Education Background
Work Experience
Social Affiliations
|
Personal Information
唐朋,博士,副教授,山东大学未来计划学者。中国中文信息学会大数据安全与隐私计算专委会委员,蚂蚁密算科技“隐语学术委员会”委员。博士毕业于北京邮电大学,师从苏森教授。 研究方向聚焦于数据安全与隐私保护和可信人工智能领域,旨在构建从数据源头到模型应用的全链路安全架构。近年来,在CCS、ICML、ICDE、EDBT、TDSC、TKDE 等数据安全与人工智能领域高水平国际会议和期刊发表论文20余篇。主持省级以上科研项目3项,参与2项。 研究方向: l 方向一:数据安全与隐私保护 本方向聚焦于数据在全生命周期内的隐私保护与安全保障,为构建可信数据空间提供支撑。核心研究内容包括:数据流通中的敏感信息保护、隐私强度与数据效用的均衡机制,以及隐私计算协议的鲁棒性。 l 方向二:可信人工智能 本方向致力于确保AI模型(尤其是大模型)在应用生命周期内的可靠性与安全性。核心研究内容包括:隐私保护的图神经网络学习、大语言模型中的隐私保护检索增强生成(RAG)、隐私保护的图像数据合成技术。 代表性成果: [1] Pei Zhan, Peng Tang*, Yangzhuo Li, Puwen Wei, Shanqing Guo. Poisoning Attacks to Local Differential Privacy for Ranking Estimation (CCS 2025, CCF-A),2025. [2] Longzhu He, Chaozhuo Li, Peng Tang, and Sen Su*. Going Deeper into Locally Differentially Private Graph Neural Networks. (ICML 2025, CCF-A), 2025. [3] Longzhu He, Peng Tang, Yuanhe Zhang, Pengpeng Zhou, and Sen Su*. Mitigating Privacy Risks in Retrieval-Augmented Generation (RAG) via Locally Private Entity Perturbation. (IP&M 2025, 中科院1区top), 2025. [4] Xinglin Du, Peng Tang*, Rui Chen, Ning Wang, Chengyu Hu, Shanqing Guo. Query Rewriting-Based View Generation for Efficient Multi-Relation Multi-Query with Differential Privacy. 27th International Conference on Extending Database Technology (EDBT 2025, CCF-B), 576-588, 2025. [5] Yukun Yan, Peng Tang, Rui Chen*, Qilong Han*, Ruochen Du. DPC: Filtering Out Patch-Based Poisoned Samples with Differential Privacy. (ESORICS 2024, CCF-B), 289-309, 2024. [6] Peng Tang, Rui Chen*, Sen Su, Shanqing Guo*, Lei Ju and Gaoyuan Liu. Multi-Party Sequential Data Publishing Under Differential Privacy. IEEE Transactions on Knowledge and Data Engineering ( TKDE 2023, CCF-A), 35(9): 9562-9577, 2023. [7] Ning Wang, Yaohua Wang, Zhigang Wang, Jie Nie, Zhiqiang Wei, Peng Tang, Yu Gu and Ge Yu. PrivNUD: Effective Range Query Processing under Local Differential Privacy. The 39th IEEE International Conference on Data Engineering (ICDE 2023, CCF-A), 2660-2672, 2023.
[8] Peng Tang, Rui Chen, Chongshi Jin, Gaoyuan Liu and Shanqing Guo. Marginal Release under Multi-Party Personalized Differential Privacy. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (PKDD 2023, CCF-B), 2022. [9] Gaoyuan Liu, Peng Tang*, Chengyu Hu, Chongshi Jin and Shanqing Guo. Multi-Dimensional Data Publishing With Local Differential Privacy. 24th International Conference on Extending Database Technology (EDBT 2022, CCF-B), 2022. [10] Peng Tang, Rui Chen, Shanqing Guo, Lei Ju and Gaoyuan Liu. Differentially Private Publication of Multi-Party Sequential Data. 2021 IEEE 37th International Conference on Data Engineering (ICDE 2021, CCF-A), 2021. [11] Peng Tang, Xiang Cheng, Sen Su, Rui Chen and Huaxi Shao. Differentially Private Publication of Vertically Partitioned Data. IEEE Transactions on Dependable and Secure Computing (TDSC 2021, CCF-A), 2021. [12] Xiang Cheng, Peng Tang*, Sen Su, Rui Chen, Zequn Wu and Binyuan Zhu. Multi-Party High-Dimensional Data Publishing under Differential Privacy. IEEE Transactions on Knowledge and Data Engineering (TKDE 2020, CCF-A), 2020. [13] Sen Su, Peng Tang, Xiang Cheng, Rui Chen and Zequn Wu. Differentially private multi-party high-dimensional data publishing. IEEE 32nd International Conference on Data Engineering (ICDE 2016, CCF-A), 2016.
| |