Biography

***杨志杰 Zhijie Yang)***


教授(Professor),国家海外青年人才项目,山东省泰山学者特聘专家,山东大学杰出中青年学者。


邮箱:zyangchem@sdu.edu.cn

地址:山东省济南市山大南路27号生科北楼311室


***研究领域和兴趣(Research)***


1.       胶体与界面化学(Colloid and Interface Chemistry)

2.      纳米晶组装体的构筑及功能化 (Self-Assembly of Colloidal Nanocrystals )

3.      手性组装体系的精准构筑 (Self-Assembled Chiral Materials)

4.      组装体材料在能源与生命健康领域的应用 (Self-Assembly for Bio- and Energy Applications)

 

***主持科研项目(Fundings)***


1.    山东省杰青基金(NSF-Shandong)     2022-2024

2.    国家自然科学基金面上项目 (NSFC)           2023-2026

3.    国家自然科学基金面上项目 (NSFC)           2025-2028

 

***发表文章(Publication List)***


76. Liu R.; Feng Z.; Yan, X.; Lv, Y.; Wei J.; Hao J.*; Yang Z.* Controlled Small Molecules Mediated the Chirality Transfer in Self-Assembled Nanocomposites with Strong Circularly Polarized Luminescence.

 J. Am. Chem. Soc. 2023, 145, 17274-17283.

 

75. Li H.; Geng L.; Si S.; Cheng H.; Yang Z. Wei J.* Photoreduction of low concentrations of CO2 into methane in self-assembled palladium/porous organic cages nanocomposites.

 Chem. Eng. J. 2023, 474, 145431.

 

74. Hao Y.; Li H.; Ren F.; Feng R.; Liu Y.; Li X.; Chen H.; Zou J.; Huang L.; Zhang S.; Shan G.; Yang Z.* Zhang Z.* Ferrocene-conjugated polymeric platform via amide bond formation facilitates enhanced in situ Fenton reaction and robust immune responses in combination with toll-like receptor 7/8 agonist.

Chem. Eng. J. 2023, 472, 144909.

 

73. Sun J.; Yang F.; Wang L.; Yu H.; Yang Z.; Wei J.; Vasilev K.; Zhang X.; Liu X.; Zhao Y. Delivery of coenzyme Q10 loaded micelle targets mitochondrial ROS and enhances efficiency of mesenchymal stem cell therapy in intervertebral disc degeneration.

 Bioact. Mater. 2023, 23, 247-260.


72. Bi Y.; Cheng C.; Zhang Z.; Liu R.; Wei J.; Yang Z.* Controlled Hierarchical Self-Assembly of Nanoparticles and Chiral Molecules into Tubular Nanocomposites.

 J. Am. Chem. Soc. 2023, 145, 8529-8539.

 

71. Huang Y.; Huang J.; Yin W.; Xie F.; Coleman B.; Cao Y.; Aya S.; Zhu W.; Yang Z.*; Jiang L.* Encoding Coacervate Droplets with Paramagnetism for Dynamical Reconfigurability and Spatial Addressability.

 ACS Nano 2023, 17, 6234-6246.

 

70. Wang Y.; Liu R.; Zhang Z.; Wei, J. *; Yang, Z.* Large Optical Asymmetry in Silver Nanoparticle Assemblies Enabled by CH− π Interaction-Mediated Chirality Transfer.

 J. Am. Chem. Soc. 2023, 145, 4035-4044.


69. Yang Z.#; Wei Y.#; Wei J.; Yang Z.* Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding.

Nat. Commun. 2022, 13, 5844.

 

68. Li H.; Cheng C.; Yang Z.; Wei J.* Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction.

Nat. Commun. 2022, 13, 6466.


67. Zhang F.; Zhang. Z.; Liu R.; Wei J.; Yang Z.* Functional Droplets Stabilized by Interfacially Self-Assembled Chiral Nanocomposites.

Angew. Chem. Int. Ed. 2022, 61, e202206520.

 

66. Liu J.; Liu R.; Yang Z.; Wei J.* Folding of two-dimensional nanoparticle superlattices enabled by emulsion-confined supramolecular co-assembly.

Chem. Commun. 2022 58, 3819-3822.


65. Chen L; Hu Y.; Zhou B.; Dong H.; Mou N.; He J.; Yang Z.; Li. J; Zhu Z.; Zhang L.* Solvent‐Mediated Structural Evolution in Colloidal Lead Halide Perovskite Nanocrystals Self‐Assembly.

Adv. Mater. Interfaces 2022, 2200187.

 

64. Ren F.; Hua M.; Yang Z.; Wei J.* Self-assembled artificial enzyme from hybridized porous organic cages and iron oxide nanocrystals.

J. Colloid Interface Sci. 2022, 621, 331-340.

 

63. Schirato A.; Moretti L.; Yang Z.; Mazzanti G.; Cerullo G.; Pileni M.P.; Margheita M.; Della Valle G.* Chemically-Controlled Ultrafast Photothermal Response in Plasmonic Nanostructured Assemblies.

J. Phys. Chem. C 2022, 126, 6308-6317. (Invited Paper “Marie-Paule Pileni Festschrift”)

 

62. Wang Y.; Yang Z.; Wei J.* Surface Plasmon Resonance Properties of Silver Nanocrystal Superlattices Spaced by Polystyrene Ligands.

