王鑫煜

个人信息Personal Information

教授 博士生导师 硕士生导师

性别:男

毕业院校:香港大学

学历:研究生(博士后)

学位:博士生

在职信息:在职

所在单位:热科学与工程研究中心、高等技术研究院、深圳研究院

入职时间:2017-12-18

学科:工程热物理

办公地点:山东大学千佛山校区教学1号楼3楼

联系方式:0531-88392009-320


电子邮箱:xyw@email.sdu.edu.cn

扫描关注

个人简介Personal Profile

王鑫煜,男,19881月生,中共党员,博士,教授,博士生导师,山东大学高等技术研究院(热科学中心)党支部书记,山东大学齐鲁青年学者山东省高等学校青年创新团队(电子器件先进热管理创新团队)负责人,中国工程热物理学会传热传质分会青年工作委员会委员,中国复合材料学会导热复合材料专业委员会委员,上海市热物性大数据专业技术服务平台委员会委员,入选“山东大学青年学者未来计划”20069-20178月先后于山东大学、香港大学获得学士、硕士、博士学位;20179-201710月于香港大学从事博士后研究。201712-20228担任山东大学副教授;20229月破格晋升为山东大学教授。主要从事微纳尺度传热及能量转换、电子器件热管理、热功能材料设计与制备、储能电池热管理、低碳能源与节能技术、多物理场耦合流动与传热等领域的研究。主持国家自然科学基金、GF项目、山东省重点研发计划、山东省自然科学基金等十余项国家级、省部级纵向项目以及企业横向项目;以第一作者/通讯作者在国内外重要学术期刊发表SCI论文50余篇,其中7篇论文入选“封面论文”,1篇论文入选“高被引论文”。担任国际期刊Carbon Neutrality青年编委、EnergiesCatalysts客座编辑。

个人主页https://faculty.sdu.edu.cn/wangxinyu

办公电话0531-88392009-320

Email: xyw@email.sdu.edu.cn  xyw@sdu.edu.cn

本课题组每年招生博士研究生1名,硕士研究生3~5名,热忱欢迎广大考生报考!目前课题组已毕业研究生均取得了理想的工作/学习去向,毕业后工作的博士/硕士研究生目前在山东省政府、扬州大学、华为公司(华为海思、华为2012实验室)等事业单位、高校和知名企业工作,约50%的硕士研究生毕业后被推荐前往境外知名高校(如:日本东京大学、日本东北大学、香港大学、香港科技大学等)攻读博士学位。

研究方向

★ 微纳尺度传热及能量转换

★ 电子器件热管理

★ 热功能材料设计与制备

★ 储能电池热管理

★ 低碳能源与节能技术

★ 多物理场耦合流动与传热

荣誉称号

[1]   山东省高等学校青年创新团队负责人,2023

[2]   英国物理学会高被引论文奖,2022

[3]   美国化学学会杰出审稿人奖,2022

[4]   山东省优秀硕士学位论文指导教师,2022

[5]   山东大学优秀硕士学位论文指导奖,2022

[6]   山东省优秀硕士学位论文指导教师,2021

[7]   山东大学优秀硕士学位论文指导奖,2021

[8]   英国物理学会杰出审稿人奖,2021。(每年仅遴选1位)

