Xuan Xiaoxu
Associate Professor
Visit:
Personal Information:
  • Name (English):
    Xuan Xiaoxu
  • Name (Pinyin):
    Xuan Xiaoxu
  • Date of Employment:
    2020-07-29
  • School/Department:
    Shandong University
  • Administrative Position:
    Assistant Professor
  • Education Level:
    Postgraduate (Doctoral)
  • Business Address:
    Building 8 room 416, Qianfo Campus of Shandong University
  • Gender:
    Female
  • Contact Information:
    E-mail: xiaoxuxuan@sdu.edu.cn
  • Degree:
    Doctor
  • Status:
    Employed
  • Alma Mater:
    Zhejiang University
  • Supervisor of Master's Candidates
Discipline:
Thermal Power Engineering;
Honors and Titles:

浙江大学博士生学业奖学金;
浙江大学岑可法一等奖学金;
浙江大学岑可法新生一等奖学金;
浙江大学优秀研究生干部;
浙江大学优秀研究生;
国家奖学金;
Biography

学术兼职

中国科协青年人才托举工程项目入选者、Springer出版社国际期刊Carbon Research青年编委、国际燃烧学学会会员、中国煤炭学会会员、中国可再生能源学会会员、Chemical Engineering Journal、ACS Sustainable Chemistry & Engineering、Energy Technology等国际期刊审稿人、国际期刊Frontiers in Materials(IF=3.98)、Crystals(IF=2.61)客座编辑。


国内外学习和工作经历

2020/07 – 至今:助理研究员、学术副教授,硕士生导师,机械工程学院,山东大学

2015/06 – 2020/06:工学博士,能源清洁利用国家重点实验室,浙江大学,导师组:程军(“长江学者”特聘教授),岑可法(中国工程院院士),王智化(国家杰出青年基金获得者)

2013/09 – 2014/01:交换生,机械工程学系,香港大学

2011/09 – 2015/06:工学学士,能源与环境系统工程,山东大学,导师:孙锲


研究领域

[1] 太阳能光热、光电等可再生能源利用及系统集成(机械设计、智能控制系统集成、智能制造)。

[2] 前沿“碳中和”技术,CO2加氢制燃料、CO2矿化强化固定、N2加氢制高价值产物、光电催化制氢、海水淡化。

[3] “碳达峰碳中和”战略研究,主攻工业领域“双碳”战略研究。

[4] 碳足迹核算标准体系研究。

Google scholar:

https://scholar.google.com.hk/citations?user=yOT-F1oAAAAJ&hl=en

Research gate:

https://www.researchgate.net/profile/Xiaoxu_Xuan


【热烈欢迎具有可再生能源、工程热物理、化学工程等专业背景的同学报考硕士研究生(课题组名额充足)!热烈欢迎对互联网+、节能减排大赛、挑战杯等赛事感兴趣的本科生积极联系!】

指导本科生在互联网+、数学建模竞赛中取得优异成绩并发表SCI论文,指导研究生参加“华清杯”全国CCUS大赛并获得优秀奖

课题组与国内外可再生能源利用、工业减排等领域相关课题组(美国佐治亚理工学院、纽约州立大学布法罗分校、香港大学、浙江大学、南开大学、天津大学、中国石油大学、中科院电工所、中科院大化所、中石化石勘院、钢铁研究总院等)及知名企业(华能、华润、浙能、粤能、山能、腾讯、中建材、矿冶科技集团有限公司、山东高速集团等)合作联系紧密,可为学生升学、就业提供全力支持。


承担科研项目情况

[1]国家重点研发计划项目(政府间科技创新合作):2022YFE0135100,2023.01 – 2024.12,任务课题主持

[2]国家自然科学基金青年项目:52106257,2022.01 – 2024.12,主持

[3]山东省自然科学基金青年项目:ZR2021QE017,2022.01 – 2024.12,主持

[4]江苏省自然科学基金青年项目:BK20210112,2021.07 – 2024.06,主持

[5]中央高校基本科研业务经费:2020GN050,2020.09 – 2022.12,主持

[6]浙江省重点研发计划项目:2020C01135,2020.01 – 2022.12,主研

[7]国家自然科学基金面上项目:51976187,2020.01 – 2023.12,主研

[8]国家自然科学基金面上项目:51676171,2017.01 – 2020.12,主研

同时承担企业横向项目若干。


获奖情况

“科创中国”数字碳中和典型案例,2023年

循环经济优秀青年科技工作者,2023年

中国科协青年人才托举工程项目,2023年

山东大学优秀博士后二等奖,2022年

山东大学机械工程学院优秀班主任,2022年

浙江大学岑可法一等奖学金,2019年

浙江大学优秀研究生干部,2016年

浙江大学优秀研究生,2016年

浙江大学岑可法新生一等奖学金,2015年

浙江大学博士生学业奖学金,2015年

国家奖学金,2012年


代表性论文(一作/通讯)

[1] Ye H.(本科生), Xuan X.*, Wang M., Sun J.(本科生), et al. Designing nozzle-like flow channel for high CO2 one-way conversion rate and methanol selectivity in CO2 electrochemical reduction reaction. CEN2023-Applied Energy Symposium 2023: Clean Energy towards Carbon Neutrality, 2023.

