etc.

Reviewer

Nature Communication, Genome Biology, Nucleic Acids Research,

Bioinformatics, Briefings in Bioinformatics, Current Bioinformatics, IEEE TNNLS,

TKDE, TCYB, TII, Information Fusion, Neural Networks, Neurocomputing, etc.





Education
  • 2006-09 — 2010-07
    Harbin Institute of Technology
    Computer Technology
    Doctor
  • 2004-09 — 2006-07
    Harbin Institute of Technology
    Computer Technology
    Master's Degree
  • 2000-09 — 2004-07
    Harbin Institute of Technology
    Computer Technology
    Bachelor
Publication
Paper Publications

1. 余国先. Multiview Multi-Instance Multilabel Active Learning .IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS.2022

2. 苏聪. Multi-dimensional Causality Fairness Learning .IEEE Transactions on Knowledge and Data Engineering.2025,37 (7):4166

3. 康祥平. Incentive-Boosted Federated Crowdsourcing(CCF A) .37th AAAI Conference on Artificial Intelligence, AAAI 2023.2023

4. 邢钟毓. 解释纠偏框架:一种基于标准解释的归因分数生成方法 .Jisuanji Xuebao/Chinese Journal of Computers.2025

5. 桂孝强. Sophon: Byzantine-Robust Federated Learning Via Dual Trust Mechanism .IEEE Transactions on Dependable and Secure Computing.2025

6. 许康. ChromInSight: Revealing DNA Double-Strand Breaks Through Chromatin Structural Insights With an Interpretable Graph Neural Network Framework .advanced science.2025

7. 苏聪. Multi-dimensional Causality Fairness Learning .IEEE Transactions on Knowledge and Data Engineering.2025

8. 马龙飞. AN-IHP: Incompatible Herb Pairs Prediction by Attention Networks .IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS.2025,22 (1):124-135

9. 苏聪. Multi-Dimensional Fair Federated Learning .38th AAAI Conference on Artificial Intelligence, AAAI 2024.2024,38 (13):15083-15090

10. 赵云峰. Personalized federated few-shot node classification .SCIENCE CHINA-Information Sciences.2025,68 (1)

11. 卜咏祺. Cancer molecular subtyping using limited multi-omics data with missingness .PLOS COMPUTATIONAL BIOLOGY.2024,20 (12)

12. 朱永政. Herb-Target Interaction Prediction by Multi-instance Learning .IEEE Transactions on Artificial Intelligence.2024

13. 王昕. GWASTool: A web pipeline for detecting SNP-phenotype associations .Fundamental Research.2024

14. 罗汉文. Emergence-Inspired Multi-Granularity Causal Learning .39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025.2025,39 (18):19198-19206

15. 谭好江. 基于个性化随机游走的基因-表型关联分析 .Tien Tzu Hsueh Pao/Acta Electronica Sinica.2024 :1-14

16. 桂孝强. Interaction Privacy Vulnerability in Federated Recommendation and Lossless Countermeasure .TOIS.2025,43 (5):134

17. 王梦. Few-shot partial multi-label learning with credible non-candidate label .Information Sciences.2025,719

18. 梁嘉旋. Multi-Granularity Causal Structure Learning .38th AAAI Conference on Artificial Intelligence, AAAI 2024.2024,38 (12):13727-13735

19. 梁嘉旋. Gradient-based Local Causal Structure Learning .IEEE Transactions on Cybernetics.2024,54 (1):486

20. 赵云峰. Personalized Federated Few-Shot Learning .IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS.2024,35 (2):2534

21. 苏聪. Multi-dimensional Fair Federated Learning .38th Annual AAAI Conference on Artificial Intelligence.2024

22. 杨德智. Federated Causality Learning with Explainable Adaptive Optimization .38th Annual AAAI Conference on Artificial Intelligence.2024

23. 谭好江. HetFCM: Functional co-module discovery by heterogeneous network co-clustering .Nucleic Acids Research.2024,52 (3)