[9]   山东大学研究生优秀学术成果奖指导教师,2020

[10]   第十二届全国大学生节能减排社会实践与科技竞赛全国二等奖指导教师,2019

[11]   中国安装协会科学技术进步二等奖,2019

[12]   第六届山东省大学生科技创新大赛银牌指导教师,2019

[13]   山东大学创新之星,2019

[14]   山东大学优秀本科毕业论文(设计)指导奖,2019

[15]   山东大学优秀本科毕业论文(设计)指导奖,2018

纵向项目

[1]   国家自然科学基金,面向氧化镓微波大功率器件的新一代高效热管理系统关键基础问题研究,2021.01-2024.12,主持。

[2]   国家自然科学基金,自组装单分子层调控有机半导体和金属电极界面热输运性能的机理研究,2019.01-2021.12,主持。(结题获评“优秀

[3]   GF项目,******分析,2020.09-2021.08,主持。

[4]   山东省高等学校青创科技支持计划,柔性有机器件跨尺度协同散热基础问题研究,2024.01-2026.12,主持。

[5]   山东省重点研发计划,基于TSV3D集成电路芯片和系统自驱动协同散热技术研发,2019.01-2021.12,主持。

[6]   山东省重点研发计划,空预器漏风率变化对锅炉效率的影响研究,2019.12-2021.12,主持。

[7]   山东省自然科学基金,有机半导体与金属界面强化传热机理研究及其对有机半导体器件传热的影响,2018.03-2020.12,主持。

[8]   广东省自然科学基金,基于机器学习的有机小分子半导体复合结构导热机理预测与研究,2019.10-2023.09,主持。

[9]   深圳市自然科学基金,有机半导体-二维材料异质结构界面热输运机理及调控研究,2022.10-2025.10,主持。

[10]   深圳市优秀科技创新人才培养项目,新型有机半导体器件跨尺度协同散热研究,2021.04-2023.04主持

[11]   中国博士后科学基金,烷基链对有机半导体纳米尺度导热特性的影响机理,2018.11-2020.10,主持。

[12]   山东省博士后创新项目,有机小分子半导体复合结构导热机理研究及机器学习预测,2019.11-2021.10,主持。

[13]   山东大学齐鲁青年学者人才项目,2024.01-2028.12,主持。

[14]   山东大学青年学者未来计划,微纳尺度传热传质机理研究,2019.08-2024.07,主持。

[15]   中央高校基本科研业务费项目,有机电子器件微纳尺度热输运性能研究,2018.01-2020.12,主持。

教研项目

[1]   山东大学研究生教育教学改革研究项目,基于交叉融合和国际视野目标导向的动力工程及工程热物理研究生培养模式探索,2021.04-2023.04,主持。

授权发明专利

[1]   一种基于相变材料和热管协同散热的电池模组热管理装置,专利号:ZL201811367380.7,发明人:王鑫煜、钟佳奇、程林、辛公明、任霄汉、钟佳毅、孙海逸,授权日:2024223日。

[2]   一种仿生结构柔性散热装置、方法及散热系统,专利号:ZL202110558079.X,发明人:王鑫煜、杨超、王明星、辛公明、张井志、王维韬,授权日:2022726日。

[3]   一种适用柔性器件散热的环路热管、工作方法及散热装置,专利号:ZL202110559592.0,发明人:王鑫煜、杨超、王明星、辛公明、张井志、王维韬,授权日:2022722日。

[4]   种金属-SAM-有机半导体复合结构及制备方法和电子器件中的应用,专利号:ZL202010285270.7,发明人:王鑫煜、樊弘昭,授权日:2022422日。

[5]   一种含超低温相变材料的超柔软凝胶微粒及其制备方法,专利号:ZL202010033097.1,发明人:马庆明、李瑞男、曹洁、王鑫煜、高阳、孙勇,授权日:20211119日。

[6]   一种自加热式电池模组快速充电外部预热装置,专利号:ZL202010054665.6,发明人:王鑫煜、钟佳奇、马庆明,授权日:2021511日。

[7]   一种自加热式电池模组快速充电内部预热装置,专利号:ZL202010048314.4,发明人:钟佳奇、王鑫煜、马庆明,授权日:2021413日。

[8]   一种仿生蒸腾冷却自适应散热器,专利号:ZL201811392089.5,发明人:王鑫煜、樊弘昭、刘昱等,授权日:2019917日。

[9]   一种应用于3D集成电路的散热装置,专利号:ZL201811391672.4,发明人:王鑫煜、辛公明、樊弘昭等,授权日:2019712日。

发表论文

2024

[1]   Kaifeng Chen, Weitao Wang, Zhihao Ye, Yabo Dong, Linpu Wan, Zijian Zhang, Cheng Lin, Liwu Liu*, Jinsong Leng, Xinyu Wang*, Wei Yang, Shaoxing Qu*, Zongrong Wang*. In situ graft-on fibrous composites and nanostructure interlocking facilitate highly stable wearable sensors for SIDS prevention. Advanced Fiber Materials, 2024, 6(3), 825-840.