J. Phys. Chem. C 2022, 126, 4948-4958. (Invited Paper “Marie-Paule Pileni Festschrift”)


61. Liu J.; Liu R.; Li H.; Zhang F.; Yao Q.; Wei J.; Yang Z.* Diversifying Nanoparticle Superstructures and Functions Enabled by Translative Templating from Supramolecular Polymerization.

Angew. Chem. Int. Ed. 2022, 61, e202201426.


60. Liu R.; Feng Z.; Cheng C.; Li H.; Liu J.; Wei, J. *; Yang, Z.* Active Regulation of Supramolecular Chirality through Integration of CdSe/CdS Nanorods for Strong and Tunable Circular Polarized Luminescence

J. Am. Chem. Soc. 2022, 144, 2333-2342.

 

59. Gong Y.; Cao Z.; Zhang Z.; Liu R.; Zhang F.; Wei, J.; Yang, Z.* Chirality Inversion in Self-Assembled Nanocomposites Directed by Curvature Mediated Interactions

Angew. Chem. Int. Ed. 2022, 61 e202117406.

   

    58. Cheng C.; Wei, J.; Yang, Z.* Shape-Controlled Self-Assembly of Truncated Octahedral Nanocrystals into Supracrystals.

J. Phys. Chem. C 2021, 125, 48, 26942-26950. (Invited Paper “Marie-Paule Pileni Festschrift” )


57. Yang Z.#; Zhuang, Q.#; Yan, Y.; Ahumada G.; Grzybowski B.* An electrocatalytic reaction as a basis for chemical computing in water droplets.

J. Am. Chem. Soc. 2021, 143, 16908-16912.

 

56. Liu, J.; Wei, J.; Yang, Z.* Building Ordered Nanoparticle Assemblies Inspired by Atomic Epitaxy.

PCCP 2021, 23. 20028-10037. (Invited perspectives)

 

55. Zhang, F.; Liu, R.; Wei, Y.; Wei, J.; Yang, Z.* Self-Assembled Open Porous Nanoparticle Superstructures.

J. Am. Chem. Soc. 2021, 143, 11662-11669.

 

54. Cheng, C.; Yang, Z.; Wei, J.* Simultaneous Size- and Phase-Controlled Synthesis of Metal Oxide Nanocrystals through Esterification Reactions.

Cryst. Growth. Des. 2021, 21, 4564-4570.

 

53. Wei, Y.; Zhang, F.; Wei, J.; Yang, Z.* CdSe 1D/2D Mixed-Dimensional Heterostructures: Curvature-Complementary Self-Assembly for Enhanced Visible-Light Photocatalysis.

Small 2021, 2102047.

 

52. Yang, F.; Liu, X.; Yang, Z.*; Chiral Metal Nanoparticle Superlattices Enabled by Porphyrin‐Based Supramolecular Structures.

Angew. Chem. Int. Ed. 2021, 60, 14792-14799.

 

51. Hua, M.; Wang, S.; Gong, Y.; Wei, J.*; Yang, Z.*; Sun, J.* Hierarchically Porous Organic Cages.

Angew. Chem. Int. Ed. 2021, 60, 12490-12497.

 

50. Dobryden, I.; Yang, Z.; Claesson P.; Pileni, MP. Water Dispersive Suprastructures: An Organizational Impact on Nanomechanical Properties.

Adv. Mater. Interfaces 2021, 8, 2001687.

 

49. 仉凤华,魏璟婧,杨志杰* 软外延生长法构筑纳米粒子超晶格材料.

中国科学-化学202110.1360/SSC-2021-0014.

 

48. Gong, Y.; Guo, Y.; Qiu, C.; Zhang, Z.; Zhang, F.; Wei, Y.; Wang, S.; Che, Y.*; Wei, J.*; Yang, Z.* Integrative Self-Assembly of Covalent Organic Frameworks and Fluorescent Molecules for Ultrasensitive Detection of a Nerve Agent Simulant.

Sci. China Mater. 2021, 64, 1189-1196.

 

47. Zhang, F.; Yang, F.; Gong, Y.; Wei, Y.; Yang. Y.; Wei, J.*; Yang, Z.*; Pileni, M.P. Anisotropic Assembly of Nanocrystal/Molecular Hierarchical Superlattices Decoding from Tris‐Amide Triarylamines Supramolecular Networks.

Small 2020, 2005701.

 

46. Ma, Y.; Cao. Z.; Hao, J.; Zhou, J.; Yang. Z.; Yang. Y.; Wei. J.* Controlled Synthesis of Au Chiral Propellers from Seeded Growth of Au Nanoplates for Chiral Differentiation of Biomolecules.

J. Phys. Chem. C 2020, 124, 24306.

 

45. Nicolas-Boluda A.; Yang. Z…; Guilbert, T.; Fouassier, L.; Carn, F.; Gazeau, F.; Pileni M.P.* Self‐Assemblies of Fe3O4 Nanocrystals: Toward Nanoscale Precision of Photothermal Effects in the Tumor Microenvironment.

Adv. Funct. Mater. 2020, 30, 2006824.

