教师简介

吴国强,博士,副研究员,2012年本科毕业于山东大学,2015年和2019年分别硕士和博士毕业于中国科学院大学,2019-2021年在清华大学从事博士后研究工作。主要从事机器学习、优化、人工智能等方面的研究工作,尤其是统计学习理论以及多标签学习。在机器学习重要国际会议和期刊如ICMLNeurIPS、Neural Networks等录用或发表过多篇论文。长期担任机器学习重要期刊(如TPAMI)以及重要会议(如机器学习三大顶级会议ICML、NeurIPS、ICLR)的审稿人。


[Google Scholar]


招生方向

来源:软件工程、计算机科学、人工智能、数学、物理、自动化等


硕士生专业:软件工程;人工智能


研究方向:

机器学习



News:

2023/4/25.  Two papers are accepted in ICML 2023. Congrats and thanks to all my co-authors.

2021/9/29.  Three papers are accepted in NeurIPS 2021. Thanks to all my co-authors.


论文列表

2023

  • Guoqiang Wu, Chongxuan Li, Yilong Yin. Towards Understanding Generalization of Macro-AUC in Multi-label Learning, International Conference on Machine Learning (ICML) 2023 

  • Chenyu Zheng, Guoqiang Wu, Fan Bao, Yue Cao, Chongxuan Li, Jun Zhu. Revisiting Discriminative vs. Generative Classifiers: Theory and Implications,  International Conference on Machine Learning (ICML) 2023

2021

  • Guoqiang Wu*, Chongxuan Li*, Kun Xu, and Jun Zhu. Rethinking and Reweighting the Univariate Losses for Multi-Label Ranking: Consistency and Generalization, Advances in Neural Information Processing Systems (NeurIPS) 2021 (* denotes equal contribution) 

  • Fan Bao*, Guoqiang Wu*, Chongxuan Li*, Jun Zhu, and Bo Zhang. Stability and Generalization of Bilevel Programming in Hyperparameter Optimization, Advances in Neural Information Processing Systems (NeurIPS) 2021 (* denotes equal contribution) 

  • Shuyu Cheng, Guoqiang Wu, and Jun Zhu. On the Convergence of Prior-Guided Zeroth-Order Optimization Algorithms, Advances in Neural Information Processing Systems (NeurIPS) 2021 

2020

  • Guoqiang Wu, and Jun Zhu. Multi-label classification: do Hamming loss and subset accuracy really conflict with each other? Advances in Neural Information Processing Systems (NeurIPS) 2020

  • Guoqiang Wu, Ruobing Zheng, Yingjie Tian and Dalian Liu. Joint ranking SVM and binary relevance with robust low-rank learning for multi-label classification, Neural Networks 2020

2018

  • Guoqiang Wu, Yingjie Tian, and Dalian Liu.  Cost-sensitive multi-label learning with positive and negative label pairwise correlations, Neural Networks 2018

  • Guoqiang Wu, Yingjie Tian, and Chunhua Zhang. A unified framework implementing linear binary relevance for multi-label learning, Neurocomputing 2018

  • Guoqiang Wu, Yingjie Tian, and Dalian Liu. Privileged Multi-Target Support Vector Regression, International Conference on Pattern Recognition (ICPR) 2018


教育经历
  • 2008-9 — 2012-6
    山东大学
    软件工程
    本科(学士)
  • 2012-9 — 2015-6
    中国科学院大学
    计算机软件与理论
    研究生(硕士)毕业
  • 2016-9 — 2019-6
    中国科学院大学
    计算机应用技术
    研究生(博士)毕业
工作经历
  • 2019-7 — 2021-7
     清华大学计算机系 
版权所有   ©山东大学 地址:中国山东省济南市山大南路27号 邮编:250100 
查号台:(86)-0531-88395114
值班电话:(86)-0531-88364731 建设维护:山东大学信息化工作办公室   
技术支持qq群:820336447