[2]   Xue Cheng, Guangwu Zhang, Dan Han, Ziqing Ji, Gongming Xin*, Shengying Yue*Xinyu Wang*. Probing the origin of abnormally strong electron-phonon interaction in phonon transport of semiconductor C3B monolayer. Applied Surface Science, 2024, 663, 160153.

[3]   Yukai Han, Chao Yang, Xue Cheng, Wenyang Ding*, Dan Han*Xinyu Wang*. Investigation of the effect of four-phonon scattering on thermal transport in two-dimensional group-IV materials. ACS Applied Energy Materials, 2024, 7(2), 649-656.

[4]   Chao Yang, Ang Wang, Haiqing Qi, Weitao Wang, Wanxiang Ji*Xinyu Wang*. Investigation of phonon thermal transport in monolayer and bilayer 2D organic C60 networks. International Journal of Heat and Mass Transfer, 2024, 222, 125197.

[5]   Jiahao Hu, Chaowei Chen, Xinyu Wang*, Gongming Xin*, Man Wang*. Improvement of flow and heat transfer performance of microchannels with different ribs using topology optimizationApplied Thermal Engineering, 2024, 244, 122672.

[6]   Xinjiao Cui, Chao Yang, Qiangqiang Sun*, Wenqiang Zhang*Xinyu Wang*. Investigating shear stress of ice accumulated on surfaces with various roughnesses: Effects of a quasi-water layerLangmuir, 2024, 40(28), 14214-14223.

[7]   Guangzheng Zhang, Shilin Dong, Xinyu Wang, Gongming Xin*. Thermal transport of graphene-C3B superlattices and van der Waals heterostructures: a molecular dynamics study. Nanotechnology, 2024, 35(5), 055401.

2023

[1]   Chao Yang, Weitao Wang, Boyu Peng, Wanxiang Ji, Xinyu Wang*. Insight into the effect of side chains on thermal transport of organic semiconductors. Nanoscale, 2023, 15(47), 19099-19109. (入选“封面论文”)

[2]   Guangwu Zhang, Shilin Dong, Chao Yang, Dan Han, Gongming Xin, Xinyu Wang*. Revisiting four-phonon scattering in WS2 monolayer with machine learning potential. Applied Physics Letters, 2023, 123(5), 052205.

[3]   Weitao Wang, Chao Yang, Shiyun Xiong, Xinyu Wang*. Weak interaction engineering on thermal transport in metal-organic semiconductor nanocomposites with self-assembled monolayers. International Journal of Heat and Mass Transfer, 2023, 213, 124326.

[4]   Chunlian Liu, Xingjie Ren, Xinyu Wang*, Mu Du*, Jin Huan Pu*. Enhanced droplet repellency and jumping condensation on superhydrophobic lubricant-infused surfaces at high subcooling temperatures. Applied Physics A, 2023, 129(12), 856.

[5]   Xiyu Yu, Maoquan Huang, Xinyu Wang, G.H. Tang, Mu Du*. Plasmon silica aerogel for improving high-temperature solar thermal conversion. Applied Thermal Engineering, 2023, 219, 119419.

[6]   Xiyu Yu, Xingjie Ren, Xinyu Wang, G.H. Tang, Mu Du*. A high thermal stability core–shell aerogel structure for high-temperature solar thermal conversion. Composites Communications2023, 37, 101440.

[7]   Jingzhi Zhang, Jun An, Li Lei, Xinyu Wang, Gongming Xin, Zan Wu. Numerical investigation of heat transfer and pressure drop characteristics of flow boiling in manifold microchannels with a simple multiphase model. International Journal of Heat and Mass Transfer, 2023, 211, 124197.

[8]   Jingzhi Zhang, Jun An, Gongming Xin, Xinyu Wang, Jinyin Huang, Lei Li, Zan Wu. Thermal and hydrodynamic characteristics of single-phase flow in manifold microchannels with countercurrent regions. International Journal of Heat and Mass Transfer, 2023, 211, 124265.