 

44. Ji, G.; Yang, F.; Yang, Y.; Wei, J.; Yang Z.* Dynamic Emulsion Droplets Enabled by Interfacial Assembly of Azobenzene-Functionalized Nanoparticles under Light and Magnetic Field.

J. Colloid Interface Sci. 2020, 583, 586.

 

43. Zhang, W.; Zhao, Y.; Wang, W.; Peng, J.; Li, Y.; Shangguan Y.; Ouyang, G.; Xu, M.; Wang, S.; Wei, J. *; Wei, H.; Li, W. *; Yang, Z.* Colloidal Surface Engineering: Growth of Layered Double Hydroxides with Intrinsic Oxidase‐Mimicking Activities to Fight Against Bacterial Infection in Wound Healing.

Adv. Healthcare Mater. 2020, 9, 2000092.

 

42. Nicolas-Boluda A.; Yang. Z; Dobryden, I.; Carn, F.; Winckelmans, N.; Pechoux, C.; Bonville, P.; Bals, S.; Claesson, P. M.; Gazeau, F.; Pileni M.P.* Intracellular Fate of Hydrophobic Nanocrystal Self‐Assemblies in Tumor Cells,

Adv. Funct. Mater. 2020, 30, 2004274.

 

41. Hao, J.; Yang, Y. *; Zhang, F.; Yang, Z.*; Wei, J.* Faceted Colloidal Au/Fe3O4 Binary Supracrystals Dictated by Intrinsic Lattice Structures and Their Collective Optical Properties.

J. Phys. Chem. C 2020, 124, 14775-14786.

 

40. Wei, Y.; Zhang, F.; Hao, J.; Ling, Y.; Gong, Y.; Wang, S.; Wei, J.*; Yang, Z.*, Boosting the photocatalytic performances of covalent organic frameworks enabled by spatial modulation of plasmonic nanocrystals.

Appl. Catal. B: Environ. 2020, 272, 119035.

 

39. Hua, M.; Hao, J.; Gong, Y.; Zhang, F.; Wei, J.*; Yang, Z.*; Pileni, M.-P., Discrete Supracrystalline Heterostructures from Integrative Assembly of Nanocrystals and Porous Organic Cages.

ACS Nano 2020, 14, 5517-5528.

 

38. Zhang, F.; Yang, Z.*; Hao, J.; Zhao, K.; Hua, M.; Yang, Y.*; Wei, J.* Dynamic covalent chemistry steers synchronizing nanoparticle self-assembly with interfacial polymerization.

Commun. Chem. 2019, 2, 123.

 

37. Zhang, F.; Yang, F.; Hua, M.; Yang, Z.*; Wei, H.; Yang, Y.*; Wei, J.*, Buckling of Two-Dimensional Colloidal Nanoplatelets in Confined Space to Design Heterogeneous Catalysts. 

Chem. Mater. 2019, 31, 3812-3817.

 

Before SDU

36. Wei, J.; Yang, Z.; Sobolev, Y. I.; Grzybowski, B. A., Stretchable and Reactive Membranes of Metal–Organic Framework Nanosurfactants on Liquid Droplets Enable Dynamic Control of Self-Propulsion, Cargo Pick-Up, and Drop-Off. 

Adv. Intelligent Syst. 2019, 1, 1900065.


35. Mazzanti, A.; Yang, Z.; Silva, M. G.; Yang, N.; Rizza, G.; Coulon, P.-E.; Manzoni, C.; de Paula, A. M.; Cerullo, G.; Della Valle, G.; Pileni, M.-P., Light–heat conversion dynamics in highly diversified water-dispersed hydrophobic nanocrystal assemblies. 

PNAS 2019, 201817850.


34. Yang, Z.; Wei, J.; Sobolev, Y. I.; Grzybowski, B. A., Systems of mechanized and reactive droplets powered by multi-responsive surfactants. 

Nature 2018. 553, 313-318.


33. Yang, Z.; Altantzis, T.; Bals, S.; Van Tendeloo, G.; Pileni, M.-P., Do Binary Supracrystals Enhance the Crystal Stability? 

J. Phys. Chem. C 2018, 122, 13515-13521.


32. Yang, Z.; Wei, J.; Giżynski, K.; Song, M.-G.; Grzybowski, B. A., Interference-like patterns of static magnetic fields imprinted into polymer/nanoparticle composites. 

Nature Commun. 2017, 8, 1564.


31.Wei, J.; Yang, Z; Pileni MP. , 3D superlattices of uniform metal nanocrystals differing by their sizes called binary supracrystals. 

Europhysics Letters 2017, 119, 38005.


30. Yang, Z.; Altantzis, T.; Zanaga, D.; Bals, S.; Tendeloo, G. V.; Pileni, M.-P., Supracrystalline Colloidal Eggs: Epitaxial Growth and Freestanding Three-Dimensional Supracrystals in Nanoscaled Colloidosomes. 

J. Am. Chem. Soc. 2016,138, 3493-3500.


29. Yang, N. L.; Yang, Z. J.; Held, M.; Bonville, P.; Albouy, P. A.; Levy, R.; Pileni, M. P., Dispersion of Hydrophobic Co Supracrystal in Aqueous Solution. 