24. 余国先. Multiple Clusterings: Recent Advances and Perspectives .Computer Science Review.2024 (100621)

25. 苏聪. Causality-based fair multiple decision by response functions .ACM Transactions on Knowledge Discovery from Data.2024,18 (3)

26. 康祥平. Semi-Asynchronous Online Federated Crowdsourcing(CCF A) .IEEE International Conference on Data Engineering.2024

27. 梁嘉旋. Directed Acyclic Graph Learning on Attributed Heterogeneous Network .IEEE Transactions on Knowledge and Data Engineering.2023,35 (10):10845

28. 黄子墨. Differential gene expression prediction by ensemble deep networks on Histone Modification data .IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS.2023,20 (1):340

29. 杨德智. Reinforcement Causal Structure Learning on Order Graph .37th AAAI Conference on Artificial Intelligence (AAAI).2023

30. 高子俊. Long-tail Cross Modal Hashing .37th AAAI Conference on Artificial Intelligence (AAAI).2023

31. 康祥平. Self-paced Annotations of Crowd Workers .Knowledge and Information Systems.2022,64 (00):3235

32. 任良瑞. A Diversified Attention Model for Interpretable Multiple Clusterings .TKDE.2022 (1)

33. 黄子墨. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network .Briefings in Bioinformatics.2023,24 (2):1

34. 杨德智. Causal Discovery by Graph Attention Reinforcement Learning .SIAM International Conference on Data Mining (SDM).2023

35. 任良瑞. scMCs: a framework for single cell multi-omics data integration and multiple clusterings .Bioinformatics.2023,39 (4):1

36. 邱思超. Meta multi-instance multi-label learning by heterogeneous network fusion .Information Fusion.2023,94 (00):272

37. 苏聪. A review of causality-based fairness machine learning .Intelligence and Robotics.2022,2 (3):244

38. 王星泽. Lung Cancer Subtype Diagnosis using Weakly-paired Multi-omics Data .Bioinformatics.2022,38 (22):5092

39. 梁嘉旋. Directed Acyclic Graph Learning on Attributed Heterogeneous Network .IEEE Transactions on Knowledge and Data Engineering (TKDE).2023,0 (00):1

40. 王峻. Cooperative driver pathways discovery by multiplex network embedding .Briefings in Bioinformatics.2023,0 (0):1

41. 梁嘉旋. Gradient-based Local Causal Structure Learning .IEEE Transactions on Cybernetics.2023,00 (00):1

42. 刘玄武. Weakly Supervised Cross-Modal Hashing .IEEE TRANSACTIONS ON BIG DATA.2019,8 (2):552

43. 谭好江. Phenotype Prediction by Heterogeneous Molecular Network Embedding .2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).2022

44. 王峻. 基于单细胞数据的癌症协同驱动模块识别方法 .中国科学-信息科学.2022 (00)

45. 王峻. Differential gene expression prediction by ensemble deep networks on Histone Modification data .IEEE/ACM transactions on computational biology and bioinformatics.2021,1 (1):1

46. 王昕. ELSSI: parallel SNP-SNP interactions detection by ensemble multi-type detectors. .Briefings in Bioinformatics.2022,23 (4)

47. 赵云峰. Personalized Federated Few-Shot Learning .IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS.2022

48. 谭好江. Weighted deep factorizing heterogeneous molecular network for genome-phenome association prediction .METHODS.2022,205 :18-28

49. 王峻. EpiMC: Detecting Epistatic Interactions using Multiple Clusterings .IEEE/ACM Transactions on Computational Biology and Bioinformatics.2021,19 (1):243

50. 黄子墨. Differentially expressed genes prediction by multiple self-attention on epigenetics data .Briefings in Bioinformatics.2022

51. 余国先. Crowdsourcing with Self-paced Workers .IEEE International Conference on Data Mining.2021

52. 余国先. Tissue Specificity based Isoform Function Prediction .IEEE/ACM Transactions on Computational Biology and Bioinformatics.2021 (99):1