[9]   Jingzhi Zhang, Jun An, Gongming XinXinyu Wang, Qiang Zhou, Jinyin Huang, Zan Wu. Numerical investigation of novel manifold microchannel heat sinks with countercurrent regions. International Journal of Heat and Mass Transfer, 2023, 214, 124389.

[10]   Chunyu Gao, Xin Lan*, Zhiwei He, Gongming Xin, Xinyu Wang, Qian Xin. Temperature uniformity analysis and multi-objective optimization of a small-scale variable density alternating obliquely truncated microchannel. Thermal Science and Engineering Progress, 2023, 38, 101652.

[11]   Lijun Liu, Wenbin Zhao, Qingming Ma*, Yang Gao, Weijiang Wang, Xuan Zhang, Yunxia Dong, Tingting Zhang, Yan Liang, Shangcong Han, Jie Cao, Xinyu Wang, Wentao Sun, Haifeng Ma, Yong Sun. Functional nano-systems for transdermal drug delivery and skin therapy. Nanoscale Advances, 2023, 5(6), 1527-1558.

2022

[1]   Hongzhao Fan, Chao Yang, Xinyu Wang*. Tuning interfacial thermal conductance across metal-organic semiconductor interfaces by mixing self-assembled monolayers. ACS Applied Electronic Materials, 2022, 4(2), 718-728(入选“封面论文”)

[2]   Xingbo Dai, Man Wang, Jingzhi Zhang*, Gongming Xin*Xinyu Wang*. Vapor condensation on bioinspired hierarchical nanostructured surfaces with hybrid wettabilities. Langmuir, 2022, 38(36), 11099-11108. (入选“封面论文”)

[3]   Rui Yang, Dong Niu, Jin Huan Pu, G.H. Tang, Xinyu Wang*. Mu Du*. Passive all-day freshwater harvesting through a transparent radiative cooling film. Applied Energy, 2022, 325, 119801.

[4]   Weitao Wang, Chao Yang, Hongzhao Fan, Jingchao Zhang, Xinyu Wang*. Atomistic insights into dynamic growth of pentacene thin films on metal surfaces functionalized with self-assembled monolayers. Applied Surface Science, 2022, 579, 152203.

[5]   Dan Han, Man Wang, Xiaoheng Yang, Mu Du, Lin Cheng, Xinyu Wang*. Discovery of high thermoelectric performance of WS2-WSe2 nanoribbons with superlattice and Janus structures. Journal of Alloys and Compounds, 2022, 903, 163850.

[6]   Jingzhi Zhang*, Li Lei, Huiling Li, Gongming Xin*Xinyu Wang*. Experimental and numerical studies of liquid-liquid two-phase flows in microchannel with sudden expansion/contraction cavities. Chemical Engineering Journal, 2022, 433, 133820.

[7]   Li Lei, Yuting Zhao, Xinyu Wang*, Gongming Xin*, Jingzhi Zhang*. Experimental and numerical studies of liquid-liquid slug flows in micro channels with Y-junction inlets. Chemical Engineering Science, 2022, 252, 117289.

[8]   Xingbo Dai, Wenqiang Zhang, Jingzhi Zhang*, Gongming Xin*Xinyu Wang*. Numerical study of droplet impact on superhydrophobic vibrating surfaces with microstructures. Case Studies in Thermal Engineering, 2022, 30, 101732.

[9]   Xiaoheng Yang, Dan Han, Yukai Han, Wenqiang Zhang*, Xinyu Wang*, Man Wang*. Strain engineering on the thermoelectric performance of monolayer AlP3: a first-principles study. Physica E: Low-dimensional Systems and Nanostructures, 2022, 143, 115365.

[10]   Chuan-Yong Zhu, Zhi-Yang He, Mu Du, Liang Gong*Xinyu Wang*. Predicting the effective thermal conductivity of unfrozen soils with various water contents based on artificial neural network. Nanotechnology, 2022, 33(6), 065408.

[11]   Chaowei Chen, Xinyu Wang, Baoqiang Yuan, Wenjing Du, Gongming Xin*. Investigation of flow and heat transfer performance of the manifold microchannel with different manifold arrangements. Case Studies in Thermal Engineering, 2022, 30, 101732.

