vfgnaKEeREiWlXT6uUyRklFZhhyWDU5oTMkyyPy1KDiaWHsfxQXh0hwg4VZU
  • 其他栏目

    赵培茈

    • 研究员 博士生导师 硕士生导师
    • 性别:男
    • 毕业院校:山东大学
    • 学历:研究生(博士)毕业
    • 学位:博士生
    • 在职信息:在职
    • 所在单位:物理学院
    • 入职时间: 2022-07-28
    • 所属院系: 物理学院
    • 办公地点:山大南路27号知新楼C1002
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    个人简介

    赵培茈,研究员(四级岗),博士生导师。2019年在山东大学获得原子与分子物理博士学位,之后入职山东大学物理学院工作至今,期间在新加坡国立大学物理系主任龚江滨教授课题组进行了为期约一年半的合作研究。主要从事抗噪声量子计算的基础理论研究,在该领域已经取得了一系列具有重要影响力的研究成果,在国际权威刊物发表论文三十余篇,其中第一作者或通信作者论文二十余篇,包括18篇PR系列文章、1篇Sci. China封面文章、1篇New. J. Phys.。理论工作被清华大学[PRL 124, 230503]、浙江大学[Sci. China-Phys. Mech. Astron. 64, 250362]、南京大学[Phys. Status Solidi B 259, 2200 ] 的实验组分别证实,研究成果受到了包括吴培亨院士、郭光灿院士、俞大鹏院士在内的国内外知名学者的正面引用。获得了两项国家自然科学基金和一项山东省自然科学基金,获得了山东省优秀博士学位论文,担任包括PRL在内的十余本期刊审稿人。每年招收博士生1名、硕士生2名,欢迎对量子信息、拓扑光子学、腔光力系统等方向感兴趣的同学加入本课题组,虚位以待具有量子信息和量子光学研究背景的博士后及访问学者,同时也欢迎对量子信息方向感兴趣的本科生依托本课题组参加科创活动。


    [1]  L. Qiao*, Y. J. Song*, and P. Z. Zhao*. Superradiant phase transitions and spontaneous superradiant photon current in a double-cavity system. New J. Phys. 27, 114506 (2025).

    [2]  P. Z. Zhao* and L. Qiao*. Dynamical decoupling protection for three-level systems. Phys. Rev. A 112, 032428 (2025). 

    [3]  F. Yu, P. Z. Zhao, and J. B. Gong*. Nonadiabatic braiding of Majorana modes. Phys. Rev. B 112, L121401 (2025). 

    [4]  X. Y. Sun and P. Z. Zhao*. Decoherence mitigation for geometric quantum computation. Phys. Rev. A 112, 032403 (2025). 

    [5]  X. Y. Lou, Y. S. Cheng, P. Z. Zhao*, and D. M. Tong*. Nonadiabatic non-Abelian geometric phase in non-Hermitian quantum systems. Phys. Rev. A 112,  022222 (2025). 

    [6]  X. Y. Sun, L. Qiao*, and P. Z. Zhao*. Adiabatic holonomic quantum computation in decoherence-free subspaces with two-body interaction. Chin. Phys. B 34, 090308 (2025). 

    [7]  P. Z. Zhao, T. Q. Chen, S. R. Liu, and J. B. Gong*. Higher-order protection of quantum gates: Hamiltonian engineering coordinated with dynamical decoupling. Phys. Rev. A 111, 022621 (2025). 

    [8]  N. N. Ma, P. Z. Zhao, and J. B. Gong*. Quantum machine learning with indefinite causal order. Phys. Rev. A 110, 052406 (2024). 

    [9]  P. Z. Zhao, J. B. Gong*. Mitigation of systematic amplitude error in nonadiabatic holonomic operations. Phys. Rev. A 110, 012426 (2024). 

    [10]  G. F. Xu* and P. Z. Zhao*. Average-value estimation in nonadiabatic holonomic quantum computation. Phys. Rev. A 108, 052617 (2023). 

    [11]  N. N. Ma, W. H. Chu, P. Z. Zhao, and J. B. Gong*. Adiabatic quantum learning. Phys. Rev. A 108, 042420 (2023). 

    [12]  P. Z. Zhao* and D. M. Tong*. Nonadiabatic holonomic quantum computation based on a commutation relation. Phys. Rev. A 108, 012619 (2023). 

    [13]  P. Z. Zhao, Z. Jin*, and D. M. Tong*. Dissipative preparation of generalized Bell states with the Sørensen-Mølmer setting. Phys. Rev. Applied 18, 014051 (2022). 

