7vgmpLxmZrfZXqcDKbZAOH5qF5aLvlyGMFWuzVyQJxjv3wi8Zmsb67bKwwyj
Biography

个人信息

姓名:魏璟婧

学历:博士研究生

职称:教授,博士生导师 

研究方向:胶体与界面化学 光功能纳米粒子组装

地址:山东省济南市山大南路27号

Email: weijingjing@sdu.edu.cn


招生信息

硕士,博士,博士后


研究领域:

1.光功能纳米粒子组装

2.自组装手性材料

3.纳米粒子表面化学


主持项目

1.山东省泰山学者青年项目,2025-2027,主持

2.国家自然科学基金面上项目,2024-2027,主持

3.广东省青年提升项目,2024-2026,主持

4.济南市“新高校二十条”项目,2024-2026,主持

5.国家自然科学基金青年项目,2018-2020,主持,结题

6.山东省优青,2021-2023,主持,结题

7.山东大学齐鲁青年学者,2019-2023,主持,结题


代表性论著:

   

1.  Liu R.; Dai X.; Li B.; Li Q.; Wei J.*; Yan, L.*; Yang Z.* Controlled Writhing of Chiral Matter in Deformable Droplet Confinement. J. Am. Chem. Soc. 2025, doi.org/10.1021/jacs.5c05428.

2.  Dong J.; Cao H.; Yang Z.; Zhang Z.; Yang Z*; Jiang L.*; Wei J.* Boosting Reaction Kinetics with Viscous Nanowire Dispersions. J. Am. Chem. Soc. 2025, 147, 14614−14624.

3.  Cheng C.; Li B.; Feng Z.; Liu R.; Bi Y.; Li Q.*; Wei J.*; Yang Z.* Helical Assemblies of Colloidal Nanocrystals with Long-Range Order and Their Fusion into Continuous Structures. J. Am. Chem. Soc. 2025, 147, 1803−1812.

4.  Bi Y.; Zhang Z.; Wei J.*; Yang, Z.* Enhanced Chirality Transfer in Self-Assembled Nanocomposites Powered by A Trace Amount of Chiral Dimeric Molecules. Angew. Chem. Int. Ed. 2025, 64, e202418997.

5.  Wang Y.; Liu R.; Zhang Z.; Wei J.*; Yang, Z.* Large Optical Asymmetry in Silver Nanoparticle Assemblies Enabled by CH−π Interaction-Mediated Chirality Transfer. J. Am. Chem. Soc. 2023, 145, 4035-4044.

6.  Li, H.; Cheng, C.; Yang, Z.; Wei, J.* Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction. Nat. Commun. 2022, 13, 6466.

7.  Liu, R.; Feng, Z.; Cheng, C.; Li, H.; Liu, J.; Wei, J.*; Yang, Z.* Active Regulation of Supramolecular Chirality Through Integration of CdSe/CdS Nanorods for Strong and Tunable Circular Polarized Luminescence. J. Am. Chem. Soc. 2022, 144, 2333-2342.

8.  Hua M.; Wang S.; Gong Y.; Wei J.*; Yang Z.*; Sun J.* Hierarchically Porous Organic Cages. Angew. Chem. Int. Ed. 2021, 60, 12490-12497.

9.  Hua M.; Hao J.; Gong Y.; Zhang F.; Wei J.*; Yang Z.*; Pileni M.-P. Discrete Supracrystalline Heterostructures from Integrative Assembly of Nanocrystals and Porous Organic Cages. ACS Nano 2020, 14, 5517-5528.


 

其他论著:

1.Geng, L.; Li H.; Liu J.; Yang, Z.; Wei J.* Molecular Stacking Dependent Molecular Oxygen Activation in Supramolecular Polymeric Photocatalysts. J. Phys. Chem. Lett. 2024, 15, 3127-3134.

2. Li H.; Geng, L.; Si, S.; Cheng, H.; Yang, Z.; Wei J.* Photoreduction of low concentrations of CO2 into methane in self-assembled palladium/porous organic cages nanocomposites. Chem. Eng. J. 2023, 474, 145431.