ACS Nano 2016, 10, 2277-2286.


28. Altantzis, T.; Yang, Z. J.; Bals, S.; Van Tendeloo, G.; Pileni, M. P., Thermal Stability of CoAu13 Binary Nanoparticle Superlattices under the Electron Beam. 

Chem. Mater. 2016, 28, 716-719.


27. Yang, Z.; Yang, N.; Yang, J.; Bergstroem, J.; Pileni, M.-P., Control of the Oxygen and Cobalt Atoms Diffusion through Co Nanoparticles Differing by Their Crystalline Structure and Size. 

Adv. Funct. Mater. 2015, 25, 891-897.


26. Yang, Z.; Yang, N.; Pileni, M.-P., Nano Kirkendall Effect Related to Nanocrystallinity of Metal Nanocrystals: Influence of the Outward and Inward Atomic Diffusion on the Final Nanoparticle Structure.

J. Phys. Chem. C 2015, 119, 22249-22260.


25. Yang, Z.; Wei, J.; Pileni, M.-P., Metal-Metal Binary Nanoparticle Superlattices: A Case Study of Mixing Co and Ag Nanoparticles. 

Chem. Mater. 2015, 27, 2152-2157.


24. Yang, Z.; Wei, J.; Bonville, P.; Pileni, M.-P., Engineering the Magnetic Dipolar Interactions in 3D Binary Supracrystals Via Mesoscale Alloying. 

Adv. Funct. Mater. 2015, 25, 4908-4915.


23. Yang, Z.; Wei, J.; Bonville, P.; Pileni, M.-P., Beyond Entropy: Magnetic Forces Induce Formation of Quasicrystalline Structure in Binary Nanocrystal Superlattices.

J. Am. Chem. Soc. 2015, 137, 4487-4493.


22. Gauvin, M.; Yang, N.; Yang, Z.; Arfaoui, I.; Pileni, M.-P., Hierarchical mechanical behavior of cobalt supracrystals related to nanocrystallinity. 

Nano Res. 2015, 8, 3480-3487.


21. Yang, Z.; Yang, J.; Bergstroem, J.; Khazen, K.; Pileni, M.-P., Crystal polymorphism: dependence of oxygen diffusion through 2D ordered Co nanocrystals. 

PCCP 2014, 16, 9791-9796.


20. Yang, Z.; Walls, M.; Lisiecki, I.; Pileni, M.-P., Unusual Effect of an Electron Beam on the Formation of Core/Shell (Co/CoO) Nanoparticles Differing by Their Crystalline Structures. 

Chem. Mater. 2013, 25, 2372-2377.


19. Yang, Z.; Lisiecki, I.; Walls, M.; Pileni, M.-P., Nanocrystallinity and the Ordering of Nanoparticles in Two-Dimensional Superlattices: Controlled Formation of Either Core/Shell (Co/CoO) or Hollow CoO Nanocrystals. 

ACS Nano 2013, 7, 1342-1350.


18. Yang, Z.; Cavalier, M.; Walls, M.; Bonville, P.; Lisiecki, I.; Pileni, M.-P., A Phase-Solution Annealing Strategy to Control the Cobalt Nanocrystal Anisotropy: Structural and Magnetic Investigations. 

J. Phys. Chem. C 2012, 116, 15723-15730.


17. Wei, J.; Wang, S.; Sun, S.; Yang, Z.; Yang, Y., Formation of catalytically active CeO2 hollow nanoparticles guided by oriented attachment. Mater. Lett. 2012, 84, 77-80.


16. Yang, Z.; Wei, J.; Yang, H.; Liu, L.; Liang, H.; Yang, Y., Mesoporous CeO2 Hollow Spheres Prepared by Ostwald Ripening and Their Environmental Applications (vol 2010, pg 3354, 2010). Eur. J. Inorg. Chem. 2011, 2006-2006.


15. Wei, J.; Yang, Z.; Yang, Y.; Wei, H., Monodisperse CeO2 sub-micro spherical aggregates with controllable building blocks. Crystal Research and Technology 2011, 46 (2), 201-204.


14. Wei, J.; Yang, Z.; Yang, Y., Fabrication of three dimensional CeO2 hierarchical structures: Precursor template synthesis, formation mechanism and properties. Crystengcomm 2011, 13, 2418-2424.


13. Wei, J.; Yang, Z.; Yang, H.; Sun, T.; Yang, Y., A mild solution strategy for the synthesis of mesoporous CeO2 nanoflowers derived from Ce(HCOO)(3). Crystengcomm 2011, 13, 4950-4955.


12. Liang, H.; Liu, L.; Yang, H.; Wei, J.; Yang, Z.; Yang, Y., Controllable synthesis of gamma-AlOOH micro/nanoarchitectures via a one-step solution route. Crystengcomm 2011, 13, 2445-2450.


11. Yang, Z.; Wei, J.; Yang, H.; Liu, L.; Liang, H.; Yang, Y., Mesoporous CeO2 Hollow Spheres Prepared by Ostwald Ripening and Their Environmental Applications. Eur. J. Inorg. Chem. 2010, 3354-3359.


10. Yang, Z.; Liu, L.; Liang, H.; Yang, H.; Yang, Y., One-pot hydrothermal synthesis of CeO2 hollow microspheres. J. Cryst. Growth 2010, 312 (3), 426-430.


