牛胜利
Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Name (Simplified Chinese):牛胜利
Name (Pinyin):Niu Shengli
Date of Employment:2011-08-16
School/Department:核科学与能源动力学院
Education Level:Postgraduate (Doctoral)
Gender:Male
Degree:Doctoral Degree in Engineering
Status:Employed
Alma Mater:山东大学
Whether on the job:1
Discipline:Engineering Thermophysics
Thermal Power Engineering
Academic Honor:
Honors and Titles:
Hits:
Journal:Fuel
Abstract:The current transesterification for biodiesel is normally conducted with heat input and the resource is required to remove the contained water, which is complicated and costly. The novel magnetic catalyst of the bimetallic oxides of CeO2 and Fe3O4 supported on the hierarchical pore ZSM-5 was prepared and used for the biodiesel production through transesterification of palm oil with methanol under the electrolytic assistance. The prepared catalysts were characterized by SEM-EDS, TEM, FTIR, XRD, CO2/NH3-TPD, N2 adsorption–desorption and VSM, etc. The loaded cerium stimulated the particles growth and abundant atalytic active sites were obtained due to the coral-like structure and they were beneficial for transesterification. The presence of both acidic and basic sites guaranteed the strong catalytic capability of the CeO2/ZSM-5@Fe3O4 catalyst. Under the optimized transesterification condition of the catalyst dosage of 3 wt%, methanol to oil molar ratio of 18:1, reaction time of 2.5 h, electrolysis voltage of 40 V, presence of 2 % wt/wt of water added and reaction temperature of 25 ℃, the FAME yield of approximately 95 % was achieved. Also, the catalyst showed an acceptable reusability, where the FAME yield of 79 % was obtained after fourth reused cycle. In conclusion, the water in the resource promotes the electrolytic transesterification to occur efficiently at the room temperature.
All the Authors:Hewei Yu,Kuihua Han,Sunwen Xia,Zihao Yang,Yue Zheng,Yujiao Zhang,Yanan Hao,Abulikemu Abulizi
First Author:Sitong Liu
Indexed by:Journal paper
Correspondence Author:Shengli Niu*
Discipline:Engineering
First-Level Discipline:Power Engineering and Engineering Thermophysics
Document Type:J
Volume:378
Page Number:132862
Translation or Not:no
Date of Publication:2024-08-01
Included Journals:SCI