Wang Yilin

Professor

Supervisor of Doctorate Candidates Supervisor of Master's Candidates

Vice Dean 齐鲁青年学者

E-Mail:   

Personal Profile

Personal Experience

  • 2018.10 -- Now

    山东大学集成电路学院 

  • 2017.10 -- 2018.10

    美国马里兰大学、帕克分校 

  • 2011.10 -- 2017.10

    美国马里兰大学博士后、合作导师:Prof. Janice Reutt-Robey、Prof. Michael Fuhrer (澳大利亚科学院院士)、Prof. Liangbing Hu 

  • 2006.09 -- 2011.07

    中国科学院物理研究所理学博士、导师:薛其坤院士 

Recruitment and Enrollment

Category Major Introduction Number of People Year

Doctoral Admissions

微电子、物理、材料、物理化学

2

2025

Master Students Admissions

微电子、物理、材料、物理化学

3

2025

Teaching Information

Undergraduate Course Name Semester Credit Course Number

二维材料与器件

Spring Term

2.0

0230068

Research Direction

Name Introduction

二维磁性材料自旋电子器件

自旋电子学-磁性随机存储器(MRAM)

电子具有电荷和自旋两个内禀属性。以电子电荷自由度为基础的集成电路受传统冯·诺依曼架构下“存储墙”和“功耗墙”的限制,无法满足大数据、人工智能、物联网等信息产业对高性能器件的需求。自旋电子学器件具有非易失性、存储密度高、能耗低和响应快等优点,有望突破上述瓶颈,成为后摩尔时代集成电路领域的关键技术之一。基于磁隧道结(MTJ)的磁性随机存储器(MRAM)在新型的“存算一体”架构中具有非常重要的作用。近年来新发现的二维磁性材料具有原子尺度的多场物性调控能力及高密度异质集成潜力,为研发新一代信息存储与逻辑器件提供了重要机遇,成为当前凝聚态物理、材料科学、信息科学等领域研究的前沿和热点,而且受到三星、台积电等集成电路领军企业的广泛重视。

我们关注:1)二维磁性材料及其物性调控;2)利用自旋轨道转矩( SOT )效应进行磁化操纵,完成信息的写入与存储,开发读写速度快、功耗低的磁存储器件(SOT-MRAM);3)实现基于SOT-MRAM的“存算一体”逻辑运算。

wyl0.jpg

二维材料集成电路

二维材料集成电路

自2004年石墨烯发现以来,二维材料的研究已持续成为国际热点,其家族成员不断壮大,且表现出不同物性。将不同性质的二维材料堆叠形成范德瓦尔斯异质结,更是为发现各种新奇效应提供了无限可能。最新的国际器件与系统发展路线(IRDS)就指出,二维半导体是目前业界唯一公认能够延续摩尔定律的材料。近年来,三星、台积电、阿斯麦等企业和机构已经开始着力研发二维半导体作为3-5nm节点以后硅的替代方案。

我们关注:1)二维半导体MoS2的器件工艺与性能提升;2)场效应、掺杂、界面工程等手段调控二维材料及其异质结中的电荷、自旋以及轨道,研究其中的新奇物理现象;3)二维半导体光电子器件。

wyl1.jpg

量子物态调控

量子物态调控

Research Project

Project Name Project Cycle

电控二维室温铁磁体自旋态及其自旋电子器件研究

2024-01-01,2026-12-30

纳米电子器件研究

2023-09-01,2024-12-31

BM晶体管V2技术合作项目

2023-09-01,2024-12-31

低维拓扑、磁性材料及其异质结构的制备、表征与多场调控

2020-12-12,2023-12-31

新型高导热环氧塑封料

2021-04-01,2024-12-31

在基于内禀磁性拓扑绝缘体MnBi2Te4的异质结构中实现高温量子反常霍尔效应

2020-12-30,2024-12-31

Main Papers

【1】王以林.OBE理念下的原子物理学课程教学设计研究. 物理与工程, 35:110,2025.

【2】周浩.Hybrid CsPbBr3@CP-1 composites with enhanced stability and dual-emitting for white LED and photoelectrical applicationsProgress in Natural Science-Materials International,2025.

【3】.Electrical Control of Magnetic Order Transition in 2D Antiferromagnetic Semiconductor FePS3. Advanced Science, 12:2413892,2025.

【4】肖寒.Regulation of charge density wave and superconductivity in kagome superconductor CsV3Sb5 by intercalationProgress in Natural Science-Materials International,2024.

【5】.Intercalation-Induced Monolayer Behavior in Bulk NbSe2. ACS Applied Materials & Interfaces, 16:59049,2024.

【6】.Polarity-Reversal of Exchange Bias in van der Waals FePS3/Fe3GaTe2 Heterostructures. Advanced Science, 11:2409210,2024.

【7】Electronic inhomogeneity and phase fluctuation in one-unit-cell FeSe films. NATURE COMMUNICATIONS, 15,2024.

【8】于立轩.High carrier mobility in organic cations intercalated multilayer MoS2. APPLIED PHYSICS LETTERS, 124,2024.

【9】弭孟娟.Tuning magnetic properties of two-dimensional antiferromagnetic MPX3 by organic cations intercalation 有机阳离子插层调控二维反铁磁 MPX3 磁性能. ACTA PHYSICA SINICA, 73,2024.

【10】弭孟娟.Two-dimensional magnetic materials for spintronic devices. Materials Today Nano, 24,2023.

【11】Lei, Xiaoxu.Band splitting and enhanced charge density wave modulation in Mn-implanted CsV<sub>3</sub>Sb<sub>5</sub>. NANOSCALE ADVANCES, 5:2785,2023.

【12】Near-infrared multiphoton absorption and third harmonic generation with CsPbBr3 quantum dots embedded in micro-particles of metal-organic frameworks. Journal of Materials Chemistry C, 11:5788,2023.

【13】雷晓旭.Band splitting and enhanced charge density wave modulation in Mn-implanted CsV3Sb5. Nanoscale Advances, 5:2785,2023.

【14】姜友成.Improved Electrical and Thermal Conductivities of Graphene–Carbon Nanotube Composite Film as an Advanced Thermal Interface Material. Energies, 16:1379,2023.

【15】冯明明.Active metal-graphene hybrid terahertz surface plasmon polaritons. NANOPHOTONICS, 11:3331-3338,2022.

【16】Variation between Antiferromagnetism and Ferrimagnetism in NiPS3 by Electron Doping. Advanced Functional Materials, 32:2112750,2022.

【17】弭孟娟.Variation between Antiferromagnetism and Ferrimagnetism in NiPS3by Electron DopingAdvanced functional materials,2022.

【18】弭孟娟.Variation between Antiferromagnetism and Ferrimagnetism in NiPS3 by Electron Doping. Advanced Functional Materials, 32:2112750,2022.

【19】肖寒.Recent development in two-dimensional magnetic materials and multi-field control of magnetism. ACTA PHYSICA SINICA, 70,2021.

【20】Liu, Siliang.Nanomanufacturing of RGO-CNT Hybrid Film for Flexible Aqueous Al-Ion Batteries. Small, 16,2020.

【21】Cui, Wenqiang.An in situ electrical transport measurement system under ultra-high vacuum. REVIEW OF SCIENTIFIC INSTRUMENTS, 91,2020.

【22】Han, Sha.Visualizing molecular orientational ordering and electronic structure in CsnC60 fulleride films. PHYSICAL REVIEW B, 101,2020.

Patent Works