宫永顺
开通时间:..
最后更新时间:..
宫永顺(1990.10),博士,山东大学教授(破格),硕士研究生导师,泰山学者青年专家,山东省优青,入选山东大学青年学者未来计划。博士毕业于悉尼科技大学,计算机科学与工程(软科2021世界一流学科排名:计算机科学与工程世界第11位)。近三年主持国家自然科学基金(面上、青年)、山东省优秀青年科学基金等项目10余项。研究兴趣主要包含时空数据分析与挖掘、图像处理、智慧交通、智慧城市计算、深度学习、机器学习理论、自然语言处理等。迄今已在中国计算机学会CCF-A类推荐期刊/会议IEEE TPAMI、Artificial Intelligence (山东大学首篇)、IEEE TKDE、SIGKDD、IJCAI、AAAI、NeurIPS、ACM MM、CVPR和中科院SCI-1区期刊IEEE T-CYB、IEEE T-NNLS、IEEE T-MM、Pattern Recognition等发表论文七十余篇。长期担任TKDE、TNNLS、TCYB、TMM等CCF-A类/SCI-1 区期刊审稿人,近年来连续担任KDD、ICML、NeurIPS、ICLR、IJCAI、AAAI、CVPR、ICCV 等CCF-A 类会议的程序委员会委员。获得青岛市科技进步二等奖,担任CCF 人工智能与模式识别专委会秘书,山东省人工智能学会理事。
工作经历:
2023.09 - 至今:软件学院,教授(破格)
2021.02-2023.08:软件学院,副研究员
学术交流:
2018.09 - 2019.03: 京东AI研究院担任Research Fellow,机器学习、时空预测与推荐系统方向;
2019.11 - 2020.06: 微软亚洲研究院担任Research Fellow,研究方向自然语义分析。
所在团队:
山东大学人工智能研究中心(http://www.sai.sdu.edu.cn/)
山东大学机器学习与数据挖掘实验室(https://time.sdu.edu.cn)
招生信息:(2025年入学生可通过邮件联系)
招生类别 |
招生专业 |
学术型硕士 |
软件工程、人工智能 (*) |
专业型硕士 |
软件工程、人工智能 (*) |
优先录取 |
(1)有很强的自主学习能力和科研热情;(2)具有扎实的数学基础和英文写作能力;(3)精通至少一门编程语言: Python、C++、JAVA、MATLAB |
*另: 招收若干本科生科研助手,有意向在本科就读阶段接触研究生科研工作、发表高水平学术论文或竞赛指导可咨询联系。
主要研究内容:
时空数据挖掘 |
时空流量预测、时空表征学习、时空异常检测等 |
城市计算 |
城市交通预测;城市感知计算;目标检测、跟踪等 |
深度学习 |
图像处理;3D点云;大语言模型;推荐系统;多媒体计算等 |
机器学习方法 |
低质数据分类、聚类;张量分解;跨模态/迁移学习等 |
*课题组在主要研究内容与方向中均发表过高水平论文。
主要主持或参与科研项目:
1. 2025-2028:《面向开放数据场景的鲁棒时空预测研究》,国家自然科学基金面上项目,主持
2. 2023-2025:《面向城市流量预测的时空表示学习》,国家自然科学基金青年项目,主持
3. 2023-2025:泰山学者青年专家项目,主持
4. 2022-2025:《细粒度交通流量预测》,山东省优秀青年科学基金,主持
5. 2022-2024:《复杂时空网络下的起点-终点交通流量分布预测研究》,山东省自然科学基金青年项目,主持
6. 2022-2023:《面向开放复杂场景的智慧安防机器人研究》,山东省科技中小企业创新能力提升,主持
7. 2024-2025:《动静态交通协同治理关键技术研究与应用》,青岛市科技计划关键技术攻关项目,主持
8. 2022-2026:山东大学青年学者未来计划项目,山东大学人才计划,主持
9. 2022-2024:交通数据分析与挖掘北京市重点实验室开放课题,主持
10. 2022-2025:国家重点研发计划课题,骨干
11. 2022-2024:山东省自然科学基金重大基础研究项目,骨干
12. 2023-2026:山东省重点研发计划 (重大科技创新工程),骨干
What's new:
10/2024: One paper is accepted to Expert Systems with Applications (SCI-1)
07/2024: Two papers are accepted to CIKM 2024 (CCF-B)
05/2024: Two papers are accepted to KDD 2024 (CCF-A)
04/2024: Three papers are accepted to IJCAI 2024 (CCF-A)
03/2024: One paper is accepted to IEEE TMM (SCI-1)
03/2024: One paper is accepted to DASFAA 2024 (CCF-B)
02/2024: One paper is accepted to CVPR 2024 (CCF-A)
02/2024: One paper is accepted to IEEE TKDE (CCF-A)
02/2024: One paper is accepted to Knowledge Based Systems (SCI-1)
01/2024: One paper is accepted to FSE/ESEC 2024 (CCF-A)
01/2024: One paper is accepted to Artificial Intelligence (CCF-A,山东大学首篇,期刊每年仅发表百余篇论文)
12/2023: One paper is accepted to ICASSP 2024 (CCF-B)
12/2023: Two papers are accepted to AAAI 2024 (CCF-A)
10/2023: One paper is accepted to Knowledge Based Systems (SCI-1)
09/2023: One paper is accepted to ICDM 2023 (CCF-B)
08/2023: One paper is accepted to CIKM 2023 (CCF-B)
07/2023: One paper is accepted to ACM MM 2023 (CCF-A)
07/2023: One paper is accepted to Information Sciences (SCI-1)
06/2023: One paper is accepted to IEEE TMM (SCI-1)
