杨志伟,山东大学副研究员。山东省高层次人才,山东省泰山学者青年专家。 山东大学数学学院计算数学专业硕博连读、复旦大学博士后(导师程晋教授)、 美国伊利诺伊大学香槟分校访问学者。主要研究领域包括非局部反问题建模计算与应用数学、复杂工程问题建模与高性能计算等,代表作发表于CMAME、SISC、JIIP、Chaos、CMA等国内外相关领域重要期刊上。主持国家自然科学基金项目1项,中国博士后基金2项。获山东省自然科学二等奖(第三完成人)。兼任美国数学会Math Reviews评论员和国际知名期刊Inverse Problems的审稿人等。
联系方式:zhiweiyang@sdu.edu.cn
地址:山东大学千佛山校区,济南市经十路17923号
邮编:250061
代表性成果
[1] Z. Yang, X. Zheng and H. Wang, A variably distributed-order time-fractional diffusion equation: analysis and approximation [J]. Computer Methods in Applied Mechanics and Engineering. 367 (2020) 113118.
[2] Z. Yang, X. Zheng, Z. Zhang and Hong Wang, Strong convergence of a Euler-Maruyama scheme to a variable-order fractional stochastic differential equation driven by a multiplicative white noise [J]. Chaos Solitons and Fractals. 142 (2021) 110392.
[3] Z. Yang, X. Zheng and H. Wang, An indirect collocation method for variable-order fractional wave equations on uniform or graded meshes and its optimal error estimates [J]. International Journal of Computer Mathematics. 98 (2021) 2296-2309.
[4] Z. Yang, H. Liu, H. Wang and X. Guo, A support vector machine method for a two time-scale variable-order time-fractional diffusion equation [J]. East Asian Journal on Applied Mathematics. 12 (2022) 145-162.
[5] Z. Yang, X. Zheng and H. Wang, Well-posedness and regularity of Caputo-Hadamard time-fractional diffusion equations [J]. Fractals. 30 (2022) 2250005.
[6] Z. Yang and H. Wang, A distributed-order fractional diffusion equation with a singular density function: analysis and approximation [J]. Mathematical Methods in the Applied Sciences. 46 (2023) 9819-9833.
[7] J. Dong, N. Du and Z. Yang*, A distributed-order fractional stochastic differential equation driven by Lévy noise: existence, uniqueness and a fast EM scheme [J]. Chaos. 33 (2023) 023109.
[8] X. Zheng, Z. Yang, W. Li and H. Wang, A time-fractional mean field game modeling subdiffusive advective transport [J]. SIAM Journal on Scientific Computing. 45 (2023) B884-B905.
[9] J. Cheng, Z. Yang*, X. Zheng, Inverting mechanical and variable-order parameters of the Euler-Bernoulli beam on viscoelastic foundation [J]. Journal of Inverse and Ill-Posed Problems. 32 (2024) 261-275.
[10] Z. Yang, J. Ma, N. Du and H. Wang, A bond-based linear peridynamic model for viscoelastic materials and its efficient collocation method [J]. Computers and Mathematics with Applications 183 (2025) 121-136.