kLyq685ltI4qXBrSQkRjt0EHNToD3rKD2v3239z6UgESa9BUOsZifjjQpdM2
Biography

Yongshun Gong is a Professor in the School of Software, Shandong University. He received his Ph.D. degree from University of Technology Sydney in 2020. He has got the support by Natural Science Foundation of Shandong Province for Excellent Young Scholars. His principal research interest covers data science, representation learning and machine learning, particularly in the areas of representation learning, spatio-temporal data mining, predictive model, multi-model enhencement, recommender systems, matrix factorization, and sequential pattern mining. He has published above 80 papers in top journals and refereed conference proceedings for Artificial Intelligence, Pattern Recognition, IEEE T-PAMI, AIJ, IEEE T-CYB, IEEE T-KDE, IEEE T-NNLS, IEEE T-MM, NeruIPS, IJCAI, AAAI, KDD, CVPR, ACM MM, CIKM, ICME, etc.  



Google scholar:https://scholar.google.com/citations?user=WIHqungAAAAJ&hl=en 



What's new:


02/2024: One paper is accepted to IEEE TKDE (CCF-A)

02/2024: One paper is accepted to Knowledge Based Systems (SCI-1)

01/2024: One paper is accepted to FSE/ESEC 2024 (CCF-A)

01/2024: One paper is accepted to Artificial Intelligence (CCF-A)

12/2023: One paper is accepted to ICASSP 2024 (CCF-B)

12/2023: Two papers are accepted to AAAI 2024 (CCF-A)

10/2023: One paper is accepted to Knowledge Based Systems (SCI-1)

09/2023: One paper is accepted to ICDM 2023 (CCF-B)

08/2023: One paper is accepted to CIKM 2023 (CCF-B)

07/2023: One paper is accepted to ACM MM 2023 (CCF-A)

07/2023: One paper is accepted to Information Sciences (SCI-1)

06/2023: One paper is accepted to IEEE TMM.

03/2023: One paper is accepted to IEEE TPAMI.

03/2023: One paper is accepted to IEEE TSUSC.

01/2023: One paper is accepted to TOIS.

10/2022: One paper is accepted to IEEE TKDE.

08/2022: One paper is accepted to IEEE TKDE.

03/2022, Two papers are accepted to ICME 2022.

03/2022, One paper is accepted to CVPR 2022.

02/2022, I serve as the Technical Program Committee in the International Conference on Big Data and Artificial Intelligence (ICBDAI 2022), and welcome to submit papers.

01/2022, We held a Workshop about Spatio-temporal Data Mining in the International Conference on Machine Learning, Cloud Computing and Intelligent Mining, and welcome to submit papers.

11/2021, One paper is accepted to IEEE TMM.

08/2021, One paper is accepted to ACM-MM 2021 Industrial track (main Proceeding).

08/2021, One paper is accepted to Briefings in Bioinformatics.

04/2021, One paper is accepted to IEEE TKDE.

03/2021, One paper is accepted to IEEE TMM.

02/2021, One Paper is accepted to IEEE TNNLS.

12/2020, One Paper is accepted to IEEE TNNLS.


Selected Publications:


  1. [1]. Yongshun Gong, Zhibin Li, Wei Liu, Xiankai Lu, Xinwang Liu, Ivor W. Tsang, Yilong Yin. Missingness-pattern-adaptive Learning with Incomplete Data. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023. (IF=24.31,中科院SCI-1区,CCF-A)

  2. [2]. Xiaoyu Li, Yongshun Gong*, Wei Liu, Yilong Yin, Yu Zheng, Liqiang Nie. Dual-track Spatio-temporal Learning for Urban Flow Prediction with Adaptive Normalization. Artificial Intelligence (AIJ), 2024. (IF=14.4CCF-A)

  3. [3]. Yongshun Gong, Tiantian He, Meng Chen, Bin Wang, Liqiang Nie, Yilong Yin. Spatio-Temporal Enhanced Contrastive and Contextual Learning for Weather Forecasting. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2024. (IF=9.235CCF-A)

