Research Focus

(超)宽禁带半导体功率器件热管理

Click:

超)宽禁带半导体(带隙宽度>3.4 eV),包括氧化镓(Ga2O3)、碳化硅(SiC)、氮化镓(GaN)、氮化铝(AlN)以及金刚石(C)等,具有优异的耐高温、耐高压、高频以及抗辐照能力,在大功率电子器件、射频电子发射器、深紫外光电探测器以及极端环境应用等领域有着巨大的应用前景。

但随着3nm工艺半导体产品投入量产,晶体管集成度大幅提高,并大大提高了器件的功率密度及单位热通量,(超)宽禁带器件不可避免地面临严重的热可靠性和热管理问题,器件过热已成为阻碍这些新器件技术商业化的关键。(超)宽禁带半导体热导率及界面热阻的准确表征是研究(超)宽禁带半导体材料及界面热特性、实现器件准确建模、器件热电协同设计的重要前提。

课题组围绕(超)宽禁带半导体功率器件现有散热技术性能差、散热机制不清晰等问题,开发了原子尺度第一性原理——分子动力学(机器学习势函数)——有限元等跨尺度研究方法,结合先进的TDTR和热反射成像等实验表征手段,系统研究材料-界面-器件多元结构的热电特性,为器件级热电仿真、散热路径优化提供基础数据支撑和科学依据,旨在实现大功率器件的新型高效散热技术。


器件热管理.jpg

超宽禁带半导体功率器件热管理研究方案


相关研究成果:


[13].  J. Wang, Z. Fu, H. Zhao, Z. Li, D. Ma, C. Yang, Z. He, X. Guo, X. Yang, S. Chen, L. Liu and J. Y. Yang*. High-Temperature Degradation Mechanism of Interfacial Thermal Resistance Based on Submicron Silver Adhesion, Adv. Mater. Interfaces, 10(4), 2202017 (2023). https://doi.org/10.1002/admi.202202017 

[12].  S. Zhang, S. Yi, J. Y. Yang, J. Liu* and L. Liu*. Correlation between spontaneous polarization and thermal conductivity in ferroelectric HfO2 from first principles, Int. J. Heat  Mass Transf. 207, 123971 (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2023.123971 

[11].  Z. Fu*, J. Chen, P. Zhao, X. Guo, Q. Xiao, X. Fu, J. Wang, C. Yang, J. Xu, and J. Y. Yang*. Interfacial Reaction and Electromigration Failure of Cu Pillar/Ni/Sn-Ag/Cu Microbumps under Bidirectional Current Stressing, Materials 16 (3), 1134 (2023). https://doi.org/10.3390/ma16031134 

[10].  Z. Fu*, Q. Wei, X. Guo, X. Fu, J. Wang, C. Yang, H. Guo, and J. Y. Yang*. Influence of Temperature and Current Stressing on Cu‐Sn Intermetallic Compound Growth Characteristics of Lead‐Free Microbump, Adv. Theory Simulations 6 (4), 2200881 (2023). https://doi.org/10.1002/adts.202200881 

[9].  X. Duan, T. Wang, Z. Fu, L. Liu* and J. Y. Yang*. Nontrivial role of polar optical phonons in limiting electron mobility of two-dimensional Ga2O3 from first-principles, Phys. Chem. Chem. Phys., 25 (14) 10175-10183 (2023). https://doi.org/10.1039/D3CP00036B 

[8].  Z. Li, X. Tan, Z. Fu, L. Liu* and J. Y. Yang*. Thermal transport across copper-water interface from deep potential molecular dynamics, Phys. Chem. Chem. Phys., 25 (9) 6746-6756 (2023).  https://doi.org/10.1039/D2CP05530A   

[7]. X. Duan, T. Wang, Z. Fu, J. Y. Yang* and L. Liu*. Electron mobility in ordered β-(AlxGa1−x)2O3 alloys from first-principles, Appl. Phys. Lett., 121(4), 042103 2022). https://aip.scitation.org/doi/abs/10.1063/5.0096341 

[6]. L. Cheng, J. Y. Yang and W. Zheng*. Bandgap, Mobility, Dielectric Constant, and Baliga’s Figure of Merit of 4H-SiC, GaN, and β-Ga2O3 from 300 to 620 K, ACS Electron. Mater., 4(8), 41404145 (2022). https://pubs.acs.org/doi/abs/10.1021/acsaelm.2c00766 

[5]. J. Wang, R. Wang, Z. He, C. Yang, Z. Fu* and J. Y. Yang*. High Speed Transient Thermal Simulation of GaN HEMT Devices, 23rd International Conference on Electronic Packaging Technology (ICEPT), 10-13 Aug. Dalian, China (2022). https://ieeexplore.ieee.org/abstract/document/9873288 

[4]. 杨家跃,王健,付志伟,杨超,马德志. 电子器件高速瞬态热仿真技术领域. 发明专利,授权号:ZL 2002 1 0495689.3.

[3].  J. Y. Yang*, W. J. Zhang, C. Xu, J. Liu, L. Liu and M. Hu*. Strong electron-phonon coupling induced anomalous phonon transport in ultrahigh temperature ceramics ZrB2 and TiB2Int. J. Heat Mass Transf., 152, 119481 (2020).  https://doi.org/10.1016/j.ijheatmasstransfer.2020.119481 

[2]. Y. Liu, J. Y. Yang*, G. Xin, L. Liu, G. Csanyi and B. Y. Cao*. Machine learning interatomic potential developed for molecular simulations on thermal properties of β-Ga2O3J. Chem. Phys., 153, 144501 (2020). https://aip.scitation.org/doi/abs/10.1063/5.0027643 

[1]. J. Y. Yang, G. Z. Qin and M. Hu*. Nontrivial contribution of Fröhlich electron-phonon interaction to lattice thermal conductivity of wurtzite GaN, Appl. Phys. Lett., 109, 040650 (2016). https://aip.scitation.org/doi/abs/10.1063/1.4971985