[12]   Chaowei Chen, Fei Li, Xinyu Wang, Jingzhi Zhang, Gongming Xin*. Improvement of flow and heat transfer performance of manifold microchannel with porous fins. Applied Thermal Engineering, 2022. 206, 118129.

[13]   Xiyu Yu, Maoquan Huang, Xinyu Wang, Qie Sun, G.H. Tang*, Mu Du*. Toward optical selectivity aerogels by plasmonic nanoparticles doping. Renewable Energy, 2022, 190, 741-751.

[14]   Rui Yang, Man Wang, Mu Du*, Xinyu Wang, G.H. Tang. Droplet effect on the infrared transmittance of radiative cooler for direct water condensation. Solar Energy Materials and Solar Cells, 2022, 238, 111615.

[15]   Shilin Dong, Bowen Yang, Qian Xin, Xin Lan, Xinyu Wang, Gongming Xin*. Interfacial thermal transport of graphene/β-Ga2O3 heterojunctions: a molecular dynamics study with a self-consistent interatomic potential. Physical Chemistry Chemical Physics, 2022, 24(21), 12837-12848. (入选“封面论文”)

2021

[1]   Dan Han, Xiaoheng Yang, Mu Du, Gongming Xin, Jingchao Zhang, Xinyu Wang*, Lin Cheng*. Improved thermoelectric properties of WS2-WSe2 phononic crystals: insights from first-principles calculations. Nanoscale, 2021, 13(15), 7176-7192. (入选“封面论文”)

[2]   Xiaoheng Yang, Dan Han, Hongzhao Fan, Man Wang, Mu Du*Xinyu Wang*. First-principles calculations of phonon behaviors in graphether: a comparative study with graphene. Physical Chemistry Chemical Physics, 2021, 23(1), 123-130. (入选“封面论文”)

[3]   Xinyu Wang*, Weitao Wang, Chao Yang, Dan Han, Hongzhao Fan, Jingchao Zhang*. Thermal transport in organic semiconductors. Journal of Applied Physics, 2021, 130(17), 170902. (综述论文)

[4]   Yang Hong, Dan Han, Bo Hou, Xinyu Wang*, Jingchao Zhang*. High-throughput computations of cross-plane thermal conductivity in multilayer stanene. International Journal of Heat and Mass Transfer, 2021, 171, 121073.

[5]   Wenyang Ding, Man Wang, Xingbo Dai, Jingzhi Zhang, Gongming Xin*, Xinyu Wang*. Dewetting transition of water on nanostructured and wettability patterned surfaces: a molecular dynamics study. Journal of Molecular Liquids, 2021, 336, 116869.

[6]   Xinyu Wang*, Hongzhao Fan, Dan Han, Yang Hong, Jingchao Zhang*. Thermal boundary resistance at graphene-pentacene interface explored by a data-intensive approach. Nanotechnology, 2021, 32(21), 215404.

[7]   Xiaoheng Yang, Dan Han, Man Wang, Mu Du*Xinyu Wang*. Extraordinary thermoelectric performance in 2D Group Ⅲ monolayer XP3 (X = Al, Ga, and In). Journal of Physics D: Applied Physics, 2021, 54(43), 435501.

[8]   Li Lei, Cheng Cheng, Nanyan Huang, Gongming Xin, Jingzhi Zhang*Xinyu Wang*. A numerical study on hydrodynamic and heat transfer characteristics of gas–liquid taylor flow in horizontal mini tubes. Numerical Heat Transfer, Part A: Applications, 2021, 80(10), 487-504.

[9]   Wenyang Ding, Dan Han, Jingzhi Zhang, Qingming Ma, Xiaoyan Li, Jingchao Zhang*, Xinyu Wang*. Molecular dynamics study of anisotropic behaviors of water droplet on textured surfaces with various energies. Molecular Physics, 2021, 119(3), e1785028.

[10]   Jiaxuan Xu, Yue Hu, Xiulin Ruan, Xinyu Wang, Tianli Feng*, Hua Bao*. Nonequilibrium phonon transport induced by finite sizes: effect of phonon-phonon coupling. Physical Review B, 2021, 104(10), 104310.