  4. [4] Xiaoyu Li, Yitian Zhang, Guodong Long, Yupeng Hu, Wenpeng Lu, Meng Chen, Chengqi Zhang, and Yongshun Gong*. Adaptive Traffic Forecasting on Daily Basis: A Spatio-Temporal Context Learning Approach. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2025. (IF=9.235CCF-A)

  5. [5]. An Yang, Zhibin Li, Xiaoyu Li, Wei Liu, Xinghao Yang, Haoliang Sun, Meng Chen, Yu Zheng, Yongshun Gong*. Spatio-Temporal Multivariate Probabilistic Modeling for Traffic Prediction. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2025. (IF=9.235CCF-A)

  6. [6]. Min Yang, Xiaoyu Li, Bin Xu, Xiushan Nie, Muming Zhao, Chengqi Zhang, Yu Zheng, Yongshun Gong*. STDA: Spatio-Temporal Deviation Alignment Learning for Cross-city Fine-grained Urban Flow InferenceIEEE Transactions on Knowledge and Data Engineering (TKDE), 2025. (IF=9.235CCF-A)

  7. [7]. Hao Qu, Yongshun Gong*, Meng Chen, Junbo Zhang, Yu Zheng, Yilong Yin. Forecasting Fine-grained Urban Flow via Spatio-temporal Contrastive Self-Supervision. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2022. (IF=9.235CCF-A)

  8. [8]. Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Yilong Yin, Yu Zheng. Missing Value Imputation for Multi-view Urban Statistical Data via Spatial Correlation Learning. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2021. (IF=9.235CCF-A)

  9. [9]. Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Yu Zheng. Online Spatiotemporal Crowd Flow Distribution Prediction for Complex Metro System. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2020. (IF=9.235CCF-A)

  10. [10]. Zheng, Xiao, Xiaoshui Huang, Guofeng Mei, Yuenan Hou, Zhaoyang Lyu, Bo Dai, Wanli Ouyang, and Yongshun Gong*. Point Cloud Pre-training with Diffusion Models. CVPR 2024. (CCF-A)

  11. [11]. Jin Huang, Yongshun Gong*, Lu Zhang, Jian Zhang, Liqiang Nie, Yilong Yin. Modeling Multiple Aesthetic Views for Series Photo Selection. IEEE Transactions on Multimedia. 2023. (中科院SCI-1区,IF=8.18)

  12. [12]. Yongshun Gong, Xue Dong, Jian Zhang, Meng Chen. Latent Evolution Model for Change Point Detection in Time-varying Networks. Information Sciences. 2023. (中科院SCI-1区,IF=8.1)

  13. [13]. Yongshun Gong, Jinfeng Yi, Dong-dong Chen, Jian Zhang, Jiayu Zhou, Zhi-Hua Zhou. Inferring the Importance of Product Appearance with Semi-supervised Multi-modal Enhancement: A Step Towards the Screenless Retailing. ACM-MM-21. (CCF-A)

  14. [14]. Dong, Xiangjun, Yongshun Gong*, and Longbing Cao. e-RNSP: An efficient method for mining repetition negative sequential patterns. IEEE Transactions on Cybernetics (TCYB), 2020, 50(5): 2084-2096. (中科院SCI-1区,IF=19.118CCF-B)

  15. [15]. Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Bei Chen, Xiangjun Dong. A Spatial Missing Value Imputation Method for Multi-view Urban Statistical Data. in Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI-20). 2020, 1310-1316. CCF-A

  16. [16]. Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Jinfeng Yi. Potential Passenger Flow Prediction: A Novel Study for Urban Transportation Development. in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI-20). 2020, 4020-4027. CCF-A

  17. [17]. Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Yu Zheng, Christina Kirsch. Network-wide Crowd Flow Prediction of Sydney Trains via customized Online Nonnegative Matrix Factorization. in Proceedings of the Conference on Information and Knowledge Management (CIKM-18), 2018, 1243-1252.CCF-B