03/2023: One paper is accepted to IEEE TPAMI (CCF-A)
03/2023: One paper is accepted to IEEE TSUSC (SCI-2)
01/2023: One paper is accepted to TOIS (CCF-A)
10/2022: One paper is accepted to IEEE TKDE (CCF-A)
08/2022: One paper is accepted to IEEE TKDE (CCF-A)
03/2022: Two papers are accepted to ICME 2022 (CCF-B)
03/2022: One paper is accepted to CVPR 2022 (CCF-A)
02/2022: I serve as the Technical Program Committee in the International Conference on Big Data and Artificial Intelligence (ICBDAI 2022), and welcome to submit papers.
01/2022: We held a Workshop about Spatio-temporal Data Mining in the International Conference on Machine Learning, Cloud Computing and Intelligent Mining, and welcome to submit papers.
11/2021: One paper is accepted to IEEE TMM (SCI-1)
08/2021: One paper is accepted to ACM-MM 2021 Industrial track (main Proceeding) (CCF-A)
08/2021: One paper is accepted to Briefings in Bioinformatics (SCI-1)
04/2021: One paper is accepted to IEEE TKDE (CCF-A)
03/2021: One paper is accepted to IEEE TMM (SCI-1)
02/2021: One Paper is accepted to IEEE TNNLS (SCI-1)
代表性论文:
*通讯作者;#共同一作
[1]. Yongshun Gong, Zhibin Li, Wei Liu, Xiankai Lu, Xinwang Liu, Ivor W. Tsang, Yilong Yin. Missingness-pattern-adaptive Learning with Incomplete Data. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023. (IF=24.31,中科院SCI-1区,CCF-A)
[2]. Xiaoyu Li, Yongshun Gong*, Wei Liu, Yilong Yin, Yu Zheng, Liqiang Nie. Dual-track Spatio-temporal Learning for Urban Flow Prediction with Adaptive Normalization. Artificial Intelligence (AIJ), 2024. (IF=14.4,CCF-A)
[3]. Yongshun Gong, Tiantian He, Meng Chen, Bin Wang, Liqiang Nie, Yilong Yin. Spatio-Temporal Enhanced Contrastive and Contextual Learning for Weather Forecasting. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2024. (IF=9.235,CCF-A)
[4]. Hao Qu, Yongshun Gong*, Meng Chen, Junbo Zhang, Yu Zheng, Yilong Yin. Forecasting Fine-grained Urban Flow via Spatio-temporal Contrastive Self-Supervision. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2022. (IF=9.235,CCF-A)
[5]. Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Yilong Yin, Yu Zheng. Missing Value Imputation for Multi-view Urban Statistical Data via Spatial Correlation Learning. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2021. (IF=9.235,CCF-A)
[6]. Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Yu Zheng. Online Spatiotemporal Crowd Flow Distribution Prediction for Complex Metro System. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2020. (IF=9.235,CCF-A)
[7]. Zheng, Xiao, Xiaoshui Huang, Guofeng Mei, Yuenan Hou, Zhaoyang Lyu, Bo Dai, Wanli Ouyang, and Yongshun Gong*. Point Cloud Pre-training with Diffusion Models. CVPR 2024. (CCF-A)
[8]. Jin Huang, Yongshun Gong*, Lu Zhang, Jian Zhang, Liqiang Nie, Yilong Yin. Modeling Multiple Aesthetic Views for Series Photo Selection. IEEE Transactions on Multimedia. 2023. (中科院SCI-1区,IF=8.18)
