吴国强,副教授,硕士生导师,泰山学者青年专家(免答辩),入选山东大学青年学者未来计划,2012年本科毕业于山东大学,2015年和2019年分别硕士和博士毕业于中国科学院大学,2019-2021年在清华大学从事博士后研究工作。主要从事机器学习、优化、人工智能等方面的研究工作,尤其是统计学习理论。在机器学习重要国际会议和期刊如ICML、NeurIPS、AAAI、Pattern Recognition、Neural Networks等发表过多篇论文。长期担任机器学习重要期刊(如TPAMI)以及重要会议(如机器学习三大顶级会议ICML、NeurIPS、ICLR)的审稿人。
更多相关信息请查看【个人主页】
招生方向:
来源:软件工程、计算机科学、人工智能、数学、物理、自动化等
硕士生专业:软件工程;人工智能
欢迎对机器学习感兴趣的数学与英语能力强的同学与我联系。
软件工程:学硕(2025秋入学,剩余0个名额),专硕(2025秋入学,剩余1个名额)
人工智能:学硕(2025秋入学,剩余0个名额),专硕(2025秋入学,剩余1个名额)
欢迎2025级保研同学邮件与我联系。
研究方向:
机器学习,深度学习,学习理论,强化学习
News:
2023/12/9. One paper is acceted in AAAI 2024. Congrats to Bingzheng, Teng Pang and Yan Zhang.
2023/4/25. Two papers are accepted in ICML 2023. Congrats and thanks to all my co-authors.
2021/9/29. Three papers are accepted in NeurIPS 2021. Thanks to all my co-authors.
Teng Pang, Guoqiang Wu†, Yan Zhang, Bingzheng Wang, Yilong Yin. QFAE: Q-Function guided Action Exploration for offline deep reinforcement learning, Pattern Recognition 2024 (CCF-B)
Rongzhen Wang, Chenyu Zheng, Guoqiang Wu, Xu Min, Xiaolu Zhang, JUN ZHOU, Chongxuan Li†. Lower Bounds of Uniform Stability in Gradient-Based Bilevel Algorithms for Hyperparameter Optimization, NeurIPS 2024 (CCF-A)
Chenyu Zheng, Wei Huang, Rongzhen Wang, Guoqiang Wu, Jun Zhu, Chongxuan Li†. On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, NeurIPS 2024 (CCF-A)
Guoqiang Wu†, Chongxuan Li, Yilong Yin. Towards Understanding Generalization of Macro-AUC in Multi-label Learning, International Conference on Machine Learning (ICML) 2023 (CCF-A)
Chenyu Zheng, Guoqiang Wu, Fan Bao, Yue Cao, Chongxuan Li†, Jun Zhu. Revisiting Discriminative vs. Generative Classifiers: Theory and Implications, International Conference on Machine Learning (ICML) 2023 (CCF-A)
Chenyu Zheng, Guoqiang Wu, Chongxuan Li†. Toward Understanding Generative Data Augmentation, Advances in Neural Information Processing Systems (NeurIPS) 2023 (CCF-A)
Bingzheng Wang, Guoqiang Wu†, Teng Pang, Yan Zhang, Yilong Yin†. DiffAIL: Diffusion Adversarial Imitation Learning, AAAI Conference on Artificial Intelligence (AAAI) (CCF-A)
Guoqiang Wu, Jun Zhu†. Can Infinitely Wide Deep Nets Help Small-data Multi-label Learning? Asian Conference on Machine Learning (ACML) 2023 (CCF-C)
Guoqiang Wu*, Chongxuan Li*, Kun Xu, and Jun Zhu. Rethinking and Reweighting the Univariate Losses for Multi-Label Ranking: Consistency and Generalization, Advances in Neural Information Processing Systems (NeurIPS) 2021 (CCF-A)
Fan Bao*, Guoqiang Wu*, Chongxuan Li*, Jun Zhu, and Bo Zhang. Stability and Generalization of Bilevel Programming in Hyperparameter Optimization, Advances in Neural Information Processing Systems (NeurIPS) 2021 (CCF-A)
Shuyu Cheng, Guoqiang Wu, and Jun Zhu. On the Convergence of Prior-Guided Zeroth-Order Optimization Algorithms, Advances in Neural Information Processing Systems (NeurIPS) 2021 (CCF-A)
Guoqiang Wu, and Jun Zhu. Multi-label classification: do Hamming loss and subset accuracy really conflict with each other? Advances in Neural Information Processing Systems (NeurIPS) 2020 (CCF-A)
Guoqiang Wu, Ruobing Zheng, Yingjie Tian and Dalian Liu. Joint ranking SVM and binary relevance with robust low-rank learning for multi-label classification, Neural Networks 2020 (中科院SCI一区,CCF-B)
Guoqiang Wu, Yingjie Tian, and Dalian Liu. Cost-sensitive multi-label learning with positive and negative label pairwise correlations, Neural Networks 2018 (中科院SCI一区,CCF-B)
Guoqiang Wu, Yingjie Tian, and Chunhua Zhang. A unified framework implementing linear binary relevance for multi-label learning, Neurocomputing 2018 (中科院SCI二区,CCF-C)
Guoqiang Wu, Yingjie Tian, and Dalian Liu. Privileged Multi-Target Support Vector Regression, International Conference on Pattern Recognition (ICPR) 2018 (CCF-C)