3ts6L7TFNAz74HeNImq9Egm8bnSYXavur3DZZaYxXGeprccAEI0CckUiAnN5
Biography

刘凯龙,山东大学控制科学与工程学院教授、博士生导师,科睿唯安全球高被引科学家、国家高层次青年人才、山东省杰青、IEEE高级会员。曾任英国华威大学新能源研究院(WMG)教职。主要从事新型电力系统数智化与储能管控研究。以第一或通讯作者发表SCI一区学术论文60余篇,其中高被引论文28篇、热点论文7篇;撰写学术专著5部,以第一发明人授权国内外发明专利20余件获英国未来领袖基金提名(UKRI Future Leader Fellowship, 160余万英镑)主持国自然、英国Innovate UKHVM Catapult等自然基金项目并结题优秀;排一获IEEE Trans. on Industrial ElectronicsControl Engineering PracticeAdvanced in Applied Energy、Springer LSMS、IEEE/CAA JAS等国际期刊/会议最佳论文荣誉10余项;获中国仿真学会自然科学一等奖、山东省科技进步二等奖。成果成功应用于Varta Storage(德国电力储能龙头企业)、阿斯顿马丁(英国汽车龙头企业)、UKBIC(英国最大的电池制造中心)等多家知名企业,并受到英国科技部重点关注。担任Renewable and Sustainable Energy ReviewsIEEE Trans. on Industrial Electronics、IEEE Trans. on Transportation Electrification、Trans. of the Institute of Measurement and Control期刊副编(Associate Editor)IEEE/CAA Journal of Automatica SinicaApplied EnergyControl Engineering Practice期刊首届青年编委,EnergyIJEPESIEEE JESTPE 等期刊客座编辑。


         google scholar主页:https://scholar.google.co.uk/citations?user=Zucn36MAAAAJ&hl=en


       在控制科学与工程、人工智能、机器学习、大数据分析、自动化、新能源、新型电力系统、电池管控、能源经济等学科方向每年招生。欢迎对研究方向感兴趣的硕士及博士研究生报考。

       优秀的硕、博学生可积极帮助推荐到有长久合作关系的英国华威大学、伦敦国王学院、利兹大学、女王大学等国外知名学府交流或深造。

Education Background
  • 2011-09-01-2014-07-01
    上海大学
    控制理论与控制工程
  • 2007-09-01-2011-07-06
    上海大学
    电气工程及其自动化
  • 2014-10-01-2018-06-30
    Queen's University Belfast
    电子与电气工程
Work Experience
  • 2023-03 — Now
    山东大学
  • 2018-04 — 2023-02
    英国华威大学
Social Affiliations
  • Editorial Board Member for IEEE Transactions on Transportation Electrification (Q1, IF: 6.52)
  • Editorial Board Member for IEEE/CAA Journal of Automatica Sinica (Q1, IF: 7.85)
  • Editorial Board Member for Renewable and Sustainable Energy Reviews (Q1, IF:16.80)
  • Editorial Board Member for Applied Energy (Q1, IF: 11.45)
  • Editorial Board Member for Control Engineering Practice (Q1, IF:4.06)
  • Editorial Board Member for Transactions of the Institute of Measurement and Control (英国工程院院刊, IF:2.15)
  • Guest Editor Energy (Q1, IF: 8.86)
  • Guest Editor for IEEE Journal of Emerging and Selected Topics in Power Electronics (Q1, IF:5.46)
  • Guest Editor for International Journal of Electrical Power & Energy Systems (Q1, IF: 5.66)
Publication
Papers

(1)褚云琨. Nonlinear modeling and SOC estimation of lithium-ion batteries based on block-oriented structures .Energy .2025 (315):134273

(2)Chuanxin Fan. Fast Characterization of Lithium-Ion Battery Impedance and Nonlinearity Using Optimized Multisine Perturbation Signal .IEEE Transactions on Industrial Electronics .2025 (early access)

(3)Chuanxin Fan. Battery pack state of charge estimation towards transportation electrification: Challenges and opportunities .IEEE Journal of Emerging and Selected Topics in Power Electronics .2025 (early access)

(4)Fan, Chuanxin. Fast Characterization of Lithium-Ion Battery Impedance and Nonlinearity Using Optimized Multisine Perturbation Signal .IEEE Transactions on Industrial Electronics .2025

(5)刘凯龙. Adaptive battery thermal management systems in unsteady thermal application contexts .JOURNAL OF ENERGY CHEMISTRY .2024 ,97 :650-668

