吴选俊教授课题组

Wu Research Group at Shandong University

34Yang, C.; Li, E.; Guo, X.; Xie, W.; Wang, Y.; Huang, X.; Chiu, S.*; Wu, X.* A Self-Assembled Nanovaccine with BA.4/5 Receptor-Binding Domain and CpG Oligodeoxynucleotides Induces Broad-Spectrum Neutralization against SARS-CoV-2 Omicron Subvariants. ACS Nano 2025, 19 (17), 16424–16437. 


33Wang, Y.; Fan, N.; Wang, R.; Li, X.; Zhao, F.; Miao, L.; Wang, X.; Yan, X.; Zhang, Z.; Wu, X.; Gao, Z.*; Li, Y.*; Li, Y.* Discovery of Airway-Administered Ionophores for Mn2+ to Mitigate Lung Metastasis by Targeting Disseminated Tumor Cell. ACS Nano 2025,19 (14), 14330–14350. 


32Zhao, Q.; Huang, X.; Wu, X.* Development of NHAcGD2/NHAcGD3 conjugates of bacteriophage MX1 virus-like particles as anticancer vaccines. RSC Adv. 2024, 14 (9), 6246–6252.


31Tan, Z.; Yang, C.; Lin, P.-h.; Ramadan, S.; Yang, W.; Rashidi, Z.; Lang, S.; Shafieichaharberoud, F.; Gao, J.; Pan, X.; Soloff, N.; Wu, X.; Bolin, S.; Pyeon, D.; Huang, X.* Inducing Long Lasting B Cell and T Cell Immunity Against Multiple Variants of SARS-CoV-2 Through Mutant Bacteriophage Qβ-Receptor Binding Domain Conjugate. Adv. Healthcare Mater. 2024, 13 (20), 2302755.


30Dong, H.; Huang, X.; Wu, X.* Development of a novel sialic acid-conjugated camptothecin prodrug for enhanced cancer chemotherapy. Biomater. Sci. 2023, 11 (18), 6160–6166.


29Wang, J.; Yang, C.; Gao, Y.; Wu, X.* Development of superior nanotheranostic agents with indocyanine green-conjugated poly(styrene-alt-maleic acid) nanoparticles for tumor imaging and phototherapy. J. Mater. Chem. B. 2023, 11 (28), 6560–6566.


28Gao, Y.; Wang, W.; Yang, Y.; Zhao, Q.; Yang, C.; Jia, X.; Liu, Y.; Zhou, M.; Zeng, W.; Huang, X.; Chiu, S.; Jin, T.; Wu, X.* Developing Next-Generation Protein-Based Vaccines Using High-Affinity Glycan Ligand-Decorated Glyconanoparticles. Adv. Sci. 2023, 10 (2), 2204598. 


27Dong, H.; Gao, Y.; Huang, X.; Wu, X.* Synthesis of sialic acid conjugates of the clinical near-infrared dye as next-generation theranostics for cancer phototherapy. J. Mater. Chem. B. 2022, 10 (6), 927–934. 


26Sungsuwan, S.; Wu, X.; Shaw, V.; Kavunja, H.; McFall-Boegeman, H.; Rashidijahanabad, Z.; Tan, Z.; Lang, S.; Nick, S. T.; Lin, P.-h.; Yin, Z.; Ramadan, S.; Jin, X.*; Huang, X.* Structure Guided Design of Bacteriophage Qβ Mutants as Next Generation Carriers for Conjugate Vaccines. ACS Chem. Biol. 2022, 17 (11), 3047–3058.


25Wu, X.; Ye, J.; DeLaitsch, A. T.; Rashidijahanabad, Z.; Lang, S.; Kakeshpour, T.; Zhao, Y.; Ramadan, S.; Saavedra, P. V.; Yuzbasiyan-Gurkan, V.; Kavunja, H.; Cao, H.*; Gildersleeve, J. C.*; Huang, X.* Chemoenzymatic Synthesis of 9NHAc-GD2 Antigen to Overcome the Hydrolytic Instability of O-Acetylated-GD2 for Anticancer Conjugate Vaccine Development. Angew. Chem., Int. Ed. 2021, 60 (45), 24179–24188.