9.    Yang, Z.; Han, D.; Ma, D.; Liang, H.; Liu, L.; Yang, Y., Fabrication of Monodisperse CeO2 Hollow Spheres Assembled by Nano-octahedra. Crystal Growth & Design 2010, 10 (1), 291-295.


8.    Yang, H.; Yang, Z.; Liang, H.; Liu, L.; Guo, J.; Yang, Y., Solvothermal synthesis of In(OH)(3) nanorods and their conversion to In2O3. Mater. Lett. 2010, 64 (13), 1418-1420.


7.    Song, Y.; Wei, J.; Yang, Y.; Yang, Z.; Yang, H., Preparation of CeO2 hollow spheres via a surfactant-assisted solvothermal route. Journal of Materials Science 2010, 45, 4158-4162.


6.    Liu, L.; Yang, Z.; Liang, H.; Yang, H.; Yang, Y., Shape-controlled synthesis of manganese oxide nanoplates by a polyol-based precursor route. Mater. Lett. 2010, 64, 891-893.


5.    Liu, L.; Yang, Z.; Liang, H.; Yang, H.; Yang, Y., Facile synthesis of MnCO3 hollow dumbbells and their conversion to manganese oxide. Mater. Lett. 2010, 64, 2060-2063.


4.    Liang, H.; Yang, H.; Liu, L.; Yang, Z.; Yang, Y., Fabrication of porous alpha-Ni(OH)(2) microflowers by a facile template-free method. Superlattices and Microstructures 2010, 48, 569-576.


3.    Liang, H.; Liu, L.; Yang, Z.; Yang, Y., Facile hydrothermal synthesis of uniform 3D gamma-AlOOH architectures assembled by nanosheets. Crystal Research and Technology 2010, 45, 195-198.


2.    Liang, H.; Liu, L.; Yang, Z.; Yang, Y., Hydrothermal synthesis of ultralong single-crystalline alpha-Ni(OH)(2) nanobelts and corresponding porous NiO nanobelts. Crystal Research and Technology 2010, 45, 661-666.


1.    Yang, Z.; Yang, Y.; Liang, H.; Liu, L., Hydrothermal synthesis of monodisperse CeO2 nanocubes. Mater. Lett. 2009, 63, 1774-1777.


Education
  • 2015/07/01-2015/12/31
    法国巴黎第七大学
    Postgraduate (Postdoctoral)
  • 2014/08/01-2015/12/31
    法国巴黎第六大学
    物理化学
    Postgraduate (Postdoctoral)
  • 2010/09/02-2014/07/02
    法国巴黎第六大学
    With Certificate of Graduation for Doctorate Study
  • 2007/09/01-2010/06/30
    山东大学
    无机化学
    With Certificate of Graduation for Study as Master's Candidates
  • 2003/09/01-2007/07/01
    山东大学
    化学
    Undergraduate (Bachelor’s degree)
Publication
Papers

(1) Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding .NATURE COMMUNICATIONS .2022 (13):5844

(2)仉凤华. Functional Droplets Stabilized by Interfacially Self-Assembled Chiral Nanocomposites .ANGEWANDTE CHEMIE-INTERNATIONAL EDITION .2022 :e202206520

(3) An Electrocatalytic Reaction As a Basis for Chemical Computing in Water Droplets .Journal of the American Chemical Society .2021 ,143 (41):16908-16912

(4)毕玉婷. Controlled Hierarchical Self-Assembly of Nanoparticles and Chiral Molecules into Tubular Nanocomposites .Journal of the American Chemical Society .2023 ,145 (15):8529-8539

(5) Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding .NATURE COMMUNICATIONS .2022 ,13 (1):5844

(6)刘荣娟. Controlled Small Molecules Mediated the Chirality Transfer in Self-Assembled Nanocomposites with Strong Circularly Polarized Luminescence .Journal of the American Chemical Society .2023 ,145 (31)

(7)耿利芳. Molecular Stacking Dependent Molecular Oxygen Activation in Supramolecular Polymeric Photocatalysts .J. Phys. Chem. Lett .2024 ,15 (11):3127

(8)巩彦君. Chirality Inversion in Self-Assembled Nanocomposites Directed by Curvature-Mediated Interactions .ANGEWANDTE CHEMIE-INTERNATIONAL EDITION .2022 (61)

(9)李绘. Photoreduction of low concentrations of CO2 into methane in self-assembled palladium/porous organic cages nanocomposites .Chemical Engineering Journal .2023 ,474 (145431)

(10)巩彦君. Integrative self-assembly of covalent organic frameworks and fluorescent molecules for ultrasensitive detection of a nerve agent simulant .SCIENCE CHINA-MATERIALS .2020 (64)

(11)王烨. Large Optical Asymmetry in Silver Nanoparticle Assemblies Enabled by CH-π Interaction-Mediated Chirality Transfer .J. AM. CHEM. SOC. .2023 ,145 (7):4035

(12)Hao, Yanyun. Ferrocene-conjugated polymeric platform via amide bond formation facilitates enhanced in situ fenton reaction and robust immune responses in combination with toll-like receptor 7/8 agonist .Chemical Engineering Journal .2023 ,472