[11]   Qingming Ma, Haixia Ma, Fenglan Xu, Xinyu Wang, Wentao Sun*. Microfluidics in cardiovascular disease research: state of the art and future outlook. Microsystems & Nanoengineering, 2021, 7(1), 19.

[12]   Li Lei, Yuting Zhao, Wukai Chen, Huiling Li, Xinyu Wang, Jingzhi Zhang*. Experimental studies of droplet formation process and length for liquid–liquid two-phase flows in a microchannel. Energies, 2021, 14(5), 1341.

[13]   韩丹, 丁文扬, 王鑫煜*, 程林. 利用同位素掺杂与分形结构调控石墨烯热导率. 工程热物理学报, 2021, 42(3), 680-685.

2020

[1]   Haiyi Sun, Zhike Liu, Gongming Xin, Qian Xin, Jingzhi Zhang, Bing-Yang Cao, Xinyu Wang*. Thermal and flow characterization in nanochannels with tunable surface wettability: a comprehensive molecular dynamics study. Numerical Heat Transfer, Part A: Applications, 2020, 78(6), 231-251.

[2]   Hongzhao Fan, Man Wang, Dan Han, Jingzhi Zhang, Jingchao Zhang, Xinyu Wang*. Enhancement of interfacial thermal transport between metal and organic semiconductor using self-assembled monolayers with different terminal groups. The Journal of Physical Chemistry C, 2020, 124(31), 16748-16757.

[3]   Fei Li, Qingming Ma, Gongming Xin, Jingchao Zhang*, Xinyu Wang*. Heat transfer and flow characteristics of microchannels with solid and porous ribs. Applied Thermal Engineering, 2020, 178, 115639.

[4]   Dan Han, Haiyi Sun, Wenyang Ding, Yue Chen, Xinyu Wang*, Lin Cheng*. Effect of equibiaxial strain on thermal transport in WS2 monolayer from first principles calculations. Physica E: Low-dimensional Systems and Nanostructures, 2020, 124, 114312.

[5]   Haiyi Sun, Fei Li, Man Wang, Gongming Xin, Xinyu Wang*. Molecular dynamics study of convective heat transfer mechanism in a nano heat exchanger. RSC Advances, 2020, 10(39), 23097-23107.

[6]   Dan Han, Hongzhao Fan, Xinyu Wang*, Lin Cheng*. Atomistic simulations of phonon behaviors in isotopically doped graphene with Sierpinski carpet fractal structure. Materials Research Express, 2020, 7(3), 035020.

[7]   Jingzhi Zhang, Shizhen Li, Xinyu Wang, Bengt Sundén, Zan Wu*. Numerical studies of gas-liquid taylor flows in vertical capillaries using Cuo/water nanofluids. International Communications in Heat and Mass Transfer, 2020, 116, 104665.

[8]   Yan Chen, Xu Feng, Xinyu Wang, Gongming Xin*. Heat transfer enhancement characteristics of gravity heat pipe with segmented internal helical microfin. Journal of Enhanced Heat Transfer, 2020, 27(5), 389-405.

[9]   Bowen Yang, Dan Han, Xinyu Wang, Shiqian Hu, Qian Xin, Bing-Yang Cao, Gongming Xin*. Molecular dynamic simulation of thermal transport in monolayer C3BxN1-x alloy. Nanotechnology, 2020, 31(18), 185404.

[10]   Min Zhang, G.H. Tang*, Yifei Li, Bo Fu, Xinyu Wang. Phonon thermal properties of heterobilayers with a molecular dynamics study. International Journal of Thermophysics, 2020, 41(5), 57.

[11]   Jingzhi Zhang, Nanyan Huang, Li Lei, Fushun Liang, Xinyu Wang, Zan Wu*. Studies of gas-liquid two-phase flows in horizontal mini tubes using 3D reconstruction and numerical methods. International Journal of Multiphase Flow, 2020, 133, 103456.

[12]   Qingming Ma*, Yang Song*, Wentao Sun, Jie Cao, Hao Yuan, Xinyu Wang, Yong Sun*, Ho Cheung Shum*. Cell-inspired all-aqueous microfluidics: from intracellular liquid–liquid phase separation toward advanced biomaterials. Advanced Science, 2020, 7, 1903359.