(6)刘凯龙. Explainable Neural Network for Sensitivity Analysis of Lithium-ion Battery Smart Production .IEEE/CAA Journal of Automatica Sinica .2024 ,11 (9):1944-1953

(7)刘凯龙. An Ultrasonic Wave-Based Method for Efficient State-of-Health Estimation of Li-Ion Batteries .IEEE Transactions on Industrial Electronics .2024

(8)Chu, Yunkun. Nonlinear modeling and SOC estimation of lithium-ion batteries based on block-oriented structures .Energy .2025 ,315

(9)Tang, Aihua. Cloud-Based Li-ion Battery Anomaly Detection, Localization and Classification .IEEE Transactions on Industrial Informatics .2024

(10)Huang, Xinrong. Alternating current heating techniques for lithium-ion batteries in electric vehicles: Recent advances and perspectives .JOURNAL OF ENERGY CHEMISTRY .2024 ,96 :679-697

(11)Peng, Qiao. Coating Feature Analysis and Capacity Prediction for Digitalization of Battery Manufacturing: An Interpretable AI Solution .IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS .2024

(12)刘凯龙. Interpretable Data-Driven Learning with Fast Ultrasonic Detection for Battery Health Estimation .IEEE/CAA Journal of Automatica Sinica .2025 ,12 (1):267-269

(13)Li, Heng. Fault prognosis of Li-ion batteries in electric vehicles: Recent progress, challenges and prospects .Journal of Energy Storage .2025 ,116

(14)Peng, Qiao. Modeling and predicting failure in US credit unions .INTERNATIONAL JOURNAL OF FORECASTING .2025

(15)刘凯龙. Knowledge-Guided Data-Driven Model With Transfer Concept for Battery Calendar Ageing Trajectory Prediction .IEEE/CAA Journal of Automatica Sinica .2023 ,10 (1):272-274

(16)刘凯龙. Battery state-of-health estimation: An ultrasonic detection method with explainable AI .energy .2025 ,319

(17)Wang, Guang. Ensemble Learning-Based Correlation Coefficient Method for Robust Diagnosis of Voltage Sensor and Short-Circuit Faults in Series Battery Packs .IEEE TRANSACTIONS ON POWER ELECTRONICS .2023 ,38 (7):9143

(18)李毅超. A novel joint estimation for core temperature and state of charge of lithium-ion battery based on classification approach and convolutional neural network .Energy .2024 ,308

(19)Xie, Yi. Coestimation of SOC and Three-Dimensional SOT for Lithium-Ion Batteries Based on Distributed Spatial-Temporal Online Correction .IEEE Transactions on Industrial Electronics .2023 ,70 (6):5937-5948

(20)Li, Wei. An Internal Heating Strategy for Lithium-Ion Batteries Without Lithium Plating Based on Self-Adaptive Alternating Current Pulse .IEEE Transactions on Vehicular Technology .2023 ,72 (5):5809-5823

(21)Fan, Chuanxin. Characterization and identification towards dynamic-based electrical modeling of lithium-ion batteries .JOURNAL OF ENERGY CHEMISTRY .2024 ,92 :738-758

(22)Peng, Qiao. Transportation resilience under Covid-19 Uncertainty: A traffic severity analysis .TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE .2024 ,179

(23)Xie, Yi. A health-aware AC heating strategy with lithium plating criterion for batteries at low temperatures .IEEE Transactions on Industrial Informatics .2023 ,20 (2):1-11

(24)Zhu, Tao. Enabling extreme fast charging .JOULE .2023 ,7 (12):2660-2662

(25)Peng, Qiao. Battery calendar degradation trajectory prediction: Data-driven implementation and knowledge inspiration .Energy .2024 ,294

(26)Fan, Chuanxin. Understanding of Lithium-ion battery degradation using multisine-based nonlinear characterization method .Energy .2024 ,290

(27)Liu, Weilong. Evolutionary Multi-Objective Optimisation for Large-Scale Portfolio Selection With Both Random and Uncertain Returns .IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION .2024 :1-1

(28)Wei, Zhongbao. Multi-level Data-driven Battery Management: From Internal Sensing to Big Data Utilization .IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION .2023 :1-1

(29)Wang, Guang. Ensemble Learning Based Correlation Coefficient Method for Robust Diagnosis of Voltage Sensor and Short-Circuit Faults in Series Battery Packs .IEEE Transactions on Power Electronics .2023 ,38 (7):1-14