[2] Liu X.#, Xu X.#*, Xuan X.#, et al. Unlocking enhanced capacitive deionization of NaTi2(PO4)3/carbon materials by the yolk–shell design[J]. Journal of the American Chemical Society, 2023, Just Accepted.(共同一作)

[3] Wu A.#*, Lv J.#, Xuan X.#, et al. Electrocatalytic disproportionation of nitric oxide toward efficient nitrogen fixation[J]. Advanced Energy Materials, 2023, 13(14): 2204231.(共同一作)

[4] Xing Z. #, Xuan X.#, Hu H.*, et al. Particle size optimization of metal-organic frameworks for superior capacitive deionization in oxygenated saline water[J]. Chemical Communications, 2023, 59, 4515-4518.(共同一作)

[5] Xuan X.*, Wang M., You W., et al. Hydrodynamic cavitation-assisted preparation of porous carbon from garlic peels for supercapacitors[J]. Ultrasonics Sonochemistry, 2023, 94:106333.

[6] Yang M., Wang M., Zhang M., Sun X., Xuan X.*, Nanostructured carbon electrocatalysts for clean energy conversion and storage: a mini review on the structural impact[J]. Frontiers in Materials, 2022, 9,1090412.

[7] Zhang M.#, Xuan X.#*, Yi X.*, et al. Carbon aerogels as electrocatalysts for sustainable energy applications: recent developments and prospects[J]. Nanomaterials, 2022, 12(15),2721.(共同一作)

[8] Xuan X.*, Wang M., Manickam S., et al. Metal-organic frameworks-based sensors for the detection of toxins in food: a critical mini-review on the applications and mechanisms[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10, 906374.

[9] Xuan X.*, Wang M., Zhang M., et al. Nanoarchitecturing of low-dimensional metal-organic frameworks toward photo(electro)chemical CO2 reduction reactions[J]. Journal of CO2 Utilization, 2022, 57:101883. (ESI高被引论文)

[10] Sun X, Yang Z, Wei X.*, Tao Y., Xuan X.*, et al. Multi-objective optimization of the cavitation generation unit structure of an advanced rotational hydrodynamic cavitation reactor[J]. Ultrasonics Sonochemistry, 2021, 80:105771.

[11] Sun X., You W., Xuan X.*, et al. Effect of the cavitation generation unit structure on the performance of an advanced hydrodynamic cavitation reactor for process intensifications[J]. Chemical Engineering Journal, 2021, 412: 128600.

[12] Sun X., Wang Z., Xuan X.*, et al. Disinfection characteristics of an advanced rotational hydrodynamic cavitation reactor in pilot scale[J]. Ultrasonics Sonochemistry, 2021, 73: 105543.

[13] Xuan X., Chen S., Zhao S., Sun X.*, et al. Carbon nanomaterials from metal-organic frameworks: a new material horizon for CO2 reduction[J]. Frontiers in Chemistry, 2020, 8:573797.

[14] Xuan X., Cheng J.*, Yang X., et al. Highly selective photoelectrochemical reduction of CO2 to CH4 over vacancy-metal-nitrogen sites in an artificial photosynthetic cell[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3):1679-1686.

[15] Xuan X., Cheng J.*, Yang X., et al. Solar driven reduction of CO2 using Pt-Cu/C as a catalyst in a photoelectrochemical cell: Experiment and mechanism study[J]. RSC Advances, 2019, 9(19): 10635-10644.