[13]   Qingming Ma*, Yang Gao, Wentao Sun, Jie Cao, Yan Liang, Shangcong Han, Xinyu Wang, Yong Sun*. Self-assembled chitosan/phospholipid nanoparticles: from fundamentals to preparation for advanced drug delivery. Drug Delivery, 2020, 27(1), 200-215.

[14]   Qingming Ma, Jie Cao, Yang Gao, Shangcong Han, Yan Liang, Tingting Zhang, Xinyu Wang, Yong Sun*. Microfluidic-mediated nano-drug delivery systems: from fundamentals to fabrication for advanced therapeutic applications. Nanoscale, 2020, 12(29), 15512-15527. (入选“封面论文”)

2019

[1]   Dan Han, Wenyang Ding, Xinyu Wang*, Lin Cheng*. Tunable thermal transport in a WS2 monolayer with isotopic doping and fractal structure. Nanoscale, 2019, 11(42), 19763-19771. (入选“封面论文”)

[2]   Xinyu Wang, Yang Hong, Man Wang, Gongming Xin, Yanan Yue, Jingchao Zhang*. Mechanical properties of molybdenum diselenide revealed by molecular dynamics simulation and support vector machine. Physical Chemistry Chemical Physics, 2019, 21(18), 9159-9167. (入选“封面论文”)

[3]   Xinyu Wang*, Dan Han, Yang Hong, Haiyi Sun, Jingzhi Zhang, Jingchao Zhang*. Machine learning enabled prediction of mechanical properties of tungsten disulfide monolayer. ACS Omega, 2019, 4(6), 10121-10128.

[4]   Wenyang Ding, Dan Han, Jingchao Zhang, Xinyu Wang*. Mechanical responses of WSe2 monolayers: a molecular dynamics study. Materials Research Express, 2019, 6(8), 085071.

[5]   Xu Cheng, Xinyu Wang*. Thermal transport in C3N nanotube: a comparative study with carbon nanotube. Nanotechnology, 2019, 30(25), 255401.

[6]   Dan Han, Xinyu Wang*, Wenyang Ding, Yue Chen, Jingchao Zhang, Gongming Xin, Lin Cheng*. Phonon thermal conduction in a graphene-C3N heterobilayer using molecular dynamics simulations. Nanotechnology, 2019, 30(7), 075403. (英国物理学会高被引论文)

[7]   Yang Hong, Yongqiang Wu, Shuimu Wu, Xinyu Wang, Jingchao Zhang*. Overview of computational simulations in quantum dots. Israel Journal of Chemistry, 2019, 59(8), 661-672.

[8]   Lulu Du, Qian Xin*, Mingsheng Xu*, Yaxuan Liu, Wenxiang Mu, Shiqi Yan, Xinyu Wang, Gongming Xin, Zhitai Jia*, Xu-Tang Tao*, Aimin Song. High-performance Ga2O3 diode based on tin oxide Schottky contact. IEEE Electron Device Letters, 2019, 40(3), 451-454.

[9]   Lulu Du, Qian Xin*, Mingsheng Xu*, Yaxuan Liu, Guangda Liang, Wenxiang Mu, Zhitai Jia*, Xinyu Wang, Gongming Xin, Xu-Tang Tao*, Aimin Song. Achieving high performance Ga2O3 diodes by adjusting chemical composition of tin oxide Schottky electrode. Semiconductor Science and Technology, 2019, 34(7), 075001.

2018

[1]   Jiaqi Zhong, Luyao Liu, Qie Sun, Xinyu Wang*. Prediction of photovoltaic power generation based on general regression and back propagation neural network. Energy Procedia, 2018, 152, 1224-1229.

[2]   Ze Xiong, Xinyu Wang, Kenneth Hong Kit Lee, Xiaojun Zhan, Yue Chen, Jinyao Tang*. Thermal transport in supported graphene nanomesh. ACS Applied Materials & Interfaces, 2018, 10(11), 9211-9215.