(30)毛梓恒. An Applicable Minor Short-circuit Fault Diagnosis Method for Automotive Lithium-ion Batteries based on Extremum Sample Entropy . IEEE Transactions on Power Electronics .2023 :1-9

(31)顾鑫. A Precise Minor-Fault Diagnosis Method for Lithium-Ion Batteries Based on Phase Plane Sample Entropy .IEEE Transactions on Industrial Electronics .2023

(32)朱昱豪. Rapid Test and Assessment of Lithium-ion Battery Cycle Life Based on Transfer Learning .IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION .2024 :1-1

(33)商云龙. An intelligent preheating approach based on high-gain control for lithium-ion batteries in extremely cold environment .IEEE Transactions on Industrial Electronics .2023 ,71 (5):1-9

(34)毛梓恒. A Multi-Fault Diagnosis Method for Battery Packs Based on Low-Redundancy Representation Learning .6th CAA International Conference on Vehicular Control and Intelligence, CVCI 2022 .2022

(35)李京伦. A Hierarchical Fault Diagnosis Method for Lithium Battery Based on Polymorphic Jump .6th CAA International Conference on Vehicular Control and Intelligence, CVCI 2022 .2022

(36)Huang, Bencheng. A Screening Method for Retired Lithium-ion Batteries Based on Naive Bayes .6th CAA International Conference on Vehicular Control and Intelligence, CVCI 2022 .2022

(37)Kailong Liu. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery .IEEE Transactions on Industrial Electronics

(38)Kailong Liu. Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries .IEEE Transactions on Industrial Informatics, 2020, 16(6): 3767-3777. 【IF=11.65, TII popular论文,ESI高被引, ESI热点, SCI他引137次】

(39)Kailong Liu. Charging pattern optimization for lithium-ion batteries with an electrothermal-aging model .IEEE Transactions on Industrial Informatics, 2018, 14(12): 5463-5474.【IF=11.65, ESI高被引, SCI他引115次】

(40)Kailong Liu. Feature analyses and modelling of lithium-ion batteries manufacturing based on random forest classification .IEEE/ASME Transactions on Mechatronics, 2021, 26(6): 2944-2955.【IF=5.87, ESI高被引】

(41)Kailong Liu. A transferred recurrent neural network for battery calendar health prognostics of energy-transportation systems .IEEE Transactions on Industrial Informatics, 2022, 18(11): 8172-8181.【IF=11.65, ESI高被引】

(42)Kailong Liu. Towards long lifetime battery: AI-based manufacturing and management .IEEE/CAA Journal of Automatica Sinica, 2022, 9(7): 1139-1165.【IF=7.85, ESI高被引】

(43)Kailong Liu. Modified Gaussian process regression models for cyclic capacity prediction of lithium-ion batteries .IEEE Transactions on Transportation Electrification, 2019, 5(4): 1225-1236.【IF=6.52, ESI高被引, ESI热点, SCI他引135次】

(44)Kailong Liu. RUBoost-based ensemble machine learning for electrode quality classification in Li-ion battery manufacturing .IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 2474-2483. 【IF=5.87】

(45)Kailong Liu. Future ageing trajectory prediction for lithium-ion battery considering the knee point effect .IEEE Transactions on Energy Conversion, 2022, 37(2): 1282-1291.【IF=4.88】

(46)Kailong Liu. Knowledge-guided data-driven model with transfer concept for battery calendar ageing trajectory prediction .IEEE/CAA Journal of Automatica Sinica, 2023, 10(1): 272-274.【IF=7.85】

(47)Kailong Liu. A comparative study of various modelling techniques for calendar aging prediction of Li-ion batteries .Renewable and Sustainable Energy Reviews, 2020, 131: 110017. 【IF=16.80】

(48)Kailong Liu. Automotive battery equalizers based on joint switched-capacitor and buck-boost converters .IEEE Transactions on Vehicular Technology, 69(11), (2020): 12716-12724.【IF=6.24】

(49)Kailong Liu. Electrochemical modeling and parameterization towards control-oriented management of lithium-ion batteries .Control Engineering Practice, 2022, 124: 105176.【IF=4.06, CEP Emerging Leaders论文, ESI高被引】

(50)Kailong Liu. Transfer learning for battery smarter state estimation and ageing prognostics: Recent progress, challenges, and prospects .Advances in Applied Energy, 2022, 100117. 【Applied Energy精选论文】