[16] Cheng J.*, Xuan X., Yang X., et al. Enhanced photoelectrochemical hydrogenation of green-house gas CO2 to high-order solar fuel on coordinatively unsaturated metal-N sites containing carbonized Zn/Co ZIFs[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21597-21606.(导师一作)

[17] Cheng J.*, Xuan X., Yang X., et al. Selective reduction of CO2 to alcohol products on octahedral catalyst of carbonized Cu(BTC) doped with Pd nanoparticles in a photoelectrochemical cell[J]. Chemical Engineering Journal, 2019, 358: 860-868.(导师一作)

[18] Cheng J.*, Xuan X., Yang X., et al. Preparation of a Cu(BTC)-rGO catalyst loaded on a Pt deposited Cu foam cathode to reduce CO2 in a photoelectrochemical cell[J]. RSC Advances, 2018, 8(56): 32296-32303.(导师一作)

[19] 程军*, 玄晓旭, 王珍懿, 等. 铂修饰花状石墨烯催化还原 CO2反应[J]. 工程热物理学报, 2018, 39(04): 195-200.(导师一作)


其他重要研究成果

《科技支撑碳达峰碳中和信息简报》,7篇,其中《我国石化化工行业碳中和实现路径分析》一文获得科技部部长批示。

《科技支撑碳达峰碳中和实施方案》,国家“1+N”框架体系科技领域重要政策文件,前期研究有力支撑了《实施方案》的形成。


联系方式

地址:山东省济南市经十路17923号山东大学机械工程学院

邮编:250061

电子邮箱:xiaoxuxuan@sdu.edu.cn

Education
  • 2011-9 — 2015-6
    山东大学
    能源与环境系统工程
    Bachelor's Degree in Engineering
  • 2015-9 — 2020-6
    浙江大学
    能源环境工程
    Doctoral Degree in Engineering
  • 2013-9 — 2014-1
    香港大学
    机械工程
    交换生
  • 2011-9 — 2015-6
    山东大学
    能源与环境系统工程
    Bachelor's Degree in Engineering
Publication
Papers

1. 夏高举. Numerical simulation of cavitation-vortex interaction mechanism in an advanced rotational hydrodynamic cavitation reactor .Ultrasonics sonochemistry.2024,105 (无)

2. 孙逊. Assessing the industrialization progress of hydrodynamic cavitation process intensification technology: a review .Current Opinion in Chemical Engineering.2024,45 (无)

3. 朱秀峰. Degradation of tetracycline by combining hydrodynamic cavitation (HC) and persulfates (PS) .Journal of Physics: Conference Series.2024,2752 (1)

4. 夏高举. Modal decomposition of the shedding mechanism of partial cavitation in a Venturi Tube .Journal of Physics: Conference Series.2024,2752 (1)

5. 游炜彬. Experimental and numerical studies on the partial cavitation in a Venturi .Journal of Physics: Conference Series.2024,2752 (1)

6. 刘帅. Degradation of tetracycline by combining hydrodynamic cavitation (HC) and ultraviolet (UV) .Journal of Physics: Conference Series.2024,2752 (1)

7. 周智忠. Numerical investigation of partial cavitation in a Venturi tube by Eulerian-Lagrangian multiscale modelling .Journal of Physics: Conference Series.2024,2707 (1)

8. 夏高举. Numerical simulation of cavitation-vortex interaction mechanism in an advanced rotational hydrodynamic cavitation reactor .Ultrasonics Sonochemistry.2024,105 (无)

9. . N, P-doped carbon nanorings for high-performance capacitive deionization .Chemical Engineering Journal.2023 (473)

10. 玄晓旭. Highly Selective Electrochemical Reduction of CO2 to CH4 over Vacancy-Metal-Nitrogen Sites in an Artificial Photosynthetic Cell .ACS Sustainable Chemistry & Engineering.2020 (8)

11. . Mass transport enhancement effect induced by superstructure catalyst for carbon dioxide reduction to formic acid .International journal of hydrogen energy.2023 (05.285)

12. 张梦. Anode Photovoltage Compensation-Enabled Synergistic CO(2)Photoelectrocatalytic Reduction on a Flower-like Graphene-Decorated Cu Foam Cathode .Advanced functional materials.2020,30 (52)

13. 孙逊. Intensification of biodiesel production by hydrodynamic cavitation: A critical review .RENEWABLE & SUSTAINABLE ENERGY REVIEWS.2023 (179 )

14. 孙逊. Intensification of biodiesel production by hydrodynamic cavitation: A critical review .RENEWABLE & SUSTAINABLE ENERGY REVIEWS.2023 (179 )

15. . Effect of the arrangement of cavitation generation unit on the performance of an advanced rotational hydrodynamic cavitation reactor .Ultrasonics Sonochemistry.2023 (99)

16. 孙逊. Intensification of biodiesel production by hydrodynamic cavitation: A critical review .Renewable and sustainable energy reviews.2023 (179)

17. 玄晓旭. Metal-Organic Frameworks-Based Sensors for the Detection of Toxins in Food: A Critical Mini-Review on the Applications and Mechanisms. .FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY.2022,10 :906374