2017

[1]   Xinyu Wang, Jingchao Zhang, Yue Chen*, Paddy K. L. Chan*. Molecular dynamics study of thermal transport in dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT) organic semiconductor. Nanoscale, 2017, 9(6), 2262-2271.

[2]   Xinyu Wang, Yang Hong, Dongwei Ma, Jingchao Zhang*. Molecular dynamics study of thermal transport in nitrogenated holey graphene bilayer. Journal of Materials Chemistry C, 2017, 5(21), 5119-5127.

[3]   Xinyu Wang, Man Wang, Yang Hong, Zongrong Wang, Jingchao Zhang*. Coherent and incoherent phonon transport in a graphene and nitrogenated holey graphene superlattice. Physical Chemistry Chemical Physics, 2017, 19(35), 24240-24248.

[4]   Xinyu Wang, Jingchao Zhang, Yue Chen*, Paddy K. L. Chan*. Investigation of interfacial thermal transport across graphene and an organic semiconductor using molecular dynamics simulations. Physical Chemistry Chemical Physics, 2017, 19(24), 15933-15941.

[5]   Xinyu Wang, Yang Hong, Paddy K. L. Chan, Jingchao Zhang*. Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study. Nanotechnology, 2017, 28(25), 255403.

[6]   Jingchao Zhang*, Xinyu Wang, Yang Hong, Qingang Xiong, Jin Jiang, Yanan Yue*. Understanding thermal transport in asymmetric layer hexagonal boron nitride heterostructure. Nanotechnology, 2017, 28(3), 035404.

[7]   Jingchao Zhang*, Yang Hong, Xinyu Wang, Yanan Yue*, Danmei Xie, Jin Jiang, Yangheng Xiong. Phonon thermal properties of transition-metal dichalcogenides MoS2 and MoSe2 heterostructure. The Journal of Physical Chemistry C, 2017, 121(19), 10336–10344.

2016 and Before

[1]   Xinyu Wang, Boyu Peng, Paddy Chan*. Thermal annealing effect on the thermal and electrical properties of organic semiconductor thin films. MRS Advances, 2016, 1(22), 1637-1643.

[2]   Xiaochen Ren, Ke Pei, Boyu Peng, Zhichao Zhang, Zongrong Wang, Xinyu Wang, Paddy K. L. Chan*. A low-operating-power and flexible active-matrix organic-transistor temperature-sensor array. Advanced Materials, 2016, 28(24), 4832-4838.

[3]   Xinyu Wang, Kevin D. Parrish, Jonathan A. Malen, Paddy K. L. Chan*. Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles. Scientific Reports, 2015, 5, 16095.

[4]   Zhichao Zhang, Xiaochen Ren, Boyu Peng, Zongrong Wang, Xinyu Wang, Ke Pei, Bowen Shan, Qian Miao, Paddy K. L. Chan*. Direct patterning of self-assembled monolayers by stamp printing method and applications in high performance organic field-effect transistors and complementary inverters. Advanced Functional Materials, 2015, 25(38), 6112-6121.

[5]   Xinyu Wang, Paddy K. L. Chan*. Effect of the interface mixing layer on the thermal boundary conductance of metal-organic semiconductor thin film–numerical study by lattice Boltzmann method. ASME 2014 International Mechanical Engineering Congress and Exposition, 2014, 8A, V08AT10A005.

[6]   Boyu Peng, Xiaochen Ren, Zongrong Wang, Xinyu Wang, Robert C. Roberts, Paddy K. L. Chan*. High performance organic transistor active-matrix driver developed on paper substrate. Scientific Reports, 2014, 4, 6430.

[7]   辛公明, 王鑫煜, 张鲁生, 程林*. 内螺纹重力热管变功率运行特性. 工程热物理学报, 2013, 34(11), 2116-2119.

[8]   王鑫煜, 辛公明, 田富中, 程林*. 小管径重力热管启动特性. 化工学报, 2012, 63(1): 94-98.

[9]   王鑫煜, 辛公明, 田富中, 曲付龙, 程林*. 两相闭式热虹吸管强化传热研究进展. 化工进展, 2012, 31(5), 965-973.

  • 教育经历Education Background
  • 工作经历Work Experience