(51)Kailong Liu. Lithium-ion battery charging management considering economic costs of electrical energy loss and battery degradation .Energy conversion and management, 2019, 195: 167-179. 【IF=11.53, ESI高被引, SCI他引109次】

(52)Kailong Liu. Mass load prediction for lithium-ion battery electrode clean production: a machine learning approach .Journal of Cleaner Production, 2021, 289: 125159.【IF=11.07, ESI高被引】

(53)Kailong Liu. A brief review on key technologies in the battery management system of electric vehicles .Frontiers of mechanical engineering, 2019, 14(1): 47-64. 【IF=4.06, ESI高被引, SCI他引193次】

(54)Kailong Liu. Constrained generalized predictive control of battery charging process based on a coupled thermoelectric model .Journal of Power Sources, 347 (2017): 145-158.【IF: 9.79】

(55)Kailong Liu. Interpretable machine learning for battery capacities prediction and coating parameters analysis .Control Engineering Practice, 2022, 124: 105202.【IF=4.06, CEP Emerging Leaders论文】

(56)Kailong Liu. Multi-objective optimization of charging patterns for lithium-ion battery management .Energy Conversion and Management, 159 (2018): 151-162. 【IF=11.53】

(57)Kailong Liu. Data-based interpretable modeling for property forecasting and sensitivity analysis of Li-ion battery electrode .Automotive Innovation, 2022: 1-13. 【中国汽车工程领域T1科技期刊】

(58)Kailong Liu. An advanced Lithium-ion battery optimal charging strategy based on a coupled thermoelectric model .Electrochimica Acta, 225 (2017): 330-344.【IF: 7.34】

(59)Kailong Liu. Classifications of Lithium-ion Battery Electrode Property based on Support Vector Machine with Various Kernels .International Conference on Intelligent Computing for Sustainable Energy and Environment (ICSEE), Springer 2021.【Best paper awarded】

(60)Kailong Liu. Interpretable Sensitivity Analysis and Electrode Porosity Classification for Li ion Battery Smart Manufacturing .2021 IEEE Sustainable Power and Energy Conference.【Best paper awarded】

(61)Kailong Liu. Electrothermally-Aware Multi-objective Modular Design: A Case Study on Series-Parallel Plug-in Hybrid Electric Vehicles .2022 IEEE 5th International Electrical and Energy Conference.【Best paper awarded】

(62) An internal heating strategy for lithium-ion batteries without lithium plating based on self-adaptive alternating current pulse .IEEE Transactions on Vehicular Technology, doi: 10.1109/TVT.2022.3229187.【IF=6.24】

(63) Internal Heating Techniques for Lithium-ion Batteries at Cold Climates: An Overview for Automotive Applications .IEEE Transactions on Transportation Electrification, 2022, doi: 10.1109/TTE.2022.3208186. 【IF: 6.52】

(64) Self-attention-based Machine Theory of Mind for Electric Vehicle Charging Demand Forecast .IEEE Transactions on Industrial Informatics, 18(11), (2022): 8191-8202. 【IF=11.65】

(65) Co-estimation of SOC and three-dimensional SOT for lithium-ion batteries based on distributed spatial-temporal online correction .IEEE Transactions on Industrial Electronics, 70(6), (2023): 5937-5948.【IF=8.24】

(66) Machine learning for optimised and clean Li-ion battery manufacturing: revealing the dependency between electrode and cell characteristics .Journal of Cleaner Production, 2021, 324: 129272. 【IF=11.07】

(67) Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review .Renewable and Sustainable Energy Reviews, 2019, 113: 109254. 【IF=16.80, ESI高被引,ESI热点, SCI他引323次】

(68) A Sine-Wave Heater for Automotive Battery Self-Heating at Subzero Temperatures .IEEE Transactions on Industrial Informatics, 16(5), (2019): 3355-3365.【IF=11.65】

(69) Co-estimation of state-of-charge and state-of-health for lithium-ion batteries using an enhanced electrochemical model .IEEE Transactions on Industrial Electronics, 2021, 69(3): 2684-2696.【IF=8.16, ESI高被引】

(70) A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system .Energy, 219 (2021): 119529.【IF: 8.86】

(71) A review on second-life of Li-ion batteries: prospects, challenges, and issues .Energy, 2022, 241: 122881. 【IF=8.86】

(72) A Comprehensive Study on Influence of Battery Thermal Behavior on Degradation and Consistency .IEEE Transactions on Transportation Electrification, 8(3), (2022): 3707-3724.【IF=6.52】