(13)李绘. Encapsulated CdSe/CdS nanorods in doubleshelled porous nanocomposites for efficient photocatalytic CO2 reduction .NATURE COMMUNICATIONS .2022 (13)

(14)魏璟婧. Self-assembled artificial enzyme from hybridized porous organic cages and iron oxide nanocrystals .胶体与界面 .2022 ,621 (2022):331

(15)魏璟婧. Folding of two-dimensional nanoparticle superlattices enabled by emulsion-confined supramolecular co-assembly .CHEMICAL COMMUNICATIONS .2022 (58):3819

(16)巩彦君. Inversion in Self-Assembled Nanocomposites Directed by Curvature-Mediated Interactions .Angewandte Chemie International Edition .2022 (61)

(17)刘佳明. Diversifying Nanoparticle Superstructures and Functions Enabled by Translative Templating from Supramolecular Polymerization .Angewandte Chemie International Edition .2022 (61)

(18)魏璟婧. Surface Plasmon Resonance Properties of Silver Nanocrystal Superlattices Spaced by Polystyrene Ligands .JOURNAL OF PHYSICAL CHEMISTRY C .2022 (126):4948

(19)刘荣娟. Active Regulation of Supramolecular Chirality through Integration of CdSe/CdS Nanorods for Strong and Tunable Circular Polarized Luminescence .Journal of the American Chemical Society .2022 (5)

(20)华明明. Discrete Supracrystalline Heterostructures from Integrative Assembly of Nanocrystals and Porous Organic Cages .ACS nano .2020 ,14 (5):5517

(21)刘佳明. Building ordered nanoparticle assemblies inspired by atomic epitaxy .Phys. Chem. Chem. Phys。 .2021

(22)魏延泽. CdSe 1D/2D Mixed-Dimensional Heterostructures: Curvature-Complementary Self-Assembly for Enhanced Visible-Light Photocatalysis .Small .2021 ,17 (33)

(23)程才坤. Simultaneous Size- and Phase-Controlled Synthesis of Metal Oxide Nanocrystals through Esterification Reactions .CRYSTAL GROWTH & DESIGN .2021 ,21 (8):4564

(24)仉凤华. Self-Assembled Open Porous Nanoparticle Superstructures .journal of the american chemical society .2021 ,143 (30):11662

(25)杨斐. Chiral Metal Nanoparticle Superlattices Enabled by Porphyrin-Based Supramolecular Structures .ANGEWANDTE CHEMIE-INTERNATIONAL EDITION .2021 (26)

(26)季广彬. Dynamic emulsion droplets enabled by interfacial assembly of azobenzene-functionalized nanoparticles under light and magnetic field .胶体与界面 .2021 ,583 :586

(27)谢杨恩. Dimensionality-controlled self-assembly of CdSe nanorods into discrete suprastructures within emulsion droplets .New J. Chem. .2020 ,44 (48):21112

(28)杨延钊. Anisotropic Assembly of Nanocrystal/Molecular Hierarchical Superlattices Decoding from Tris-Amide Triarylamines Supramolecular Networks .small .2020 (48)

(29)杨延钊. Controlled Synthesis of Au Chiral Propellers from Seeded Growth of Au Nanoplates for Chiral Differentiation of Biomolecules .The Journal of Physical Chemestry C .2020 (124)

(30)杨延钊. Faceted Colloidal Au/Fe3O4 Binary Supracrystals Dictated by Intrinsic Lattice Structures and Their Collective Optical Properties .The Journal of Physical Chemestry C .2020 (124)

(31)杨延钊. Controlled syntheses of monodispersed metal oxide nanocrystals from bulk metal oxide materials .CrystEngComm1 .2020 (22)

(32)张文迪. Colloidal Surface Engineering: Growth of Layered Double Hydroxides with Intrinsic Oxidase-Mimicking Activities to Fight Against Bacterial Infection in Wound Healing .Advanced Healthcare Materials .2020 ,9 (17)

(33)华明明. Hierarchically Porous Organic Cages .ANGEWANDTE CHEMIE INTERNATIONAL EDITION .2021 ,60 (22):12490

(34)杨斐. Chiral Metal Nanoparticle Superlattices Enabled by Porphyrin-Based Supramolecular Structures .ANGEWANDTE CHEMIE-INTERNATIONAL EDITION .2021

(35)仉凤华. Anisotropic Assembly of Nanocrystal/Molecular Hierarchical Superlattices Decoding from Tris-Amide Triarylamines Supramolecular Networks .Small .2020 ,16 (48)

(36)巩彦君. Integrative self-assembly of covalent organic frameworks and fluorescent molecules for ultrasensitive detection of a nerve agent simulant .SCIENCE CHINA-MATERIALS .2020

(37)华明明. Discrete Supracrystalline Heterostructures from Integrative Assembly of Nanocrystals and Porous Organic Cages .ACS nano .2020 ,14 (5):5517

(38) Boosting the photocatalytic performances of covalent organic frameworks enabled by spatial modulation of plasmonic nanocrystals .Applied Catalysis B: Environmental .2020 ,272 :119035

