蒋晓芸

个人信息Personal Information

教授 博士生导师 硕士生导师

性别:女

毕业院校:山东大学

学历:博士研究生毕业

学位:理学博士学位

在职信息:在职

所在单位:数学学院

入职时间:1986-07-01

学科:应用数学

办公地点:知新楼B座

联系方式:邮箱:wqjxyf@sdu.edu.cn


扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A Fourier spectral method for the nonlinear coupled space fractional Klein-Gordon-Schrödinger equations

点击次数:

所属单位:数学学院

发表刊物:Zeitschrift für Angewandte Mathematik und Mechanik

关键字:convergence analysis; fast Fourier transform; Fourier spectral method; mass and energy conservation laws; nonlinear coupled space fractional Klein-Gordon-Schrodinger equations

摘要:In this paper, we give an efficient numerical method for the nonlinear coupled space fractional Klein-Gordon-Schrodinger (NCSFKGS) equations, based on the Crank-Nicolson method, the central difference method and the Fourier spectral method. As far as we know, no one has studied the Equations (5)-(6) in our paper, these equations are different from those in [39] which only considers space fractional Schrodinger equation while the Klein-Gordon equation is classical, here, we consider the two equations which are both space fractional. In this paper, the Crank-Nicolson method and the central difference method are used to discretize the space fractional Schrodinger equation and the space fractional Klein-Gordon equation in time direction, respectively. The Fourier spectral method is used to discretize the NCSFKGS equations in space direction. This numerical method conserves the mass and energy in the discrete level. The convergence of the numerical method is of second order accuracy in time and spectral accuracy in space. Rigorous proofs are developed here for the conservation laws and the convergence of the numerical method. Numerical experiments are presented to confirm the theoretical results and they proved that our numerical method is very efficient (it only takes a few seconds to get the numerical solutions).

全部作者:杨秀,张慧

第一作者:贾俊青

论文类型:基础研究

通讯作者:蒋晓芸

学科门类:理学

一级学科:数学

卷号:100

期号:2

页面范围:e201800314

是否译文:

发表时间:2019-12-01

收录刊物:SCI