3. Liu J.; Liu R.; Yang Z.; Wei J.* Folding of Two-Dimensional Nanoparticle Superlattices Enabled by Emulsion-Confined Supramolecular Co-Assembly. Chem. Commun. 2022, 58, 3819-3822.

4. Ren F.; Hua M.; Yang Z.; Wei J.* Self-Assembled Artificial Enzyme from Hybridized Porous Organic Cages and Iron Oxide Nanocrystals. J. Colloid Interface Sci. 2022, 621, 331-340.

5. Gong, Y.; Guo, Y.; Qiu, C.; Zhang, Z.; Zhang, F.; Wei, Y.; Wang, S.; Che, Y.*; Wei, J.*; Yang, Z.* Integrative Self-Assembly of Covalent Organic Frameworks and Fluorescent Molecules for Ultrasensitive Detection of a Nerve Agent Simulant. Sci. China Mater2021, 64, 1189-1196.

6. Zhang F.; Yang F.; Gong Y.; Wei Y.; Yang Y.; Wei J.*; Yang Z.*; Pileni M.-P. Anisotropic Assembly of Nanocrystal/Molecular Hierarchical Superlattices Decoding from Tris‐Amide Triarylamines Supramolecular Networks. Small 2020, 2005701.

7. Wei Y.; Zhang F.; Hao J.; Ling Y.; Gong Y.; Wang S.; Wei J.*; Yang Z.* Boosting the Photocatalytic Performances of Covalent Organic Frameworks Enabled by Spatial Modulation of Plasmonic Nanocrystals. Appl. Catal. B: Environ. 2020, 272, 119035.

8. Zhang, W.; Zhao, Y.; Wang, W.; Peng, J.; Li, Y.; Shangguan, Y.; Ouyang, G.; Xu, M. ; Wang, S.; Wei, J. *; Wei, H.; Li, W.*; Yang, Z.* Colloidal Surface Engineering: Growth of Layered Double Hydroxides with Intrinsic Oxidase-Mimicking Activities to Fight Against Bacterial Infection in Wound Healing. Adv. Healthcare Mater., 2020, 9, 2000092.

9. Ma, Y.; Cao, Z.; Hao, J.; Zhou, J.; Yang, Z.; Yang, Y.*; Wei, J.*; Controlled Synthesis of Au Chiral Propellers from Seeded Growth of Au Nanoplates for Chiral Differentiation of Biomolecules. J. Phys. Chem. C, 2020, 124, 24306-24314.

10.  Hao, J.; Yang, Y.*; Zhang, F.; Yang, Z.*; Wei, J.* Faceted Colloidal Au/Fe3O4 Binary Supracrystals Dictated by Intrinsic Lattice Structures and Their Collective Optical Properties. J. Phys. Chem. C 2020, 124, 14775.

11.  Zhang, F.; Yang, Z.*; Hao, J.; Zhao, K.; Hua, M.; Yang, Y.*; Wei, J.*, Dynamic covalent chemistry steers synchronizing nanoparticle self-assembly with interfacial polymerization. Commun. Chem. 2019, 2, 123.

12.  Zhang, F.; Yang, F.; Hua, M.; Yang, Z. *; Wei, H.; Yang, Y. *; Wei, J.*, Buckling of Two-Dimensional Colloidal Nanoplatelets in Confined Space to Design Heterogeneous Catalysts. Chem. Mater. 2019, 31, 3812.


博士、博士后期间代表性论著:

1.  Wei, J.; Deeb, C.; Pelouard, J. L.; Pileni, M. P., Influence of Cracks on the Optical Properties of Silver Nanocrystals Supracrystal Films. ACS Nano 2019,13, 573-581.

