登录
|
山东大学
|
English
首页
科学研究
研究领域
论文成果
专利
著作成果
科研项目
科研团队
教学研究
教学资源
授课信息
教学成果
获奖信息
招生信息
学生信息
我的相册
教师博客
+
个人信息
MORE +
司建国
(教授)
教师姓名:司建国
教师拼音名称:sijianguo
入职时间:2003-10-08
所在单位:数学学院
性别:男
职称:教授
在职信息:在职
论文成果
当前位置:
中文主页
>>
科学研究
>>
论文成果
[1] . INVARIANT TORI FOR THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION WITH NONLINEAR TERM DEPENDING ON SPATIAL VARIABLE. Discrete and Continuous Dynamical Systems, 42, 4555-4595, 2022.
[2] Xin Yu GUAN. Response Solutions for Degenerate Reversible Harmonic Oscillators with Zero-average Perturbation. Acta Mathematica Sinica-English Series, 39, 2006-2030, 2023.
[3] . INVARIANT TORI FOR THE DERIVATIVE NONLINEAR SCHRO spacing diaeresis DINGER EQUATION WITH NONLINEAR TERM DEPENDING ON SPATIAL VARIABLE. Discrete and Continuous Dynamical Systems, 42, 4555-4595, 2022.
[4] 张渊. Construction of quasi-periodic solutions for nonlinear forced perturbations of dissipative Boussinesq systems. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 67, 2022.
[5] Zhang, Min. CONSTRUCTION OF QUASI-PERIODIC SOLUTIONS FOR THE QUINTIC SCHRODINGER EQUATION ON THE TWO-DIMENSIONAL TORUS T-2. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Journal, 374, 4711, 2021.
[6] Tingting Zhang. WEAKLY HYPERBOLIC INVARIANT TORT FOR TWO DIMENSIONAL QUASIPERIODICALLY FORCED MAPS IN A DEGENERATE CASE. Discrete and Continuous Dynamical Systems, 36, 6599, 2016.
[7] 许晓丹. Stoker's Problem for Quasi-periodically Forced Reversible Systems with Multidimensional Liouvillean Frequency. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 19, 2286, 2020.
[8] 司文. Almost-periodic bifurcations for one-dimensional degenerate vector fields. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 35, 242, 2020.
[9] 程红玉. Whiskered Tori for Forced Beam Equations with Multi-dimensional Liouvillean Frequency. Journal of Dynamics and Differential Equations, 32, 705, 2020.
[10] 王芬芬. Response Solution to Ill-Posed Boussinesq Equation with Quasi-Periodic Forcing of Liouvillean Frequency. JOURNAL OF NONLINEAR SCIENCE, 30, 657, 2020.
[11] 司文. ALMOST-PERIODIC PERTURBATIONS OF NON-HYPERBOLIC EQUILIBRIUM POINTS VIA POSCHEL-RUSSMANN KAM METHOD. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 19, 541, 2020.
[12] 王怡. 非线性项依赖于时间和空间变量的梁方程拟周期解的存在性. 中国科学, 47, 257, 2017.
[13] 脱秋菊. QUASI-PERIODIC SOLUTIONS OF NONLINEAR BEAM EQUATIONS WITH QUINTIC QUASI-PERIODIC NONLINEARITIES. Electronic Journal of Dierential Equations, 2015, 2015.
[14] 邱汶华. ON SMALL PERTURBATION OF FOUR-DIMENSIONAL QUASI-PERIODIC SYSTEM WITH DEGENERATE EQUILIBRIUM POINT. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 14, 421, 2015.
[15] 郗强. Existence, Uniqueness, and Stability Analysis of Impulsive Neural Networks with Mixed Time Delays. Abstract and Applied Analysis, 2014, 2014.
[16] 张敏. Solutions for the p-order Feigenbaum's functional equation h(g(x)) = g(p)(h(x)). ANNALES POLONICI MATHEMATICI, 111, 183, 2014.
共73条 1/5
首页
上页
下页
尾页
页