24Gao, Y.; Zhao, Q.; Dong, H.; Xiao, M.; Huang, X.; Wu, X.* Developing Acid-Responsive Glyco-Nanoplatform Based Vaccines for Enhanced Cytotoxic T-lymphocyte Responses Against Cancer and SARS-CoV-2. Adv. Funct. Mater. 2021, 31 (41), 2105059. 


23Gao, Y.; Zhao, Q.; Xiao, M.; Huang, X.; Wu, X.* A versatile photothermal vaccine based on acid-responsive glyco-nanoplatform for synergistic therapy of cancer. Biomaterials 2021, 273, 120792. 


22Zhao, Q.; Gao, Y.; Xiao, M.; Huang, X.; Wu, X.* Synthesis and immunological evaluation of synthetic peptide based anti-SARS-CoV-2 vaccine candidates. Chem. Commun. 2021, 57 (12), 1474–1477. 


21Wu, X.; McFall-Boegeman, H.; Rashidijahanabad, Z.; Liu, K.; Pett, C.; Yu, J.; Schorlemer, M.; Ramadan, S.; Behren, S.; Westerlind, U.; Huang, X.* Synthesis and immunological evaluation of the unnatural β-linked mucin-1 Thomsen-Friedenreich conjugate. Org. Biomol. Chem. 2021, 19 (11), 2448–2455. 


20Wang, X.; Lang, S.; Tian, Y.; Zhang, J.; Yan, X.; Fang, Z.; Weng, J.; Lu, N.; Wu, X.; Li, T.; Cao, H.; Li, Z.*; Huang, X.* Glycoengineering of Natural Killer Cells with CD22 Ligands for Enhanced Anticancer Immunotherapy. ACS Central Sci. 2020, 6 (3), 382–389. 


19Lang, S.; Tan, Z.; Wu, X.; Huang, X.* Synthesis of Carboxy-Dimethylmaleic Amide Linked Polymer Conjugate Based Ultra-pH-sensitive Nanoparticles for Enhanced Antitumor Immunotherapy. ACS Macro Letters 2020, 9 (11), 1693–1699. 


18Wu, X.; McKay, C.; Pett, C.; Yu, J.; Schorlemer, M.; Ramadan, S.; Lang, S.; Behren, S.; Westerlind, U.; Finn, M. G.; Huang, X.* Synthesis and Immunological Evaluation of Disaccharide Bearing MUC-1 Glycopeptide Conjugates with Virus-like Particles. ACS Chem. Biol. 2019, 14 (10), 2176–2184. 


17Wu, X.; Yin, Z.; McKay, C.; Pett, C.; Yu, J.; Schorlemer, M.; Gohl, T.; Sungsuwan, S.; Ramadan, S.; Baniel, C.; Allmon, A.; Das, R.; Westerlind, U.; Finn, M. G.; Huang, X.* Protective Epitope Discovery and Design of MUC1-based Vaccine for Effective Tumor Protections in Immunotolerant Mice. J. Am. Chem. Soc. 2018, 140 (48), 16596–16609. 


16Yin, Z.; Wu, X.; Kaczanowska, K.; Sungsuwan, S.; Aragones, M. C.; Pett, C.; Yu, J.; Baniel, C.; Westerlind, U.; Finn, M. G.; Huang, X.* Antitumor Humoral and T Cell Responses by Mucin-1 Conjugates of Bacteriophage Qβ in Wild-type Mice. ACS Chem. Biol. 2018, 13 (6), 1668–1676. 