(39)仉凤华. Dynamic covalent chemistry steers synchronizing nanoparticle self-assembly with interfacial polymerization .Commun Chem .2019 ,2

(40)张文迪. Synthesis of catalytically active bimetallic nanoparticles within solution-processable metal-organic-framework scaffolds .CrystEng Comm .2019 ,21 (26):3954

(41)wangshuping. Hierarchical Sheet?on?Sphere Heterostructures as Supports for Metal Nanoparticles: A Robust Catalyst System .catalysis letters .2019

(42)张文迪. Synthesis of catalytically active bimetallic nanoparticles within solution-processable metal– organic-framework scaffolds .CrystEngComm. .2019

(43)wangshuping. A one-pot general strategy towards the synthesis of core-satellite suprastructures .CrystalEngComm .2019 ,21 (8):1335

(44)Zhijie Yang. Do Binary Supracrystals Enhance the Crystal Stability? .JOURNAL OF PHYSICAL CHEMISTRY C .2018

(45)Zhijie Yang. Engineering the magnetic dipolar interactions in 3D binary supracrystals via mesoscale alloying .Advanced Functional Materials .2015 ,25 :4908

(46)Zhijie Yang. Thermal stability of CoAu13 binary nanoparticle superlattices under the electron beam .Chemistry of Materials .2016 ,28 :716-719

(47)Zhijie Yang. Unusual effect of an electron beam on the formation of core/shell (Co/CoO) nanoparticles differing by their crystalline structures .Chemistry of Materials .2013 ,25 :2372

(48)Zhijie Yang. Nanocrystallinity and the ordering of nanoparticles in two-dimensional superlattices: controlled formation of either core/shell (Co/CoO) or hollow CoO nanocrystals .ACS NANO .2013 ,7 :1342

(49)Zhijie Yang. Supracrystalline colloidal eggs: epitaxial growth and freestanding three-dimensional supracrystals in nanoscaled colloidosomes .Journal of the American Chemical Society .2016 ,138 :3493

(50)Zhijie Yang. Control of the oxygen and cobalt atoms diffusion through Co nanoparticles differing by their crystalline structure and size .Advanced Functional Materials .2015

(51)Zhijie Yang. Beyond entropy: magnetic forces induce formation of quasicrystalline structure in binary nanocrystal superlattices .Journal of the American Chemical Society .2015 ,137 :4487

(52)Zhijie Yang. Metal-metal binary nanoparticle superlattices: A case study of mixing Co and Ag nanoparticles .Chemistry of Materials .2015 ,27 :2152

(53)仉凤华. Buckling of Two-Dimensional Colloidal Nanoplatelets in Confined Space To Design Heterogeneous Catalysts .Chemistry of Materials .2019 ,31 (10):3812

(54)Zhijie Yang. Light–heat conversion dynamics in highly diversified water-dispersed hydrophobic nanocrystal assemblies .Proceedings of the National Academy of Sciences of the United States of America .2019 ,116 (17):8161

(55)仉凤华. Buckling of Two-Dimensional Colloidal Nanoplatelets in Confined Space To Design Heterogeneous Catalysts .Chemistry of Materials .2019 ,31 (10):3812

(56)Zhijie Yang. Systems of mechanized and reactive droplets powered by multi-responsive surfactants .Nature .2018

(57)Zhijie Yang. Interference-like patterns of static magnetic fields imprinted into polymer/nanoparticle composites .NATURE COMMUNICATIONS .2017

(58)Zhijie Yang. Do Binary Supracrystals Enhance the Crystal Stability? .JOURNAL OF PHYSICAL CHEMISTRY C .2018

(59)Zhijie Yang. Engineering the magnetic dipolar interactions in 3D binary supracrystals via mesoscale alloying .Advanced Functional Materials .2015 ,25 :4908

(60)Zhijie Yang. Thermal stability of CoAu13 binary nanoparticle superlattices under the electron beam .Chemistry of Materials .2016 ,28 :716-719

(61)Zhijie Yang. Unusual effect of an electron beam on the formation of core/shell (Co/CoO) nanoparticles differing by their crystalline structures .Chemistry of Materials .2013 ,25 :2372

(62)Zhijie Yang. Nanocrystallinity and the ordering of nanoparticles in two-dimensional superlattices: controlled formation of either core/shell (Co/CoO) or hollow CoO nanocrystals .ACS NANO .2013 ,7 :1342

(63)Zhijie Yang. Supracrystalline colloidal eggs: epitaxial growth and freestanding three-dimensional supracrystals in nanoscaled colloidosomes .Journal of the American Chemical Society .2016 ,138 :3493

(64)Zhijie Yang. Control of the oxygen and cobalt atoms diffusion through Co nanoparticles differing by their crystalline structure and size .Advanced Functional Materials .2015

(65)Zhijie Yang. Beyond entropy: magnetic forces induce formation of quasicrystalline structure in binary nanocrystal superlattices .Journal of the American Chemical Society .2015 ,137 :4487

(66)Zhijie Yang. Metal-metal binary nanoparticle superlattices: A case study of mixing Co and Ag nanoparticles .Chemistry of Materials .2015 ,27 :2152

(67)Zhijie Yang. Light–heat conversion dynamics in highly diversified water-dispersed hydrophobic nanocrystal assemblies .Proceedings of the National Academy of Sciences of the United States of America .2019 ,116 (17):8161