[9]. Yongshun Gong, Xue Dong, Jian Zhang, Meng Chen. Latent Evolution Model for Change Point Detection in Time-varying Networks. Information Sciences. 2023. (中科院SCI-1区,IF=8.1)
[10]. Yongshun Gong, Jinfeng Yi, Dong-dong Chen, Jian Zhang, Jiayu Zhou, Zhi-Hua Zhou. Inferring the Importance of Product Appearance with Semi-supervised Multi-modal Enhancement: A Step Towards the Screenless Retailing. ACM-MM-21. (CCF-A)
[11]. Dong, Xiangjun, Yongshun Gong*, and Longbing Cao. e-RNSP: An efficient method for mining repetition negative sequential patterns. IEEE Transactions on Cybernetics (TCYB), 2020, 50(5): 2084-2096. (中科院SCI-1区,IF=19.118,CCF-B)
[12]. Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Bei Chen, Xiangjun Dong. A Spatial Missing Value Imputation Method for Multi-view Urban Statistical Data. in Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI-20). 2020, 1310-1316. (CCF-A)
[13]. Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Jinfeng Yi. Potential Passenger Flow Prediction: A Novel Study for Urban Transportation Development. in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI-20). 2020, 4020-4027. (CCF-A)
[14]. Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Yu Zheng, Christina Kirsch. Network-wide Crowd Flow Prediction of Sydney Trains via customized Online Nonnegative Matrix Factorization. in Proceedings of the Conference on Information and Knowledge Management (CIKM-18), 2018, 1243-1252.(CCF-B)
[15]. Xinming Gao#, Yongshun Gong#, Tiantian Xu, Jinhu Lv, etc. Towards to a Better Structure and Looser Constraint to Mine Negative Sequential Patterns. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2020. (共同一作,中科院SCI-1区,IF=14.255,CCF-B)
[16]. Ping Qiu#, Yongshun Gong#, Yuanhai Zhao, Longbing Cao, Chengqi Zhang, Xiangjun Dong. An Efficient Method for Modeling Non-occurring Behaviors by Negative Sequential Patterns with Loose Constraints. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2021. (共同一作,中科院SCI-1区,IF=14.255,CCF-B)
[17]. Xu Zhang#, Yongshun Gong#, Chengqi Zhang, Xiaoming Wu, etc. Spatio-temporal fusion and contrastive learning for urban flow prediction. Knowledge-Based Systems. 2023. (共同一作,中科院SCI-1区, IF=8.8)
[18]. Xu Zhang#, Yongshun Gong#, Xinxin Zhang, etc. Mask-and Contrast-Enhanced Spatio-Temporal Learning for Urban Flow Prediction. in Proceedings of the Conference on Information and Knowledge Management (CIKM-23), 2023(CCF-B)
[19]. Zhibin Li, Jian Zhang, Qiang Wu, Yongshun Gong, Jinfeng Yi, Christina Kirsch. Sample Adaptive Multiple Kernel Learning for Failure Prediction of Railway Points. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (SIGKDD-19), 2019: 2848-2856. (CCF-A)
[20]. Zhibin Li, Jian Zhang, Yongshun Gong, Yazhou Yao, Qiang Wu. Field-wise Learning for Multi-field Categorical Data, NeurIPS-20, 2020, 1-10(CCF-A)