Personal Information:
More >>Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Gender:Male
Alma Mater:Shandong University
Education Level:With Certificate of Graduation for Doctorate Study
Biography
程合锋,教授,博士生导师,山东省泰山学者青年专家,山东大学齐鲁青年学者。主要致力于半导体缺陷化学与光(电)催化、表面等离子体催化等在太阳能利用及转换方面的研究。以第一/通讯作者在Angew. Chem., J. Am. Chem. Soc., Adv. Mater.等国际期刊上发表SCI论文三十余篇,其中2篇论文被Angew. Chem. 选为热点文章(Hot Paper),1篇论文被J. Am. Chem. Soc.作为研究聚焦热点文章(JACS Spotlights)报道。论文总引用次数超过7000次,其中单篇SCI研究论文最高引用超过1000次,4篇SCI论文入选“ESI高被引论文”,H-index为43。
个人邮箱:chenghefeng@sdu.edu.cn
【研究内容】
主要研究领域为半导体材料的缺陷化学调控及其在太阳光能量利用及转换方面的应用,包括光/电催化水分解、二氧化碳还原等。
◆ 半导体材料的缺陷设计与电子态调控
◆ 光(电)催化反应过程原位机制研究
◆ 太阳能光化学转换器件搭建与应用
【招生情况】
欢迎对研究内容感兴趣的本科生、研究生和博士后加入。
【主要论著】
[1] H. Cheng,* Y. Kuwahara, H. Yamashita,* Plasmonic Catalysis: From Fundamentals to Applications, Chapter 8: Earth-Abundant Plasmonic Catalysts, Ed: Pedro H. C. Camargo, Emiliano Cortés, Wiley-VCH press, 2021, 231–259.
[2] H. Cheng, P. Wang, Z. Wang, Y. Liu B. Huang,* Surface Science of Photocatalysis, Chapter 13: Silver-based visible light-responsive photocatalysts, Ed: Jiaguo Yu, Mietek Jaroniec, Chuanjia Jiang, Elsevier, 2020, 415–452.
【发表论文】
【2024年】
[34] H. Liu, B. Sun, Z. Li, D. Xiao, Z. Wang, Y. Liu, Z. Zheng, P. Wang, Y. Dai, H. Cheng*, B. Huang*, Plasmon-Driven Highly Selective CO2 Photoreduction to C2H4 on Ionic Liquid-Mediated Copper Nanowires, Angew. Chem. Int. Ed. 2024, DOI: 10.1002/anie.202410596.
[33] B. Sun, Z. Li, D. Xiao, H. Liu, K. Song,* Z. Wang, Y. Liu, Z. Zheng, P. Wang, Y. Dai, B. Huang, A. Thomas,* H. Cheng,* Unveiling pH-Dependent Adsorption Strength of *CO2− Intermediate over High-Density Sn Single Atom Catalyst for Acidic CO2-to-HCOOH Electroreduction, Angew. Chem. Int. Ed. 2024, 63, e202318874.
[32] Z. Wang, X. Liu,* Y. Mao, H. Zhang, P. Wang, Z. Zheng, Y. Liu, Y. Dai, H. Cheng,* Z. Wang,* B. Huang,* An Efficient Bias-Free Si Photocathode Coupled BiVO4-Triethanolamine Photoelectrochemical Fuel Cell for Simultaneous Pollutant Treatment and Hydrogen Production, Adv. Funct. Mater. 2024, 34, 2313950.
[31] Y. Mao, M. Zhang, G. Zhai, S. Si, D. Liu, K. Song, Y. Liu, Z. Wang, Z. Zheng, P. Wang, Y. Dai, H. Cheng, B. Huang, Asymmetric Cu(I)─W Dual-Atomic Sites Enable C─C Coupling for Selective Photocatalytic CO2 Reduction to C2H4, Adv. Sci. 2024, 11, 202401933.
[30] S. Si, P. Gong, X. Bao, X. Tan, Y. Mao, H. Zhang, D. Xiao, K. Song,* Z. Wang, P. Wang, Y. Liu, Z. Zheng, Y. Dai, B. Huang, H. Cheng,* Visible-Light-Driven Highly Selective 5-Hydroxymethylfurfural Upgrading and H2 Generation via Atomically Dispersed Ni Sites on ZnIn2S4 Nanosheets, ACS Catal. 2024, 14, 8343.
[29] B. Sun, X. Wang, Z. Li, H. Liu, W. Jiang, K. Song, Z. Wang, P. Wang, Y. Liu, Z. Zheng, Y. Dai, B. Huang, H. Cheng,* Complex-confinement strategy to high-loading and structure-tunable Indium single-atom catalysts towards efficient electrocatalytic CO2 reduction, Chem. Catal. 2024, 4, 100862.