(68)Zhijie Yang. Do Binary Supracrystals Enhance the Crystal Stability? .JOURNAL OF PHYSICAL CHEMISTRY C .2018

(69)Zhijie Yang. Engineering the magnetic dipolar interactions in 3D binary supracrystals via mesoscale alloying .2015 ,25 :4908

(70)Zhijie Yang. Thermal stability of CoAu13 binary nanoparticle superlattices under the electron beam .2016 ,28 :716-719

(71)Zhijie Yang. Unusual effect of an electron beam on the formation of core/shell (Co/CoO) nanoparticles differing by their crystalline structures .2013 ,25 :2372

(72)Zhijie Yang. Nanocrystallinity and the ordering of nanoparticles in two-dimensional superlattices: controlled formation of either core/shell (Co/CoO) or hollow CoO nanocrystals .2013 ,7 :1342

(73)Zhijie Yang. Supracrystalline colloidal eggs: epitaxial growth and freestanding three-dimensional supracrystals in nanoscaled colloidosomes .2016 ,138 :3493

(74)Zhijie Yang. Control of the oxygen and cobalt atoms diffusion through Co nanoparticles differing by their crystalline structure and size .2015

(75)Zhijie Yang. Beyond entropy: magnetic forces induce formation of quasicrystalline structure in binary nanocrystal superlattices .2015 ,137 :4487

(76)Zhijie Yang. Metal-metal binary nanoparticle superlattices: A case study of mixing Co and Ag nanoparticles .2015 ,27 :2152

(77)仉凤华. Buckling of Two-Dimensional Colloidal Nanoplatelets in Confined Space To Design Heterogeneous Catalysts .Chemistry of Materials .2019 ,31 (10):3812

(78)仉凤华. Buckling of Two-Dimensional Colloidal Nanoplatelets in Confined Space To Design Heterogeneous Catalysts .Chemistry of Materials .2019 ,31 (10):3812

(79)Zhijie Yang. Light–heat conversion dynamics in highly diversified water-dispersed hydrophobic nanocrystal assemblies .Proceedings of the National Academy of Sciences of the United States of America .2019 ,116 (17):8161

(80)Zhijie Yang. Thermal stability of CoAu13 binary nanoparticle superlattices under the electron beam .2016 ,28 :716-719

(81)Zhijie Yang. Unusual effect of an electron beam on the formation of core/shell (Co/CoO) nanoparticles differing by their crystalline structures .2013 ,25 :2372

(82)Zhijie Yang. Metal-metal binary nanoparticle superlattices: A case study of mixing Co and Ag nanoparticles .2015 ,27 :2152

(83)Zhijie Yang. Nanocrystallinity and the ordering of nanoparticles in two-dimensional superlattices: controlled formation of either core/shell (Co/CoO) or hollow CoO nanocrystals .2013 ,7 :1342

(84)Zhijie Yang. Control of the oxygen and cobalt atoms diffusion through Co nanoparticles differing by their crystalline structure and size .2015

(85)Zhijie Yang. Engineering the magnetic dipolar interactions in 3D binary supracrystals via mesoscale alloying .2015 ,25 :4908

(86)Zhijie Yang. Beyond entropy: magnetic forces induce formation of quasicrystalline structure in binary nanocrystal superlattices .2015 ,137 :4487

(87)Zhijie Yang. Supracrystalline colloidal eggs: epitaxial growth and freestanding three-dimensional supracrystals in nanoscaled colloidosomes .2016 ,138 :3493

(88)Zhijie Yang. Systems of mechanized and reactive droplets powered by multi-responsive surfactants .Nature .2018

(89)Zhijie Yang. Interference-like patterns of static magnetic fields imprinted into polymer/nanoparticle composites .NATURE COMMUNICATIONS .2017

(90)Zhijie Yang. Do Binary Supracrystals Enhance the Crystal Stability? .JOURNAL OF PHYSICAL CHEMISTRY C .2018

Student Information
  • 袁健  2023/09/23 Hits:[] Times
  • 解容浩  2023/09/23 Hits:[] Times
  • 程才坤  2023/09/23 Hits:[] Times
  • 张宗泽  2023/09/23 Hits:[] Times
  • 韩世林  2023/09/23 Hits:[] Times
  • 耿利芳  2023/09/23 Hits:[] Times
  • 石程  2023/09/23 Hits:[] Times
  • 任放放  2023/09/23 Hits:[] Times
  • 刘爽  2023/09/23 Hits:[] Times
  • 毕玉婷  2021/07/15 Hits:[] Times
  • 杨志伟  2021/07/15 Hits:[] Times
  • 李绘  2020/08/07 Hits:[] Times
  • 刘荣娟  2020/08/07 Hits:[] Times
  • 程才坤  2020/03/20 Hits:[] Times
  • 华明明  2020/03/20 Hits:[] Times
  • Copyright All Rights Reserved Shandong University Address: No. 27 Shanda South Road, Jinan City, Shandong Province, China: 250100
    Information desk: (86) - 0531-88395114
    On Duty Telephone: (86) - 0531-88364731 Construction and Maintenance: Information Work Office of Shandong University