登录  山东大学  English 
吴昊

副教授 同专业博导 同专业硕导

主要任职:教学和科研

其他任职:中国计算机协会(CCF)高级会员(No.73301S),中国计算机协会(CCF)专委会委员;人工智能学会生命与健康协会会员(BIIP,No.E661506634M),人工智能学会生命与健康专委委员;中国生物工程学会计算生物学与生物信息学协会会员(No.E441504848Z),中国生物工程学会计算生物学与生物信息学专委委员;山东生物信息学学会理事,国家自然基金委青年和面上项目评审专家;全国硕士毕业论文评审专家;《Briefings in Bioinformatics》、《计算机学报》等国内外二十余个SCI期刊评审人和客座编辑

性别:男

毕业院校:西安电子科技大学

学历:博士研究生毕业

学位:博士生

在职信息:在职

所在单位:软件学院

入职时间:2020-10-12

学科:软件工程其他专业
计算机应用技术
计算机科学与技术

办公地点:山东大学软件园校区
山东省济南市高新区舜华路1500号

联系方式:邮箱:haowu@sdu.edu.cn

电子邮箱:haowu@sdu.edu.cn

学术荣誉:

邮编 : 250101

邮箱 : haowu@sdu.edu.cn

2021-12-20曾获荣誉当选: 山东大学软件学院优秀教师

2020-12-20曾获荣誉当选: 山东大学教师教学创新大赛三等奖

2018-07-10曾获荣誉当选: 西北农林科技大学信息工程学院本科毕业设计优秀指导教师

2016-12-25曾获荣誉当选: 西北农林科技大学青年教师讲课比赛二等奖,比赛现场评分第一名

2016-12-30曾获荣誉当选: 西北农林科技大学信息工程学院“特殊课时津贴”奖

2013-06-10曾获荣誉当选: 教改项目《计算机网络应用技术课程建设改革与实践》荣获西北农林科技大学教学成果二等奖

2009-10-10曾获荣誉当选: 西北农林科技大学 “优秀班主任”

2008-12-30曾获荣誉当选: 西北农林科技大学“校级优秀教师”

手机版

访问量:

最后更新时间:..

StackTADB: a stacking-based ensemble learning model for predicting the boundaries of topologically associating domains (TADs) accurately in fruit f lies

点击次数:

所属单位:软件学院

发表刊物:Briefings in Bioinformatics

关键字:topologically associating domains (TADs), ensemble learning, machine learning, sequence analysis

摘要:Chromosome is composed of many distinct chromatin domains, referred to variably as topological domains or topologically associating domains (TADs). The domains are stable across different cell types and highly conserved across species, thus these chromatin domains have been considered as the basic units of chromosome folding and regarded as an important secondary structure in chromosome organization. However, the identification of TAD boundaries is still a great challenge due to the high cost and low resolution of Hi-C data or experiments. In this study, we propose a novel ensemble learning framework, termed as StackTADB, for predicting the boundaries of TADs. StackTADB integrates four base classifiers including Random Forest, Logistic Regression, K-NearestNeighbor and Support Vector Machine. From the analysis of a series of examinations on the data set in the previous study, it is concluded that StackTADB has optimal performance in six metrics, AUC, Accuracy, MCC, Precision, Recall and F1 score, and it is superior to the existing methods. In addition, the comparison of the performance of multiple features shows that Kmers-based features play an essential role in predicting TADs boundaries of fruit flies, and we also apply the SHapley Additive exPlanations (SHAP) framework to interpret the predictions of StackTADB to identify the reason why Kmers-based features are vital. The experimental results show that the subsequences matching the BEAF-32 motif play a crucial role in predicting the boundaries of TADs. The source code is freely available at https://github.com/HaoWuLab-Bioinformatics/StackTADB and the webserver of StackTADB is freely available at http://hwtad.sdu.edu.cn:8002/StackTADB.

全部作者:Pengyu Zhang,Zhaoheng Ai,Leyi Wei,Hongming Zhang*,Fan Yang*,Lizhen Cui*

第一作者:Hao Wu*

论文类型:期刊论文

论文编号:24DDA04061DE4D03B344C2068828930D

学科门类:工学

一级学科:软件工程

文献类型:J

卷号:24

期号:1

页面范围:bbac023

字数:12

是否译文:

发表时间:2022-02-01

收录刊物:SCI

附件:
版权所有   ©山东大学 地址:中国山东省济南市山大南路27号 邮编:250100 
查号台:(86)-0531-88395114
值班电话:(86)-0531-88364731 建设维护:山东大学信息化工作办公室