张凤凯

性别:男

所在单位:土建与水利学院

入职时间:2021-03-01

   
当前位置: 中文主页 >> 科学研究 >> 论文成果

Arbitrarily-oriented tunnel lining defects detection from Ground Penetrating Radar images using deep Convolutional Neural networks

点击次数:

所属单位:控制科学与工程学院

发表刊物:Automation in Construction

关键字:Arbitrarily-oriented defect detection;Automation;Deep learning;Ground penetrating radar;Tunnel inspection

第一作者:王静

论文编号:1523583211215523842

卷号:133

字数:50

是否译文:

发表时间:2021-11-13

发表时间:2021-11-13

上一条: Tunnel resistivity deep learning inversion method based on physics-driven and signal interpretability

下一条: Full-waveform inversion method for tunnel seismic forward prospecting