[28] H. Li, G. Wu, J. Wu, J. Shen, L. Chen, J. Zhang, Y. Mao, H. Cheng,* M. Zhang,* Q. Ma,* Y. Zheng,* Ultrathin WO3 Nanosheets/Pd with Strong Metal–Support Interactions for Highly Sensitive and Selective Detection of Mustard-Gas Simulants, ACS Sens. 2024, 9, 3773.
[27] Y. Sun, Z. Li, B. Sun, Y. Mao, B. Huang,* H. Cheng,* High-performance artificial leaf: from electrocatalyst design to solar-to-chemical conversion, Mater. Chem. Front. 2024, 8, 1300.
【2023年】
[26] Z. Li, B. Sun, D. Xiao, Z. Wang, Y. Liu, Z. Zheng, P. Wang, Y. Dai, H. Cheng,* B. Huang, Electron-Rich Bi Nanosheets Promote CO2•− Formation for High-Performance and pH-Universal Electrocatalytic CO2 Reduction, Angew. Chem. Int. Ed. 2023, 62, e202217569. (Hot Paper)
[25] X. Meng, Z. Li, Y. Liu, Z. Wang, P. Wang, Z. Zheng, Y. Dai, B. Huang, H. Cheng,* J.-H. He,* Enabling unassisted solar water splitting with concurrent high efficiency and stability by robust earth-abundant bifunctional electrocatalysts, Nano Energy 2023, 109, 108296.
[24] Y. Mao, M. Zhang, S. Si, G. Zhai, X. Bao, K. Song, L. Zheng, Y. Liu, Z. Wang, Z. Zheng, P. Wang, Y. Dai, H. Cheng,* B. Huang, Electronic Structure Manipulation via Site-Selective Atomically-Dispersed Ni for Efficient Photocatalytic CO2 Reduction, ACS Catal. 2023, 13, 8362.
[23] X. Tan, S. Si, D. Xiao, X. Bao, K. Song,* Z. Wang, Y. Liu, Z. Zheng, P. Wang,* Y. Dai, B. Huang, H. Cheng,* Single Cobalt Atoms Induced Molecular O2 Activation for Enhanced Photocatalytic Biomass Upgrading on ZnIn2S4 Nanosheets, ACS Catal. 2023, 13, 14395.
【2022年】
[22] S. Si, H. Shou, Y. Mao, X. Bao, G. Zhai, K. Song, Z. Wang, P. Wang, Y. Liu, Z. Zheng, Y. Dai, L. Song,* B. Huang, H. Cheng,* Low-Coordination Single Au Atoms on Ultrathin ZnIn2S4 Nanosheets for Selective Photocatalytic CO2 Reduction towards CH4, Angew. Chem. Int. Ed. 2022, 61, e202209446. (Hot Paper)
Reported by ChemEurope, ChemistryViews with“Fuel from a Greenhouse Gas—Single gold atoms catalyze the selective methanization of carbon dioxide”
https://www.chemeurope.com/en/news/1177685/fuel-from-a-greenhouse-gas.html
https://www.chemistryviews.org/fuel-from-a-greenhouse-gas/
[21] Y. Mao, H. Zhang, W. Jiang, R. Zhao, Y. Liu, Z. Wang, P. Wang, Z. Zheng, K. Song, W. Wei, Y. Dai, J.-H. He,* H. Cheng,* B. Huang, An integrated Si photocathode with lithiation-activated molybdenum oxide nanosheets for efficient ammonia synthesis, Nano Energy 2022, 102, 107639.
[20] W. Jiang, H. Zhang, Y. An, Y. Mao, Z. Wang, Y. Liu, P. Wang, Z. Zheng, W. Wei, Y. Dai, H. Cheng,* B. Huang,* Free-Standing Nanoarrays with Energetic Electrons and Active Sites for Efficient Plasmon-Driven Ammonia Synthesis, Small 2022, 18, 2201269.
[19] Z. Li, Y. Gao, X. Meng, B. Sun, K. Song, Z. Wang, Y. Liu, Z. Zheng, P. Wang, Y. Dai, H. Cheng,* B. Huang,* In situ-derived self-selective electrocatalysts for solar formate production from simultaneous cathodic CO2 reduction and anodic methanol oxidation, Cell Rep. Phys. Sci. 2022, 3, 100972.
[18] R. Zhao, G. Wang, Y. Mao, X. Bao, Z. Wang, P. Wang, Y. Liu, Z. Zheng, Y. Dai, H. Cheng,* B. Huang,* Li-intercalation boosted oxygen vacancies enable efficient electrochemical nitrogen reduction on ultrathin TiO2 nanosheets, Chem. Eng. J. 2022, 430, 133085.