    [14]  D. J. Zhang, P. Z. Zhao, and G. F. Xu. Inconsistency of the theory of geometric phases in adiabatic evolution. Phys. Rev. A 105, 042208 (2022). 

    [15]  X. Wu and P. Z. Zhao*. Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian. Frontiers of Physics 17, 31502 (2022). 

    [16]  T. H. Xing, P. Z. Zhao*, and D. M. Tong*. Realization of nonadiabatic holonomic multiqubit controlled gates with Rydberg atoms. Phys. Rev. A 104, 012618 (2021). 

    [17]  G. F. Xu, P. Z. Zhao, Erik Sjöqvist*, and D. M. Tong*. Realizing nonadiabatic holonomic quantum computation beyond the three-level setting. Phys. Rev. A 103, 052605 (2021). 

    [18]  P. Z. Zhao, G. F. Xu*, and D. M. Tong*. Advances in nonadiabatic holonomic quantum computation. Chin. Sci. Bull. 66, 1935 (2021). 

    [19]  P. Z. Zhao, Z. J. Z. Dong, Z. X. Zhang, G. P. Guo, D. M. Tong*, and Y. Yin*. Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit. Sci. China-Phys. Mech. Astron. 64, 250362 (2021). 

    [20]  P. Z. Zhao, X. Wu, and D. M. Tong*. Dynamical-decoupling-protected nonadiabatic holonomic quantum computation. Phys. Rev. A 103, 012205 (2021). 

    [21]  X. Wu and P. Z. Zhao*. Universal nonadiabatic geometric gates protected by dynamical decoupling. Phys. Rev. A 102, 032627 (2020). 

    [22]  P. Z. Zhao, K. Z. Li, G. F. Xu, and D. M. Tong*. General approach for constructing Hamiltonians for nonadiabatic holonomic quantum computation. Phys. Rev. A 101, 062306 (2020). 

    [23]  K. Z. Li, P. Z. Zhao*, and D. M. Tong*. Approach to realizing nonadiabatic geometric gates with prescribed evolution paths. Phys. Rev. Research 2, 023295 (2020). 

    [24]  Z. X. Zhang, P. Z. Zhao, T. H. Wang, L. Xiang, Z. L. Jia, P. Duan, D. M. Tong*, Y. Yin*, and G. P. Guo*. Single-shot realization of nonadiabatic holonomic gates with a superconducting Xmon qutrit. New J. Phys. 21, 073024 (2019). 

    [25]  P. Z. Zhao, G. F. Xu*, and D. M. Tong*. Nonadiabatic holonomic multiqubit controlled gates. Phys. Rev. A 99, 052309 (2019). 

    [26]  P. Z. Zhao, X. Wu, T. H. Xing, G. F. Xu*, and D. M. Tong*. Nonadiabatic holonomic quantum computation with Rydberg superatoms. Phys. Rev. A 98, 032313 (2018). 

    [27]  P. Z. Zhao, X. D. Cui, G. F. Xu*, E. Sjöqvist*, and D. M. Tong*. Rydberg-atom-based scheme of nonadiabatic geometric quantum computation. Phys. Rev. A 96, 052316 (2017). 

    [28]  P. Z. Zhao, G. F. Xu*, Q. M. Ding, E. Sjöqvist*, and D. M. Tong*. Single-shot realization of nonadiabatic holonomic quantum gates in decoherence-free subspaces. Phys. Rev. A 95, 062310 (2017). 

    [29]  G. F. Xu, P. Z. Zhao, D. M. Tong*, and Erik Sjöqvist*. Robust paths to realize nonadiabatic holonomic gates. Phys. Rev. A 95, 052347 (2017). 

    [30]  G. F. Xu, P. Z. Zhao, T. H. Xing, Erik Sjoqvist*, and D. M. Tong*. Composite nonadiabatic holonomic quantum computation. Phys. Rev. A 95, 032311 (2017). 

    [31]  P. Z. Zhao, G. F. Xu*, and D. M. Tong*. Nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases. Phys. Rev. A 94, 062327 (2016). 

    [32]  G. F. Xu, C. L. Liu, P. Z. Zhao, and D. M. Tong*. Nonadiabatic holonomic gates realized by a single-shot implementation. Phys. Rev. A  92, 052302 (2015). 


    教育经历

    2014.09 -- 2019.06
    山东大学       原子与分子物理       理学博士学位

    2010.09 -- 2014.06
    延边大学       物理学       理学学士学位

    工作经历

    2022.07 -- 至今

    山东大学      物理学院      研究员

    2019.05 -- 2022.07

    山东大学      特别资助类博士后

    研究方向