2.  Wei, J.#(共一); Yang, Z.#; Sobolev, Y. I.; Grzybowski, B. A., Stretchable and Reactive Membranes of Metal–Organic Framework Nanosurfactants on Liquid Droplets Enable Dynamic Control of Self-Propulsion, Cargo Pick-Up, and Drop-Off. Adv. Intelligent Syst. 2019, 1, 1900065.

3.  Yang, Z.#; Wei, J.# (共一); Sobolev, Y. I.; Grzybowski, B. A., Systems of mechanized and reactive droplets powered by multi-responsive surfactants. Nature 2018. 553, 313-318.

4. Yang, Z.#; Wei, J.# (共一); Giżynski, K.; Song, M.-G.; Grzybowski, B. A., Interference-like patterns of static magnetic fields imprinted into polymer/nanoparticle composites. Nature Commun. 2017, 8, 1564.

5. Wei, J.; Schaeffer, N.; Pileni, M. -P. Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices. J. Am. Chem. Soc. 2015, 137,14773-14784.







Work Experience
  • 2017-05 — Now
    山东大学化学与化工学院
  • 韩国基础科学研究院
  • 巴黎第六大学
Publication
Papers

(1)巩彦君. Chirality Inversion in Self-Assembled Nanocomposites Directed by Curvature-Mediated Interactions .ANGEWANDTE CHEMIE-INTERNATIONAL EDITION .2022 ,61 (10):e202117406

(2)巩彦君. Chirality Inversion in Self-Assembled Nanocomposites Directed by Curvature-Mediated Interactions .ANGEWANDTE CHEMIE-INTERNATIONAL EDITION .2022 ,61 (10)

(3)董聚荣. Boosting Reaction Kinetics with Viscous Nanowire Dispersions .Journal of the American Chemical Society .2025 (147)

(4)毕玉婷. Enhanced Chirality Transfer in Self-Assembled Nanocomposites Powered by A Trace Amount of Chiral Dimeric Molecules .ANGEWANDTE CHEMIE-INTERNATIONAL EDITION .2024

(5)程才坤. Helical Assemblies of Colloidal Nanocrystals with Long-Range Order and Their Fusion into Continuous Structures .Journal of the American Chemical Society .2025

(6) Delivery of Coenzyme Q10 Loaded Micelle Targets Mitochondrial ROS and Enhances Efficiency of Mesenchymal Stem Cell Therapy in Intervertebral Disc Degeneration .BIOACTIVE MATERIALS .2023 ,23 (/):247

(7) Anisotropic Assembly of Nanocrystal/Molecular Hierarchical Superlattices Decoding from Tris-Amide Triarylamines Supramolecular Networks .Small .2020 ,16 (48):2005701

(8)季广彬. Dynamic Emulsion Droplets Enabled by Interfacial Assembly of Azobenzene-Functionalized Nanoparticles under Light and Magnetic Field .Journal of Colloid and interface science .2021 ,583 (/):586

(9) Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding .NATURE COMMUNICATIONS .2022 (13):5844

(10)仉凤华. Functional Droplets Stabilized by Interfacially Self-Assembled Chiral Nanocomposites .ANGEWANDTE CHEMIE-INTERNATIONAL EDITION .2022 :e202206520

(11)毕玉婷. Controlled Hierarchical Self-Assembly of Nanoparticles and Chiral Molecules into Tubular Nanocomposites .Journal of the American Chemical Society .2023 ,145 (15):8529-8539

(12) Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding .NATURE COMMUNICATIONS .2022 ,13 (1):5844

(13)刘荣娟. Controlled Small Molecules Mediated the Chirality Transfer in Self-Assembled Nanocomposites with Strong Circularly Polarized Luminescence .Journal of the American Chemical Society .2023 ,145 (31)

(14)耿利芳. Molecular Stacking Dependent Molecular Oxygen Activation in Supramolecular Polymeric Photocatalysts .J. Phys. Chem. Lett .2024 ,15 (11):3127

(15)巩彦君. Chirality Inversion in Self-Assembled Nanocomposites Directed by Curvature-Mediated Interactions .ANGEWANDTE CHEMIE-INTERNATIONAL EDITION .2022 (61)