  18. [18]. Xinming Gao#Yongshun Gong#, Tiantian Xu, Jinhu Lv, etc. Towards to a Better Structure and Looser Constraint to Mine Negative Sequential Patterns. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2020. (共同一作,中科院SCI-1区,IF=14.255CCF-B)

  19. [19]. Ping Qiu#Yongshun Gong#, Yuanhai Zhao, Longbing Cao, Chengqi Zhang, Xiangjun Dong. An Efficient Method for Modeling Non-occurring Behaviors by Negative Sequential Patterns with Loose Constraints. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2021. (共同一作,中科院SCI-1区,IF=14.255CCF-B)

  20. [20]. Zhibin Li, Jian Zhang, Yongshun Gong, Yazhou Yao, Qiang Wu. Field-wise Learning for Multi-field Categorical Data, NeurIPS-20, 2020, 1-10CCF-A


Work Experience
  • 2023-09 — Now
    山东大学
Publication
Papers

(1) Content-Aware Balanced Spectrum Encoding in Masked Modeling for Time Series Classification .39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 .2025 ,39 (16):17059-17067

(2)李泽辰. Urban Region Embedding via Multi-View Contrastive Prediction .AAAI .2024

(3)张琳浩. CODEV: Issue Resolving with Visual Data .Findings of the Association for Computational Linguistics: ACL 2025 .2025

(4)王任. SeqMvRL: A Sequential Fusion Framework for Multi-view Representation Learning .Proceedings of the Computer Vision and Pattern Recognition Conference .2025

(5)杨敏. STDA: Spatio-Temporal Deviation Alignment Learning for Cross-city Fine-grained Urban Flow Inference .TKDE .2025 (1)

(6)牟文芊. GeM: Gaussian embeddings with Multi-hop graph transfer for next POI recommendation .NEURAL NETWORKS .2025 (186)

(7)郑晓. Point Cloud Pre-training with Diffusion Models .CVPR 2024 .2024

(8)宫永顺. Spatio-Temporal Enhanced Contrastive and Contextual Learning for Weather Forecasting .TKDE .2024 (36(8))

(9)李晓宇. Adaptive Traffic Forecasting on Daily Basis: A Spatio-Temporal Context Learning Approach .IEEE Transactions on Knowledge and Data Engineering (TKDE) .2025 (1)

(10)黄瑾. Focusing on Subtle Differences: A Feature Disentanglement Model for Series Photo Selection .IEEE Transactions on Multimedia .2024 (26)

(11)余飘. Enhancing origin–destination flow prediction via bi-directional spatio-temporal inference and interconnected feature evolution .Expert Systems with Applications .2024 (264)

(12)安洋. Spatio-Temporal Multivariate Probabilistic Modeling for Traffic Prediction .TKDE .2025 (5)

(13)陈勐. Profiling Urban Streets: A Semi-Supervised Prediction Model Based on Street View Imagery and Spatial Topology .KDD .2024

(14)孙天骜. Going Where, by Whom, and at What Time: Next Location Prediction Considering User Preference and Temporal Regularity .KDD .2024

(15)张大滨. Exploring Urban Semantics: A Multimodal Model for POI Semantic Annotation with Street View Images and Place Names .IJCAI .2024

(16)贾宏伟. Learning Hierarchy-Enhanced POI Category Representations Using Disentangled Mobility Sequences .IJCAI .2024

(17)张欣欣. Spatio-Temporal Multi-Image Reflection Removal .IEEE Signal Processing Letters .2024 ,31 (31):2345

(18)李晓宇. Dual-track spatio-temporal learning for urban flow prediction with adaptive normalization .ARTIFICIAL INTELLIGENCE .2024 (104065)

(19) Spatio-temporal fusion and contrastive learning for urban flow prediction .Knowledge-Based Systems .2023 (282)

(20) Mask- and Contrast-Enhanced Spatio-Temporal Learning for Urban Flow Prediction .CIKM .2023

