教师简介

本人从事生物信息学领域的研究工作,围绕蛋白质的结构及功能预测展开了一系列研究工作,包括:1)提出了天然无序蛋白及其功能预测算法DisoRDPBindAPOD、CLIP 等2)合作开发了诸多蛋白质-配体结合位点的预测算法,如CoABindNucBindCOACH-D 等;3)合作开发了蛋白质残基接触图的预测算法MapPred和多重结构比对算法mTM-align,并深度参与了trRosetta系列算法的开发

至今已共发表SCI期刊论文43,包括发表在 PNAS, Nature Communications, Nature Protocols, Advanced SciencesNucleic Acids ResearchCell Death & DifferentiationScience Signaling 等上的科研论文。根据 web of science 数据,论文共被引近两千次,单篇最高引用次数为200余次。作为课题负责人主持国家级项目4项,包括国自然优秀青年基金、面上青年基金各1项,国家重点研发项目课题1个

教育经历
  • 2010-9 — 2014-11
    加拿大阿尔伯塔大学
    软件工程与智能系统
    哲学博士学位
  • 2005-9 — 2008-6
    湘潭大学
    应用数学
    硕士生
  • 2001-9 — 2005-6
    衡阳师范学院
    数学与应用数学
    学士
工作经历
  • 2021-04 — 至今
     数学与交叉科学研究中心  山东大学 
    研究员
  • 2015-01 — 2021-03
     应用数学中心  天津大学 
    副教授
  • 2018-09 — 2019-09
     生物化学系  美国华盛顿大学 
    访问学者
学术兼职
  • 2015-1 — 至今
    担任数十个SCI期刊的审稿人,包括高水平SCI期刊Briefing in Bioinformatics,Bioinformatics,Biochimica et Biophysica Acta-General Subjects,Journal of Chemical Information & Modeling,BMC Bioinformatics等。
研究概况
  • 生物信息学

  • 蛋白质结构预测算法研究

  • 蛋白质功能预测算法研究

  • 固有无序蛋白质的动态结构研究

研究方向
论文成果

(1) Du, Zongyang.RNA threading with secondary structure and sequence profile.Bioinformatics.2024,40 (2)

(2) 彭珍玲.Improved protein structure prediction with trRosettaX2, AlphaFold2, and optimized MSAs in CASP15.PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS.2023

(3) 彭珍玲.CLIP: accurate prediction of disordered linear interacting peptides from protein sequences using co -evolutionary information.Briefings in Bioinformatics.2023,24 (1)

(4) Du, Zongyang.Toward the assessment of predicted inter-residue distance.Bioinformatics.2022,38 (4):962

(5) Du, Zongyang.The trRosetta server for fast and accurate protein structure prediction.NATURE PROTOCOLS.2021,16 (12):5634

(6) Su, Hong.Improved Protein Structure Prediction Using a New Multi-Scale Network and Homologous Templates.ADVANCED SCIENCE.2021,8 (24)

(7) Ye, Lisha.Improved estimation of model quality using predicted inter-residue distance.Bioinformatics.2021,37 (21):3752

(8) Song, Ruiyang.Accurate Sequence-Based Prediction of Deleterious nsSNPs with Multiple Sequence Profiles and Putative Binding Residues.BIOMOLECULES.2021,11 (9)

(9) Protein contact prediction using metagenome sequence data and residual neural networks.Bioinformatics.2020,36 (1):41-48

(10) APOD: accurate sequence-based predictor of disordered flexible linkers.Bioinformatics.2020,36 (S2):754-761

(11) Improved protein structure prediction using predicted inter-residue orientations.PNAS.2020,117 (3):1496-1503

(12) Codon selection reduces GC content bias in nucleic acids encoding for intrinsically disordered proteins.Cellular & Molecular Life Science.2020,77 (1):149-160

(13) Computational Prediction of MoRFs, Short Disorder-to-order Transitioning Protein Binding Regions.Computational & Structural Biotechnology Journal.2019,17 :454-462

(14) mTM-align: a server for fast protein structure database search and multiple protein structure alignment.Nucleic Acids Research.2018,46 :W380-W386

(15) COACH-D: improved protein-ligand binding site prediction with refined ligand-binding poses through molecular docking Nucleic.Nucleic Acids Research.2018,46 :W438-W442

(16) Improving sequence-based prediction of protein-peptide binding residues by introducing intrinsic disorder and a consensus method.Journal of Chemical Information & Modeling.2018,58 :1459-1468

(17) CoABind: a novel algorithm for Coenzyme A (CoA)- and CoA derivatives-binding.Bioinformatics.2018,34 :2598-2604

(18) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in a thousand proteomes from all domains of life.Cellular & Molecular Life Science.2015,72 (1):137-151

(19) High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder.Nucleic Acids Research.2015,43 (18):e121

(20) A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome.Cellular & Molecular Life Science.2014,71 (8):1477-1504

(21) Interplay between PDIA6 and miR-322 controls adaptive response to disrupted endoplasmic reticulum calcium homeostasis.Science Signaling.2014,7 (329):ra54

(22) Resilience of death: intrinsic disorder in proteins involved in the programmed cell death.Cell Death & Differentiation.2013,20 :1257-1267

授课信息
版权所有   ©山东大学 地址:中国山东省济南市山大南路27号 邮编:250100 
查号台:(86)-0531-88395114
值班电话:(86)-0531-88364731 建设维护:山东大学信息化工作办公室