(16)李绘. Photoreduction of low concentrations of CO2 into methane in self-assembled palladium/porous organic cages nanocomposites .Chemical Engineering Journal .2023 ,474 (145431)

(17)巩彦君. Integrative self-assembly of covalent organic frameworks and fluorescent molecules for ultrasensitive detection of a nerve agent simulant .SCIENCE CHINA-MATERIALS .2020 (64)

(18)王烨. Large Optical Asymmetry in Silver Nanoparticle Assemblies Enabled by CH-π Interaction-Mediated Chirality Transfer .J. AM. CHEM. SOC. .2023 ,145 (7):4035

(19)李绘. Encapsulated CdSe/CdS nanorods in doubleshelled porous nanocomposites for efficient photocatalytic CO2 reduction .NATURE COMMUNICATIONS .2022 (13)

(20)魏璟婧. Self-assembled artificial enzyme from hybridized porous organic cages and iron oxide nanocrystals .胶体与界面 .2022 ,621 (2022):331

(21)魏璟婧. Folding of two-dimensional nanoparticle superlattices enabled by emulsion-confined supramolecular co-assembly .CHEMICAL COMMUNICATIONS .2022 (58):3819

(22)巩彦君. Inversion in Self-Assembled Nanocomposites Directed by Curvature-Mediated Interactions .Angewandte Chemie International Edition .2022 (61)

(23)刘佳明. Diversifying Nanoparticle Superstructures and Functions Enabled by Translative Templating from Supramolecular Polymerization .Angewandte Chemie International Edition .2022 (61)

(24)魏璟婧. Surface Plasmon Resonance Properties of Silver Nanocrystal Superlattices Spaced by Polystyrene Ligands .Journal of Physical Chemistry C .2022 (126):4948

(25)刘荣娟. Active Regulation of Supramolecular Chirality through Integration of CdSe/CdS Nanorods for Strong and Tunable Circular Polarized Luminescence .Journal of the American Chemical Society .2022 (5)

(26)华明明. Discrete Supracrystalline Heterostructures from Integrative Assembly of Nanocrystals and Porous Organic Cages .ACS nano .2020 ,14 (5):5517

(27)刘佳明. Building ordered nanoparticle assemblies inspired by atomic epitaxy .Phys. Chem. Chem. Phys。 .2021

(28)魏延泽. CdSe 1D/2D Mixed-Dimensional Heterostructures: Curvature-Complementary Self-Assembly for Enhanced Visible-Light Photocatalysis .Small .2021 ,17 (33)

(29)程才坤. Simultaneous Size- and Phase-Controlled Synthesis of Metal Oxide Nanocrystals through Esterification Reactions .CRYSTAL GROWTH & DESIGN .2021 ,21 (8):4564

(30)仉凤华. Self-Assembled Open Porous Nanoparticle Superstructures .Journal of the American Chemical Society .2021 ,143 (30):11662

(31)季广彬. Dynamic emulsion droplets enabled by interfacial assembly of azobenzene-functionalized nanoparticles under light and magnetic field .胶体与界面 .2021 ,583 :586

(32)谢杨恩. Dimensionality-controlled self-assembly of CdSe nanorods into discrete suprastructures within emulsion droplets .New J. Chem. .2020 ,44 (48):21112

(33)王瑞雪. Crystal plane dependent dopant migration that boosts catalytic oxidation .Catalysis Science and Technology .2018 ,44 (23):6084

(34)杨延钊. Controlled Synthesis of Au Chiral Propellers from Seeded Growth of Au Nanoplates for Chiral Differentiation of Biomolecules .Journal of Physical Chemistry C .2020 (124)

(35)杨延钊. Controlled syntheses of monodispersed metal oxide nanocrystals from bulk metal oxide materials .CrystEngComm1 .2020 (22)

(36)杨延钊. Anisotropic Assembly of Nanocrystal/Molecular Hierarchical Superlattices Decoding from Tris-Amide Triarylamines Supramolecular Networks .small .2020 (48)

