张鹏

教授

硕士生导师

山东物理学会理事,山东省科技场馆协会常务理事,威海市青年创业导师,期刊Crystals客座编辑

电子邮箱:
个人简介

张鹏,理学博士,教授,凝聚态物理专业,社会兼职有山东物理学会理事,山东省科技场馆协会常务理事,威海市青年创业导师,期刊Crystals客座编辑等。主持国家级一流本科课程“材料模拟与计算”,指导本科生发表SCI期刊论文30多篇,学生获省级及以上科创竞赛荣誉90多人次。


教育经历
  • 1989-09 - 1993-07
    山东大学4年
    物理学
    理学学士学位
  • 2001-09 - 2006-06
    山东大学
    凝聚态物理
    理学博士学位
  • 2006-10 - 2007-01
    美国圣路易斯华盛顿大学
  • 2009-08 - 2010-08
    英国曼彻斯特大学
    凝聚态物理
    博士后
工作经历
  • 1997-04 - 2003-05
    控制科学与工程系
  • 2003-05 - 2004-06
    应用物理系
  • 2004-06 - 2008-04
    空间科学与应用物理系
  • 2006-10 - 2007-01
    美国圣路易斯华盛顿大学
  • 2008-04 - 2025-06
    空间科学与物理学院
  • 2009-08 - 2010-08
    英国曼彻斯特大学
  • 2025-06-至今
    威海核技术前沿创新研究院
授课信息
曾获荣誉
2025    国家级一流本科课程“材料模拟与计算”
2025    第十九届“挑战杯”全国累进创新专项奖
2025    第十九届“挑战杯”山东省优秀指导教师
2023    山东大学教学成果二等奖,1/3
2023    山东大学(威海)学生创新创业教育典型案例双创项目类一等奖
2023    山东大学(威海)学生创新创业教育典型案例双创课程类二等奖
2023    山东大学(威海)首届创新创业类精品微课比赛二等奖
2022    山东大学(威海)学科竞赛优秀指导教师
2022    山东省第八届大学生科技创新大赛铜牌指导教师
2021    第十七届“挑战杯”山东省优秀指导教师
主要论文

1.  How Ice Melts in Nature: A comparative experimental study.  Results Eng.,  30,  109259, 2026. 

2.  Origin of Janus-induced polarization enhancement in sliding ferroelectrics.  Phys. Rev. B,  112,  205403, 2025. 

3.  Theoretical Investigation of Chromium Separation from Chromates through Photon-Phonon Resonant Absorption.  Crystals,  15,  437, 2025. 

4.  Theoretical Investigation for a New Physical Method for Fat Removal by Melting: A Case Study of Caprate Triglyceride.  ACS Omega,  10,  11354, 2025. 

5.  Direct observation of dipole interlocking effect occurrence in Two-Dimensional Ferroelectricity.  Nano Lett.,  1567, 2025. 

6.  Repair engineering of crystal structure in van der Waals materials by probe electron beam.  Nano Lett.,  24,  11028, 2024. 

7.  Theoretical study of molybdenum separation from molybdate assisted by a terahertz laser.  Molecules,  29,  3348, 2024. 

8.  Theoretical investigations of the vibrational spectrum of two-dimensional ice I.  Physica Scripta,  99,  035928, 2024. 

9.  Theoretical Study of Efficient Photon−Phonon Resonance Absorption in the Tungsten-Related Vibrational Mode of Scheelite.  ACS Omega,  9,  10517, 2024. 

10.  Computational Assignment of Tantalum-related Strong Absorption Peaks in the Infrared Spectrum of Potassium Heptafluorotantalate.  ACS Omega,  2023. 

11.  Optoelectronic Evolution in Halogen-Doped Organic-Inorganic Halide Perovskites: A First-principles Analysis.  Molecules,  28,  7341, 2023. 

12.  Theoretical prediction of the anti-icing activity of two-dimensional ice I.  Molecules,  28,  6145, 2023. 

13.  A Theoretical Analysis of the Differential Chemical Reaction Results Caused by Chirality Induction.  Molecules,  28,  6286, 2023. 

14.  A theoretical analysis of the vibrational modes of ammonium metavanadate.  RSC Adv.,  13,  15975, 2023. 

15.  Computational analysis of vibrational spectra of hydrogen bonds in sII and sH gas hydrates.  ACS Omega,  8,  11634, 2023. 