(73) Current Distribution and Anode Potential Modelling in Battery Modules with a Real-World Busbar System .IEEE Transactions on Transportation Electrification, 2022, doi: 10.1109/TTE.2022.3212313. 【IF=6.52】

(74) Recovering large-scale battery aging dataset with machine learning .Patterns, 2021, 2(8): 100302. 【Cell子刊】

(75) Co-estimation of lithium-ion battery state of charge and state of temperature based on a hybrid electrochemical-thermal-neural-network model .Journal of Power Sources, 2020, 455: 227935. 【IF=9.79, ESI高被引】

(76)Xiaopeng Tang. Comprehensive study and improvement of experimental methods for obtaining referenced battery state-of-power .Journal of Power Sources, 2021, 512: 230462.【IF=9.79】

(77) A balancing current ratio based state-of-health estimation solution for lithium-ion battery pack .IEEE Transactions on Industrial Electronics, 2022, 69(8): 8055-8065.【IF=8.16, ESI高被引】

(78) Electrochemical-theory-guided modelling of the conditional generative adversarial network for battery calendar ageing forecast .IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 67-77.【IF=5.46】

(79) Quantile forecast of renewable energy generation based on indicator gradient descent and deep residual BiLSTM .Control Engineering Practice, 114 (2021): 104863.【IF: 4.06】

(80) Lithium-ion battery calendar health prognostics based on knowledge-data-driven attention .IEEE Transactions on Industrial Electronics, 2022, doi: 10.1109/TIE.2022.3148743.【IF=8.16】

(81) A novel binary/real-valued pigeon-inspired optimization for economic/environment unit commitment with renewables and plug-in vehicles .Science China Information Sciences, 62(7), (2019): 1-3.【IF=7.28】

(82) Stochastic speed prediction for connected vehicles using improved bayesian networks with back propagation .Science China Technological Sciences, 65(7), (2022): 1524-1536.【IF=3.90】

(83) Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter .Applied Energy, 280 (2020): 115895.【IF=11.45】

(84) A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting .Neurocomputing, 397 (2020): 415-421.【IF: 5.78】

(85) Comparative study of energy management in parallel hybrid electric vehicles considering battery ageing .Energy, 264 (2023): 123219.【IF=8.86】

(86) Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data – Part A: storage operation .Journal of Energy Storage, 30 (2020): 101409.【IF=8.91】

(87) Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data – Part B: cycling operation .Journal of Energy Storage, 30 (2020): 101410.【IF=8.91】

(88) Quantifying key factors for optimised manufacturing of Li-ion battery anode and cathode via artificial intelligence .Energy and AI, 7 (2022): 100129

(89) An improved resistance-based thermal model for prismatic lithium-ion battery charging .Applied Thermal Engineering, (2020): 115794. 【IF=6.47】

(90) Wireless Battery Charging Control for Electric Vehicles: A User-Involved Approach .IET Power Electronics, 12(10), (2019), 2688-2696.【IF=2.48】

(91) A Practical and Comprehensive Evaluation Method for Series-Connected Battery Pack Models .IEEE Transactions on Transportation Electrification, 6(2), (2020): 391-416.【IF=6.52】

(92) Battery-involved Energy Management for Hybrid Electric Bus Based on Expert-assistance Deep Deterministic Policy Gradient Algorithm .IEEE Transactions on Vehicular Technology, 69(11), (2020): 12786-12796.【IF=5.38, ESI高被引】

(93) A Review of Lithium‐Ion Battery Electrode Drying: Mechanisms and Metrology .Advanced Energy Materials, 12(2), (2022): 2102233.【IF: 29.37】

(94) Advanced Fault Diagnosis for Lithium-Ion Battery Systems: A Review of Fault Mechanisms, Fault Features, and Diagnosis Procedures .IEEE Industrial Electronics Magazine, 14(3), (2020): 65-91.【IF=8.36,ESI高被引】

(95) State Estimation for Advanced Battery Management: Key Challenges and Future Trends .Renewable and sustainable energy reviews, 114 (2019) 1-13.【IF=16.80, ESI高被引, Citations: 396】

Patents
Copyright All Rights Reserved Shandong University Address: No. 27 Shanda South Road, Jinan City, Shandong Province, China: 250100
Information desk: (86) - 0531-88395114
On Duty Telephone: (86) - 0531-88364731 Construction and Maintenance: Information Work Office of Shandong University