(37)杨延钊. Faceted Colloidal Au/Fe3O4 Binary Supracrystals Dictated by Intrinsic Lattice Structures and Their Collective Optical Properties .Journal of Physical Chemistry C .2020 (124)

(38)张文迪. Colloidal Surface Engineering: Growth of Layered Double Hydroxides with Intrinsic Oxidase-Mimicking Activities to Fight Against Bacterial Infection in Wound Healing .Advanced Healthcare Materials .2020 ,9 (17)

(39)华明明. Hierarchically Porous Organic Cages .ANGEWANDTE CHEMIE-INTERNATIONAL EDITION .2021 ,60 (22):12490

(40)仉凤华. Anisotropic Assembly of Nanocrystal/Molecular Hierarchical Superlattices Decoding from Tris-Amide Triarylamines Supramolecular Networks .Small .2020 ,16 (48)

(41)巩彦君. Integrative self-assembly of covalent organic frameworks and fluorescent molecules for ultrasensitive detection of a nerve agent simulant .SCIENCE CHINA-MATERIALS .2020

(42)华明明. Discrete Supracrystalline Heterostructures from Integrative Assembly of Nanocrystals and Porous Organic Cages .ACS nano .2020 ,14 (5):5517

(43)魏延泽. Boosting the photocatalytic performances of covalent organic frameworks enabled by spatial modulation of plasmonic nanocrystals .Applied Catalysis B: Environmental .2020 ,272 :119035

(44)仉凤华. Dynamic covalent chemistry steers synchronizing nanoparticle self-assembly with interfacial polymerization .Commun Chem .2019 ,2

(45)张文迪. Synthesis of catalytically active bimetallic nanoparticles within solution-processable metal-organic-framework scaffolds .CrystEng Comm .2019 ,21 (26):3954

(46)王舒平. Hierarchical Sheet?on?Sphere Heterostructures as Supports for Metal Nanoparticles: A Robust Catalyst System .catalysis letters .2019

(47)张文迪. Synthesis of catalytically active bimetallic nanoparticles within solution-processable metal– organic-framework scaffolds .CrystEngComm. .2019

(48)王舒平. A one-pot general strategy towards the synthesis of core-satellite suprastructures .CrystalEngComm .2019 ,21 (8):1335

(49)魏璟婧. Influence of Cracks on the Optical Properties of Silver Nanocrystals Supracrystal Films .ACS nano .2019

(50)任雨晴. Pretreatment Effect on Ceria-Supported Gold Nanocatalysts for CO Oxidation: Importance of the Gold-Ceria Interaction .Energy Technology .2018

(51)王瑞雪. Crystal plane dependent dopant migration that boosts catalytic oxidation .CATALYSIS SCIENCE & TECHNOLOGY .2018

(52)唐珂. Insight Investigation of Active Palladium Surface Sites in Palladium-Ceria Catalysts for NO plus CO Reaction .ACS Applied Materials & Interfaces .2018

(53)魏璟婧. Influence of Cracks on the Optical Properties of Silver Nanocrystals Supracrystal Films .ACS nano .2019

(54)仉凤华. Buckling of Two-Dimensional Colloidal Nanoplatelets in Confined Space To Design Heterogeneous Catalysts .Chemistry of Materials .2019 ,31 (10):3812

(55)仉凤华. Buckling of Two-Dimensional Colloidal Nanoplatelets in Confined Space To Design Heterogeneous Catalysts .Chemistry of Materials .2019 ,31 (10):3812

(56)杨志杰. Systems of mechanized and reactive droplets powered by multi-responsive surfactants .Nature .2018

(57)杨志杰. Interference-like patterns of static magnetic fields imprinted into polymer/nanoparticle composites .NATURE COMMUNICATIONS .2017

(58)王瑞雪. Crystal plane dependent dopant migration that boosts catalytic oxidation .CATALYSIS SCIENCE & TECHNOLOGY .2018 ,8 (23):6084