18. . Unlocking Enhanced Capacitive Deionization of NaTi2(PO4)3/Carbon Materials by the Yolk-Shell Design .Journal of the American Chemical Society.2023,145 (16):9242

19. 杨梦晴. Nanostructured carbon electrocatalysts for clean energy conversion and storage: A mini review on the structural impact .FRONTIERS IN MATERIALS.2022,9 (1131651)

20. . Electrocatalytic Disproportionation of Nitric Oxide Toward Efficient Nitrogen Fixation .Advanced Energy Materials.2023,14 (13)

21. . Particle size optimization of metal–organic frameworks for superior capacitive deionization in oxygenated saline water .Chemical Communications.2023,30 (59):4515

22. 玄晓旭. Hydrodynamic cavitation-assisted preparation of porous carbon from garlic peels for supercapacitors .Ultrasonics Sonochemistry.2023 (94)

23. 孙逊. Multi-objective Optimization of the Cavitation Generation Unit Structure of an Advanced Rotational Hydrodynamic Cavitation Reactor .Ultrasonics Sonochemistry.2021 (80 )

24. 孙逊. Experimental and numerical studies on the cavitation in an advanced rotational hydrodynamic cavitation reactor for water treatment .Ultrasonics Sonochemistry.2021 (70)

25. 孙逊. Experimental and Numerical Studies on the Cavitation in an Advanced Rotational Hydrodynamic Cavitation Reactor for Water Treatment .Ultrasonics Sonochemistry.2021 (70)

26. 玄晓旭. Carbon Aerogels as Electrocatalysts for Sustainable Energy Applications: Recent Developments and Prospects .Nanomaterials .2022,12 (15)

27. 孙逊. A novel continuous hydrodynamic cavitation technology for the inactivation of pathogens in milk .Ultrasonics - Sonochemistry.2021 (70)

28. 孙逊. Metal-Organic Frameworks-Based Sensors for the Detection of Toxins in Food: A Critical Mini-Review on the Applications and Mechanisms .Frontiers in Bioengineering and Biotechnology.2022 (10)

29. 孙逊. Photolysis for the Removal and Transformation of Pesticide Residues During Food Processing: A State-of-the-Art Minireview .FRONTIERS IN NUTRITION.2022 (9)

30. 孙逊. Nanoarchitectonics of low-dimensional metal-organic frameworks toward photo/electrochemical CO2 reduction reactions .JOURNAL OF CO2 UTILIZATION.2022 (11)

31. 孙逊. 基于水力空化的化工过程强化研究进展 .《化工进展》.2022 (5)

32. 孙逊. Hydrodynamic Cavitation: A Novel Non-Thermal Liquid Food Processing Technology .FRONTIERS IN NUTRITION.2022 (9)

33. 孙逊. Recent advances in hydrodynamic cavitation-based pretreatments of lignocellulosic biomass for valorization .Bioresource Technology.2022 (345)

34. 孙逊. Multi-objective Optimization of the Cavitation Generation Unit Structure of an Advanced Rotational Hydrodynamic Cavitation Reactor .Ultrasonics Sonochemistry.2021 (80)

35. 陈颂英. Effect of the cavitation generation unit structure on the performance of an advanced hydrodynamic cavitation reactor for process intensifications .Chemical Engineering Journal.2021 (2021)

36. 孙逊. Experimental and numerical studies on the cavitation in an advanced rotational hydrodynamic cavitation reactor for water treatment .Ultrasonics Sonochemistry.2020 (70)

37. 孙逊. A novel continuous hydrodynamic cavitation technology for the inactivation of pathogens in milk .Ultrasonics Sonochemistry.2020 (70)

38. 玄晓旭. Carbon Nanomaterials From Metal-Organic Frameworks: A New Material Horizon for CO2 Reduction .FRONTIERS IN CHEMISTRY.2020 (858)

39. 孙逊. Disinfection characteristics of an advanced rotational hydrodynamic cavitation reactor in pilot scale .Ultrasonics Sonochemistry.2021 (73)

40. 陈颂英. Effect of the cavitation generation unit structure on the performance of an advanced hydrodynamic cavitation reactor for process intensifications .Chemical Engineering Journal.2021 (412)

Patens
Research Group
Title
绿色低碳智慧能源团队
Description of Research Group:
Members
Copyright All Rights Reserved Shandong University Address: No. 27 Shanda South Road, Jinan City, Shandong Province, China: 250100
Information desk: (86) - 0531-88395114
On Duty Telephone: (86) - 0531-88364731 Construction and Maintenance: Information Work Office of Shandong University