16.  Computational Analysis of Hydrogen Bond Vibrations of Ice III in the Far-Infrared Band.  Crystals,  12,  910, 2022. 

17.  Computer simulation of hypothetical hydrogen ordered structure of ice XIX.  Phys. Chem. Chem. Phys.,  24,  11023, 2022. 

18.  Theoretical prediction of rhenium separation from ammonium perrhenate by phonon–photon resonance absorption.  ACS Omega,  7,  5437, 2022. 

19.  Comparative analysis of the hydrogen bond vibrations of ice XII.  ACS Omega,  7,  5437, 2022. 

20.  First-principles DFT investigations of the vibrational spectra of chloro-quine and hydroxychloroquine.  J. Phys. Commun.,  5,  105009, 2021. 

21.  Studies of hydrogen bond vibrations of hydrogen-disordered ice Ic.  Crystals,  11,  668, 2021. 

22.  Comparative analysis of hydrogen-bonding vibrations of ice VI.  ACS Omega,  6,  14442, 2021. 

23.  A computational validation of water molecules adsorption on an NaCl surface.  Crystals,  11,  610, 2021. 

24.  A strategy for the analysis of the far-infrared vibrational modes of hydrogen -disordered ice V.  J. Phys. Chem. C,  125,  7913, 2021. 

25.  Density functional theory studies of hydrogen bonding vibrations in sI gas hydrates.  New J. Phys.,  22,  093066, 2020. 

26.  Origin of two distinct peaks of ice in the THz region and its application for gas hydrate dissociation.  J. Phys. Chem. C,  124,  1165, 2020. 

27.  Two basic vibrational modes of hydrogen bonds in ice XIII.  AIP Adv.,  9,  115118, 2019. 

28.  Computing investigations of molecular and atomic vibrations of ice IX.  ACS Omega,  4,  18936, 2019. 

29.  DFT investigations of the vibrational spectra and translational modes of ice II.  Molecules,  24,  3135, 2019. 

30.  Computational analysis of exotic molecular and atomic vibrations in ice XV.  Molecules,  24,  3115, 2019. 

31.  Comparative analysis of hydrogen bond vibrations in ice VIII and VII.  J. Phys. Chem. C,  123,  14880, 2019. 

32.  Computational analysis of vibrational spectrum and hydrogen bonds of ice XVII.  New J. Phys.,  21,  043054, 2019. 

33.  Investigations of the hydrogen bonds and vibrational spectrum of clathrate ice XVI.  Materials,  12,  246, 2019. 

34.  Exotic spectra and lattice vibrations of ice X using the DFT method.  Molecules,  23,  2780, 2018. 

35.  DFT simulations of the vibrational spectrum and hydrogen bonds of ice XIV.  Molecules,  23,  1781, 2018. 

36.  Computing analysis of lattice vibrations of ice Ⅷ.  RSC Adv.,  7,  31789, 2017. 

37.  Computational assignments of lattice vibrations of ice Ic.  RSC Adv.,  7,  36801, 2017. 

38.  The normal modes of lattice vibrations of ice XI.  Sci. Rep.,  6,  29273, 2016. 

39.  New observations on hydrogen bonding in ice by density functional theory simulations.  Chin. Phys. B,  23,  026103, 2014. 

40.  Dynamics simulation of the interaction between serine and water.  J. Chem. Phys.,  138,  205101, 2013. 

41.  A calculating proof on hydrogen bonding in ordinary ice by the first-principles density functional theory.  RSC Adv.,  3,  6646, 2013. 

42.  Investigation of the hydrogen bonding in ice Ih by the first-principles density function methods.  J. Chem. Phys.,  137,  044504, 2012. 

43.  Neutron spectroscopic and Raman studies of interaction between water and proline.  Chem. Phys.,  345,  196, 2008. 

44.  Vibrational spectroscopic studies of the interaction of water with serine.  J. Phys. Chem. A,  110,  5000, 2006. 

45.  The interaction of water with glycine: a combined Raman spectra and inelastic neutron scattering studies.  Acta Phys. Pol. A,  109,  399, 2006. 

版权所有   ©山东大学 地址:中国山东省济南市山大南路27号 邮编:250100 
查号台:(86)-0531-88395114
值班电话:(86)-0531-88364731 建设维护:山东大学信息化工作办公室