(59)魏璟婧. Copper doped ceria nanospheres: surface defects promoted catalytic activity and a versatile approach .Journal of Materials Chemistry A .2014

(60)魏璟婧. Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices .Journal of the American Chemical Society .2015

(61)魏璟婧. Surface Plasmon Resonance Properties of Silver Nanocrystals Differing in Size and Coating Agent Ordered in 3D Supracrystals .Chemistry of Materials .2015

(62)魏璟婧. Ag Nanocrystals: 1. Effect of Ligands on Plasmonic Properties .JOURNAL OF PHYSICAL CHEMISTRY B .2014

(63)魏璟婧. Solvent-Mediated Crystallization of Nanocrystal 3D Assemblies of Silver Nanocrystals: Unexpected Super lattice Ripening .Chemistry of Materials .2016

(64)魏璟婧. Collective Surface Plasmon Resonances in Two-Dimensional Assemblies of Au and Ag Nanocrystals: Experiments and Discrete Dipole Approximation Simulation .Journal of Physical Chemistry C .2016

(65)魏璟婧. Influence of Cracks on the Optical Properties of Silver Nanocrystals Supracrystal Films .ACS nano .2019

(66)仉凤华. Buckling of Two-Dimensional Colloidal Nanoplatelets in Confined Space To Design Heterogeneous Catalysts .Chemistry of Materials .2019 ,31 (10):3812

(67)仉凤华. Buckling of Two-Dimensional Colloidal Nanoplatelets in Confined Space To Design Heterogeneous Catalysts .Chemistry of Materials .2019 ,31 (10):3812

(68)唐珂. Insight Investigation of Active Palladium Surface Sites in Palladium-Ceria Catalysts for NO plus CO Reaction .ACS applied materials and interfaces .2018

(69)任雨晴. Pretreatment Effect on Ceria-Supported Gold Nanocatalysts for CO Oxidation: Importance of the Gold-Ceria Interaction .Energy Technology .2018

(70)王瑞雪. Crystal plane dependent dopant migration that boosts catalytic oxidation .CATALYSIS SCIENCE & TECHNOLOGY .2018 ,8 (23):6084

(71)杨志杰. Systems of mechanized and reactive droplets powered by multi-responsive surfactants .Nature .2018

(72)杨志杰. Interference-like patterns of static magnetic fields imprinted into polymer/nanoparticle composites .NATURE COMMUNICATIONS .2017

(73)魏璟婧. Surface Plasmon Resonance Properties of Silver Nanocrystals Differing in Size and Coating Agent Ordered in 3D Supracrystals .Chemistry of Materials .2015

(74)魏璟婧. Copper doped ceria nanospheres: surface defects promoted catalytic activity and a versatile approach .journal of materials chemistry A .2014

(75)魏璟婧. Ag Nanocrystals: 1. Effect of Ligands on Plasmonic Properties .JOURNAL OF PHYSICAL CHEMISTRY B .2014

(76)魏璟婧. Solvent-Mediated Crystallization of Nanocrystal 3D Assemblies of Silver Nanocrystals: Unexpected Super lattice Ripening .Chemistry of Materials .2016

(77)魏璟婧. Collective Surface Plasmon Resonances in Two-Dimensional Assemblies of Au and Ag Nanocrystals: Experiments and Discrete Dipole Approximation Simulation .JOURNAL OF PHYSICAL CHEMISTRY C .2016

(78)魏璟婧. Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices .Journal of the American Chemical Society .2015

(79)魏璟婧. Influence of Cracks on the Optical Properties of Silver Nanocrystals Supracrystal Films .ACS nano .2019

Copyright All Rights Reserved Shandong University Address: No. 27 Shanda South Road, Jinan City, Shandong Province, China: 250100
Information desk: (86) - 0531-88395114
On Duty Telephone: (86) - 0531-88364731 Construction and Maintenance: Information Work Office of Shandong University