【2020年】
[17] M. Wang, Z. Wang,* B. Zhang, W. Jiang, X. Bao, H. Cheng,* Z. Zheng, P. Wang, Y. Liu, M.-H. Whangbo, Y. Li, Y. Dai, B. Huang,* Enhancing the Photoelectrochemical Water Oxidation Reaction of BiVO4 Photoanode by Employing Carbon Spheres as Electron Reservoirs, ACS Catal. 2020, 10, 13031.
[16] J. Li, G. Chen, J. Yan, B. Huang, H. Cheng,* Z. Lou,* B. Li,* Solar-driven plasmonic tungsten oxides as catalyst enhancing ethanol dehydration for highly selective ethylene production, Appl. Catal., B 2020, 264, 118517.
【2019年之前】
[15] H. Cheng,# M. Wen,# X. Ma, Y. Kuwahara, K. Mori, Y. Dai, B. Huang,* H. Yamashita,* Hydrogen Doped Metal Oxide Semiconductors with Exceptional and Tunable Localized Surface Plasmon Resonances, J. Am. Chem. Soc. 2016, 138, 9316. (Featured in JACS Spotlights)
[14] H. Cheng, X. Qian, Y. Kuwahara, K. Mori, H. Yamashita,* A Plasmonic Molybdenum Oxide Hybrid with Reversible Tunability for Visible-Light-Enhanced Catalytic Reactions, Adv. Mater. 2015, 27, 4616.
[13] H. Cheng, T. Kamegawa, K. Mori, H. Yamashita,* Surfactant-Free Nonaqueous Synthesis of Plasmonic Molybdenum Oxide Nanosheets with Enhanced Catalytic Activity for Hydrogen Generation from Ammonia Borane under Visible Light, Angew. Chem. Int. Ed. 2014, 53, 2910. (ESI Highly Cited Paper)
[12] H. Cheng,* M. Klapproth, A. Sagaltchik, S. Li, A. Thomas,* Ordered mesoporous WO2.83: selective reduction synthesis, exceptional localized surface plasmon resonance and enhanced hydrogen evolution reaction activity, J. Mater. Chem. A 2018, 6, 2249.
[11] H. Cheng, K. Fuku, Y. Kuwahara, K. Mori, H. Yamashita,* Harnessing single-active plasmonic nanostructures for enhanced photocatalysis under visible light, J. Mater. Chem. A 2015, 3, 5244. (Front Cover)
[10] H. Cheng, B. Huang,* Y. Dai, Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications, Nanoscale 2014, 6, 2009. (ESI Highly Cited Paper)
[9] H. Cheng, W. Wang, B. Huang,* Z. Wang, J. Zhan, X. Qin, X. Zhang, Y. Dai, Tailoring AgI nanoparticles for the assembly of AgI/BiOI hierarchical hybrids with size-dependent photocatalytic activities, J. Mater. Chem. A 2013, 1, 7131.
[8] H. Cheng, B. Huang,* Y. Liu, Z. Wang, X. Qin, X. Zhang, Y. Dai, An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol, Chem. Commun. 2012, 48, 9729.
[7] H. Cheng, B. Huang,* X. Qin, X. Zhang, Y. Dai, A controlled anion exchange strategy to synthesize Bi2S3 nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity, Chem. Commun. 2012, 48, 97.
[6] H. Cheng, B. Huang,* Z. Wang, X. Qin, X. Zhang, Y. Dai, One-Pot Miniemulsion-Mediated Route to BiOBr Hollow Microspheres with Highly Efficient Photocatalytic Activity, Chem. Eur. J. 2011, 17, 8039.
[5] H. Cheng, B. Huang,* P. Wang, Z. Wang, Z. Lou, J. Wang, X. Qin, X. Zhang, Y. Dai, In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants, Chem. Commun. 2011, 47, 7054. (Back Cover)
[4] H. Cheng, B. Huang,* Y. Dai, X. Qin, X. Zhang, One-Step Synthesis of the Nanostructured AgI/BiOI Composites with Highly Enhanced Visible-Light Photocatalytic Performances, Langmuir 2010, 26, 6618.
[3] H. Cheng, B. Huang,* J. Lu, Z. Wang, B. Xu, X. Qin, X. Zhang, Y. Dai, Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs, Phys. Chem. Chem. Phys. 2010, 12, 15468.
[2] H. Cheng, B. Huang,* K. Yang, Z. Wang, X. Qin, X. Zhang, Y. Dai, Facile Template-Free Synthesis of Bi2O2CO3 Hierarchical Microflowers and Their Associated Photocatalytic Activity, ChemPhysChem 2010, 11, 2167.
[1] H. Cheng, B. Huang,* Y. Dai, X. Qin, X. Zhang, Z. Wang, M. Jiang, Visible-light photocatalytic activity of the metastable Bi20TiO32 synthesized by a high-temperature quenching method, J. Solid State Chem. 2009, 182, 2274.