53. 王峻. Cooperative driver pathway discovery via fusion of multi-relational data of genes, miRNAs and pathways .Briefings in Bioinformatics.2021,22 (2):1984

54. 王昕. Maize Epistasis Detection by Multi-class Quantitative Multifactor Dimensionality Reduction .IEEE International Conference on Bioinformatics and Biomedicine 2021.2021

55. 谭好江. Genome-Phenome Association Prediction by Deep Factorizing Heterogeneous Molecular Network .IEEE International Conference on Bioinformatics and Biomedicine 2021.2021

56. 余国先. EpiHNet: Detecting epistasis by heterogeneous molecule network .METHODS.2021 (00)

57. 王峻. CDPath: Cooperative Driver Pathways Discovery Using Integer Linear Programming and Markov Clustering .IEEE/ACM Transactions on Computational Biology and Bioinformatics.2019 (16):1

58. 余国先. CMAL: Cost-effective Multi-label Active Learning by Querying Subexamples .IEEE Transactions on Knowledge and Data Engineering.2022,34 (5):2091

59. 余国先. Flexible Cross-Modal Hashing .IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS.2022,33 (1):304

60. 余国先. Partial Multi-Label Learning using Label Compression .INTERNATIONAL CONFERENCE ON DATA MINING, RIO JANEI.2020 (20):1

61. 余国先. CrowdWT: Crowdsourcing via Joint Modeling of Workers and Tasks .ACM Transactions on Knowledge and Data Engineering.2020,15 (1):1

62. 余国先. Partial Multi-label Learning with Label and Feature Collaboration .DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PROCEEDINGS.2020 (25):621

63. 余国先. Attributed heterogeneous network fusion via collaborative matrix tri-factorization .Information Fusion.2020,63 :153

64. 余国先. Co-clustering Ensembles based on Multiple Relevance Measures .IEEE Transactions on Knowledge and Data Engineering (TKDE).2021 (33):1

65. 王峻. Deep Incomplete Multi-View Multiple Clusterings .IEEE International Conference on Data Mining.2020

66. 余国先. Cross-Species Protein Function Prediction with Asynchronous-Random Walk .IEEE/ACM Transactions on Computational Biology and Bioinformatics.2019 (21):1

67. 王峻. Epistasis Detection using Heterogeneous Bio-molecular Network .IEEE International Conference on Bioinformatics and Biomedicine.2020

68. 王峻. Cooperative Driver Pathway Discovery by Hierarchical Clustering and Link Prediction .IEEE International Conference on Bioinformatics and Biomedicine.2020

69. 王峻. Cooperative driver pathway discovery via fusion of multi-relational data of genes, miRNAs and pathways .Briefings in Bioinformatics.2020 (00):1

70. 余国先. Multiview Multi-instance Multilabel Active Learning .IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS.2022,33 (9):4311

71. 王峻. Imbalance deep multi-instance learning for predicting isoform-isoform interactions .INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS.2021,36 (6):2797

72. 余国先. DeepIDA: predicting isoform-disease associations by data fusion and deep neural networks .IEEE/ACM Transactions on Computational Biology and Bioinformatics.2021 (1):1

73. 王峻. DeepIII: Predicting isoform-isoform interactions by deep neural networks and data fusion .IEEE/ACM Transactions on Computational Biology and Bioinformatics.2021 (1):1

74. 余国先. Imbalance deep multi-instance learning for predicting isoform-isoform interactions .INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS.2021,36 (6):2797

Research Group
Name of Research Group:
Intelligent data engineering and Analytics (idea) laboratory
Description of Research Group:
www.sdu-idea.cn
Copyright All Rights Reserved Shandong University Address: No. 27 Shanda South Road, Jinan City, Shandong Province, China: 250100
Information desk: (86) - 0531-88395114
On Duty Telephone: (86) - 0531-88364731 Construction and Maintenance: Information Work Office of Shandong University