2011-2017


15Sungsuwan, S.; Wu, X.; Huang, X. Evaluation of Virus-Like Particle Based Tumor-Associated Carbohydrate Immunogen in a Mouse Tumor Model. In Chemical Glycobiology, Pt A: Synthesis, Manipulation and Applications of Glycans, Imperiali, B. Ed.; Methods in Enzymology, Vol. 597; 2017; pp 359–376.


14Qin, Q.; Yin, Z.; Wu, X.; Haas, K. M.; Huang, X. Valency and density matter: Deciphering impacts of immunogen structures on immune responses against a tumor associated carbohydrate antigen using synthetic glycopolymers. Biomaterials 2016101, 189–198.


13Lin, B.; Wu, X.; Zhao, H.; Tian, Y.; Han, J.; Liu, J.; Han, S.* Redirecting immunity via covalently incorporated immunogenic sialic acid on the tumor cell surface. Chem. Sci. 2016, 7 (6), 3737–3741.


12Yu, M.; Wu, X.; Lin, B.; Han, J.; Yang, L.; Han, S. Lysosomal pH Decrease in Inflammatory Cells Used To Enable Activatable Imaging of Inflammation with a Sialic Acid Conjugated Profluorophore. Anal. Chem. 201587 (13), 6688–6695.


11Wu, X.; Lin, B.; Yu, M.; Yang, L.; Han, J.; Han, S.* A carbohydrate-grafted nanovesicle with activatable optical and acoustic contrasts for dual modality high performance tumor imaging. Chem. Sci. 2015, 6 (3), 2002–2009. 


10Wu, X.; Yu, M.; Lin, B.; Xing, H.; Han, J.; Han, S.* A sialic acid-targeted near-infrared theranostic for signal activation based intraoperative tumor ablation. Chem. Sci. 2015, 6 (1), 798–803. 


9Wu, X.; Tian, Y.; Yu, M.; Han, J.; Han, S.* A targetable acid-responsive micellar system for signal activation based high performance surgical resolution of tumors. Biomater. Sci. 2014, 2 (7), 972–979. 


8Wu, X.; Tian, Y.; Yu, M.; Lin, B.; Han, J.; Han, S.* A fluorescently labelled sialic acid for high performance intraoperative tumor detection. Biomater. Sci. 2014, 2 (8), 1120–1127. 


7Wu, X.; Shi, J.; Yang, L.; Han, J.; Han, S.* A near-infrared fluorescence dye for sensitive detection of hydrogen sulfide in serum. Bioorg. Med. Chem. Lett. 2014, 24 (1), 314–316. 


6Wu, X.; Li, Z.; Yang, L.; Han, J.; Han, S.* A self-referenced nanodosimeter for reaction based ratiometric imaging of hypochlorous acid in living cells. Chem. Sci. 2013, 4 (1), 460–467. 


5Wu, X.; Song, Y.; Han, J.; Yang, L.; Han, S.* Traceless protein delivery with an efficient recyclable nanocarrier. Biomater. Sci. 2013, 1 (9), 918–923. 


4Wu, Z.; Wu, X.; Li, Z.; Yang, Y.; Han, J.; Han, S.* Benzothiazoline based chemodosimeters for fluorogenic detection of hypochlorous acid. Bioorg. Med. Chem. Lett. 2013, 23 (15), 4354–4357. 


3Wu, X.; Wu, S.; Yang, L.; Han, J.; Han, S.* Cytosolic delivery of proteins mediated by aldehyde-displaying silica nanoparticles with pH-responsive characteristics. J. Mater. Chem. 2012, 22 (33), 17121–17127. 


2Wu, X.; Wu, Z.; Yang, Y.; Han, S.* A highly sensitive fluorogenic chemodosimeter for rapid visual detection of phosgene. Chem. Commun. 2012, 48 (13), 1895–1897.


1Wu, X.; Wu, Z.; Han, S.* Chromogenic and fluorogenic detection of a nerve agent simulant with a rhodamine-deoxylactam based sensor. Chem. Commun. 2011, 47 (41), 11468–11470.