张晓燕
个人信息Personal Information
教授 博士生导师 硕士生导师
性别:女
毕业院校:山东大学
学历:研究生(博士)毕业
学位:理学博士学位
在职信息:在职
所在单位:数学学院
入职时间:2004-07-16
学科:基础数学
办公地点:中心校区知新楼B座
扫描关注
- [1] . On a chemotactic host–pathogen model: boundedness, aggregation, and segregation. JOURNAL OF NONLINEAR SCIENCE, 2024.
- [2] . On cognitive epidemic models: spatial segregation versus nonpharmaceutical interventions. JOURNAL OF MATHEMATICAL BIOLOGY, 88, 2024.
- [3] . Epidemic dynamics and spatial segregation driven by cognitive diffusion and nonlinear incidence. STUDIES IN APPLIED MATHEMATICS, 151, 643, 2023.
- [4] . Asymptotic dynamics of a logistic SIS epidemic reaction-diffusion model with nonlinear incidence rate. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS Journal, 520, 2023.
- [5] . Asymptotic dynamics of a logistic SIS epidemic reaction-diffusion model with nonlinear incidence rate. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS Journal, 520, 126866, 2023.
- [6] . Analysis on a generalized Sel'kov-Schnakenberg reaction-diffusion system. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 44, 537, 2018.
- [7] . Qualitative analysis on a diffusive SIRS epidemic model with standard incidence infection mechanism. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 71, 2020.
- [8] . Analysis on a diffusive two-stage epidemic model with logistic growth and saturated incidence rates. Nonlinear Analysis: Real World Applications, 64, 2022.
- [9] . Extremal solutions for singular fractional p-Laplacian differential equations with nonlinear boundary conditions. Advances in Difference Equations, 2016.
- [10] . STEADY STATES OF A SEL'KOV-SCHNAKENBERG REACTION-DIFFUSION SYSTEM. Discrete and Continuous Dynamical Systems-Series S, 10, 1009, 2017.
- [11] . STABILITY AND ASYMPTOTIC PROFILE OF STEADY STATE SOLUTIONS TO A REACTION-DIFFUSION PELAGIC-BENTHIC ALGAE GROWTH MODEL. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 18, 2325, 2019.
- [12] . Asymptotic dynamics of a logistic SIS epidemic reaction-diffusion model with nonlinear incidence rate. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS Journal, 520, 126866, 2023.
- [13] 刘国栋. Analysis on a diffusive two-stage epidemic model with logistic growth and saturated incidence rates. Nonlinear Analysis: Real World Applications, 64, 2022.
- [14] Shuyu Han , Chengxia Lei and Xiaoyan Zhang. Qualitative analysis on a diffusive SIRS epidemic model with standard incidence infection mechanism. Z. Angew. Math. Phys., 71, No. 190, 23 pp, 2020.
- [15] Junping Shi , Jimin Zhang and Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Commun. Pure Appl. Anal., 18, 2325-2347, 2019.
- [16] Bo Li , Fangfang Wang and Xiaoyan Zhang. Analysis on a generalized Sel'kov-Schnakenberg reaction-diffusion system. Nonlinear Anal. Real World Appl., 44, 537-558, 2018.
- [17] Xiaoyan Zhang and Yuxiang Zhang. Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. Discrete and Continuous Dynamical Systems-Series B, 23, 2625-2640, 2018.
- [18] Bo Li and Xiaoyan Zhang. Steady states of a Sel'kov-Schnakenberg reaction-diffusion system. Discrete and Continuous Dynamical Systems-Series S, 10, 1009-1023, 2017.
|