(21)王瑞丰. Fine-grained Urban Flow Inference with Unobservable Data via Space-Time Attraction Learning .ICDM 2023 .2023

(22)黄瑾. Focusing on Subtle Differences: A Feature Disentanglement Model for Series Photo Selection .IEEE transactions on multimedia .2024 (1)

(23)张欣欣. Two-phase Parametric Registration for Retinal Images .IEEE International Conference on Multimedia and Expo .2024

(24)王梦怡. Personalized Single Image Reflection Removal Network through Adaptive Cascade Refinement .ACM International Conference on Multimedia .2023

(25)黄瑾. Modeling Multiple Aesthetic Views for Series Photo Selection .IEEE transactions on multimedia .2023 (1)

(26)宫永顺. Latent evolution model for change point detection in time-varying networks .Information Sciences .2023 (1)

(27)宫永顺. Missingness-Pattern-Adaptive Learning With Incomplete Data .IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE .2023 (9)

(28)邴俊翔. Pre-trained Semantic Embeddings for POI Categories Based on Multiple Contexts .TKDE .2022 (1)

(29)徐榕荟. TME: Tree-guided Multi-task Embedding Learning towards Semantic Venue Annotation .TOIS .2023 ,41 (4)

(30)曲浩. Forecasting Fine-grained Urban Flows via Spatio-temporal Contrastive Self-Supervision .IEEE Transactions on Knowledge and Data Engineering .2022 (1):1

(31)贺甜甜. Exploring Linear Feature Disentanglement For Neural Networks .2022 IEEE International Conference on Multimedia and Expo (ICME) .2022

(32)黄瑾. Series Photo Selection via Multi-view Graph Learning .2022 IEEE International Conference on Multimedia and Expo (ICME) .2022

(33)高欣明. Toward to Better Structure and Constraint to Mine Negative Sequential Patterns .IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS .2023 ,32 (2)

(34)宫永顺. Inferring the Importance of Product Appearance with Semi-supervised Multi-modal Enhancement: A Step Towards the Screenless Retailing .ACM International Conference on Multimedia .2021

(35)邱萍. An Efficient Method for Modeling Nonoccurring Behaviors by Negative Sequential Patterns With Loose Constraints .IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS .2021 (1)

(36)宫永顺. Missing Value Imputation for Multi-view Urban Statistical Data via Spatial Correlation Learning .IEEE Transactions on Knowledge and Data Engineering (TKDE) .2021 (1)

(37)滕隽雅. Regularized Two Granularity Loss Function for Weakly Supervised Video Moment Retrieval .IEEE Transactions on Multimedia .2021 ,24 :1141

Patents
Honors & Awards
Student Information
  • 杨敏  2023-09-23 Hits:[] Times
  • 郑晓  2023-09-23 Hits:[] Times
  • 安洋  2023-09-23 Hits:[] Times
  • 袁诗露  2023-09-23 Hits:[] Times
  • 李晓宇  2023-09-23 Hits:[] Times
  • 王瑞丰  2023-03-19 Hits:[] Times
  • 王齐凯  2023-03-19 Hits:[] Times
  • 张伟  2023-03-19 Hits:[] Times
  • 余飘  2023-03-19 Hits:[] Times
  • 贺甜甜  2023-03-19 Hits:[] Times
  • 黄瑾  2023-03-19 Hits:[] Times
  • 曲浩  2023-03-19 Hits:[] Times
  • 袁诗露  2023-03-19 Hits:[] Times
  • 郑晓  2023-03-19 Hits:[] Times
  • 安洋  2023-03-19 Hits:[] Times
  • 李晓宇  2023-03-19 Hits:[] Times
  • Copyright All Rights Reserved Shandong University Address: No. 27 Shanda South Road, Jinan City, Shandong Province, China: 250100
    Information desk: (86) - 0531-88395114
    On Duty Telephone: (86) - 0531-88364731 Construction and Maintenance: Information Work Office of Shandong University