![]() |
个人信息Personal Information
教授 博士生导师 硕士生导师
性别:女
毕业院校:山东大学
学历:博士研究生毕业
学位:理学博士学位
在职信息:在职
所在单位:数学学院
入职时间:1986-07-01
学科:应用数学
办公地点:知新楼B座
联系方式:Email: wqjxyf@sdu.edu.cn
扫描关注
- [81] 齐海涛 , 蒋晓芸 and 杨秀. Numerical analysis for electroosmotic flow of fractional Maxwell fluids. Appl Math Lett, 78, 1, 2018.
- [82] 蒋晓芸 , 赵茉莉 and 张慧. Spectral method for solving the time fractional Boussinesq equation. Applied Mathematics Letters, 85, 164, 2018.
- [83] 蒋晓芸. 复杂人体组织传热的时间分数阶模型及其解. 《山东大学学报》(理学版), 47, 2012.
- [84] 蒋晓芸 and Fan, Wenping. The Unstructured Mesh Finite Element Method for the Two-Dimensional Multi-term Time-Space Fractional Diffusion-Wave Equation on an Irregular Convex Domain. Journal of Scientific Computing, 77, 27, 2018.
- [85] 蒋晓芸 and 张慧. Galerkin-Legendre spectral schemes for nonlinear space fractional Schrodinger equation. Numerical Algorithms, 79, 337, 2018.
- [86] 蒋晓芸 and 郑如梦. L1 Fourier spectral methods for a class of generalized two-dimensional time fractional nonlinear anomalous diffusion equations. Computers & Mathematics with Applications, 75, 1515, 2018.
- [87] 于波 , 蒋晓芸 and 齐海涛. Numerical method for the estimation of the fractional parameters in the fractional mobile/immobile advection-diffusion model. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 95, 1131, 2018.
- [88] 蒋晓芸 and 张慧. A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem. Applied Mathematics and Computation, 320, 302, 2018.
- [89] 续焕英 , 蒋晓芸 and 于波. Numerical analysis of the space fractional Navier-Stokes equations. Applied Mathematics Letters, 69, 94, 2017.
- [90] 蒋晓芸 and Chen, S.. Parameters estimation for a new anomalous thermal diffusion model in layered media. Computers & Mathematics with Applications, 73, 1172, 2017.
- [91] 蒋晓芸 and 范文萍. A NOVEL UNSTRUCTURED MESH FINITE ELEMENT METHOD FOR SOLVING THE TIME-SPACE FRACTIONAL WAVE EQUATION ON A TWO-DIMENSIONAL IRREGULAR CONVEX DOMAIN. Fractional Calculus and Applied Analysis, 20, 352, 2017.
- [92] 蒋晓芸 , 于波 and 马颖. Parameters identification for the unsteady helical flows of a generalized Oldroyd-B fluid model based on its numerical solution. Canadian Journal of Physics, 95, 682, 2017.
- [93] 蒋晓芸. Electroosmotic flow of Eyring fluid in slit microchannel with slip boundary condition. Applied Mathematics and Mechanics – Engl Ed, 35, 689, 2014.
- [94] 续焕英 and 蒋晓芸. Creep constitutive models for viscoelastic materials based on fractional derivatives. Computers & Mathematics with Applications, 73, 1377, 2017.
- [95] 齐海涛 , 续焕英 , 蒋晓芸 and 姜玉婷. Transient electroosmotic slip flow of fractional Oldroyd-B fluids. MICROFLUIDICS AND NANOFLUIDICS, 21, 2017.
- [96] 蒋晓芸. Time fractional dual-phase-lag heat conduction equation. Chinese Physics B, 24, 034401, 2015.
- [97] 蒋晓芸. An inverse problem to estimate an unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid. Acta Mech Sin, 31, 153, 2015.
- [98] 蒋晓芸. Analytical and numerical solutions of time fractional anomalous thermal diffusion equation in composite medium. ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik, 95, 156, 2015.
- [99] 蒋晓芸. Analytical solutions for time-fractional axisymmetric diffusion-wave equation with a source term. Nonlinear Analysis: Real World Applications,, 12, 1841, 2011.
- [100] 蒋晓芸. Homotopy perturbation method to time-fractional diffusion equation with a moving boundary condition. Applied Mathematics and Computation, 208, 434, 2009.