个人信息Personal Information
教授 博士生导师 硕士生导师
性别:女
毕业院校:山东大学
学历:博士研究生毕业
学位:理学博士学位
在职信息:在职
所在单位:数学学院
入职时间:1986-07-01
学科:应用数学
办公地点:知新楼B座
联系方式:邮箱:wqjxyf@sdu.edu.cn
Numerical Identification of the Fractional Derivatives in the Two-Dimensional Fractional Cable Equation
点击次数:
所属单位:数学学院
发表刊物:Journal of Scientific Computing
关键字:The two-dimensional fractional cable equation; Finite difference; Stability and convergence; Inverse problem; Fractional sensitivity equation
摘要:In this paper, the two-dimensional fractional cable equation is considered, an efficient numerical method to obtain the identification of the fractional derivatives is investigated. Concerning the numerical treatment of the two-dimensional fractional cable equation, a fourth-order compact finite difference method is proposed, the stability and convergence of the compact difference method are discussed rigorously by means of the Fourier method. For the inverse problem of the identification of the fractional derivatives, Levenberg-Marquardt iterative method is employed, and the fractional sensitivity equation is obtained by means of the digamma function. Finally, numerical examples are presented to show the effectiveness of the proposed numerical method.
第一作者:于波
论文类型:基础研究
通讯作者:蒋晓芸
论文编号:B820A47C831B4524833FB0CC78FE61C5
学科门类:理学
一级学科:数学
卷号:68
期号:1
页面范围:252-272
是否译文:否
发表时间:2016-07-01
收录刊物:SCI
上一条:Numerical algorithms to estimate relaxation parameters and Caputo fractional derivative for a fractional thermal wave model in spherical composite medium
下一条:Numerical algorithm for two dimensional fractional Stokes’ first problem for a heated generalized second grade fluid with smooth and non-smooth solution