许国富
|
个人信息Personal Information
教授 博士生导师 硕士生导师
性别:男
出生日期:1984-10-28
在职信息:在职
所在单位:物理学院
入职时间:2015-05-15
办公地点:中心校区知新楼C1006
电子邮箱:
扫描关注
- [1] 许国富. Reducing the measurement errors in nonadiabatic holonomic quantum computers. 《Science China: Physics, Mechanics and Astronomy》, 68, 2024.
- [2] 许国富. Average-value estimation in nonadiabatic holonomic quantum computation. Physical Review A, 108, 2023.
- [3] 许国富. A bridge between acoustic metamaterials and quantum computation. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022.
- [4] 许国富. Robust population transfer of spin states by geometric formalism. Physical Review A - Atomic, Molecular, and Optical Physics, 2022.
- [5] 许国富. Realizing multi-qubit controlled nonadiabatic holonomic gates with connecting systems. AAPPS Bulletin, 2022.
- [6] 赵培茈. Nonadiabatic holonomic quantum computation with Rydberg superatoms. Physical Review A, 98, 2018.
- [7] 赵培茈. General approach for constructing Hamiltonians for nonadiabatic holonomic quantum computation. Physical Review A, 101, 2020.
- [8] 赵培茈. Single-shot realization of nonadiabatic holonomic quantum gates in decoherence-free subspaces. Physical Review A , 95, 2017.
- [9] 赵培茈. Nonadiabatic holonomic multiqubit controlled gates. Physical Review A , 99, 2019.
- [10] 赵培茈. 非绝热和乐量子计算研究进展. 科学通报, 66, 2021.
- [11] 赵培茈. Nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases. Physical Review A , 94, 2016.
- [12] 赵培茈. Rydberg-atom-based scheme of nonadiabatic geometric quantum computation. Physical Review A , 96, 2017.
- [13] 张大剑. Inconsistency of the theory of geometric phases in adiabatic evolution. Physical Review A, 105, 2022.
- [14] 赵培茈. Advances in nonadiabatic holonomic quantum computation. 科学通报, 66, 1935, 2021.
- [15] 李康泽. Coherence-protected nonadiabatic geometric quantum computation. PHYSICAL REVIEW RESEARCH, 3, 2021.
- [16] 许国富. Realizing nonadiabatic holonomic quantum computation beyond the three-level setting. Physical Review A, 103, 2021.
- [17] 赵培茈. General approach for constructing Hamiltonians for nonadiabatic holonomic quantum computation. Physical Review A - Atomic, Molecular, and Optical Physics, 101, 2020.
- [18] 邢同昊. Nonadiabatic holonomic three-qubit controlled gates realized by one-shot implementation. Physical Review A, 101, 2020.
- [19] 许国富 , 仝殿民 and 赵培茈. Nonadiabatic holonomic multiqubit controlled gates. Physical Review A, 99, 2019.
- [20] 许国富 and 许国富. Nonadiabatic Holonomic Quantum Computation in Decoherence-Free Subspaces. Physical Review Letters 109, 170501 (2012), 2012.
