宫永顺
开通时间:..
最后更新时间:..
宫永顺(1990),博士,山东大学齐鲁青年学者特聘教授,博士生导师,泰山学者青年专家,山东省优青,入选山东大学青年学者未来计划。博士毕业于悉尼科技大学,计算机科学与工程。主持国家自然科学基金(面上、青年)、山东省优秀青年科学基金等项目10余项。研究兴趣主要包含时空数据分析与挖掘、图像处理、智慧交通、智慧城市计算、深度学习、机器学习理论、自然语言处理等。迄今已在中国计算机学会CCF-A类推荐期刊/会议IEEE TPAMI、Artificial Intelligence (山东大学首篇)、IEEE TKDE、SIGKDD、IJCAI、AAAI、NeurIPS、ACM MM、CVPR和中科院SCI-1区期刊IEEE T-CYB、IEEE T-NNLS、IEEE T-MM、Pattern Recognition等发表论文八十余篇。长期担任TKDE、TNNLS、TCYB、TMM等CCF-A类/SCI-1 区期刊审稿人,近年来连续担任KDD、ICML、NeurIPS、ICLR、IJCAI、AAAI、CVPR、ICCV 等CCF-A 类会议的程序委员会委员。获得青岛市科技进步二等奖、山东省人工智能科学技术进步一等奖;担任《计算机科学与探索》青年编委;担任CCF-人工智能与模式识别专委会执委、秘书;CCF-智慧交通分会执委;中国人工智能学会智能服务专委会委员;山东省人工智能学会常务理事。
工作经历:
2025.01 - 至今:软件学院,齐鲁青年学者特聘教授
2023.09 - 2024.12:软件学院,教授(破格)
2021.02-2023.08:软件学院,副研究员
学术交流:
2018.09 - 2019.03: 京东AI研究院担任Research Fellow,机器学习、时空预测与推荐系统方向;
2019.11 - 2020.06: 微软亚洲研究院担任Research Fellow,研究方向自然语义分析。
所在团队:
招生信息:(2025年入学生可通过邮件联系)
招生类别 |
招生专业 |
学术型硕士 |
软件工程、人工智能 (*) |
专业型硕士 |
软件工程、人工智能 (*) |
优先录取 |
(1)有很强的自主学习能力和科研热情;(2)具有扎实的数学基础和英文写作能力;(3)精通至少一门编程语言: Python、C++、JAVA、MATLAB |
*另: 招收若干本科生科研助手,有意向在本科就读阶段接触研究生科研工作、发表高水平学术论文或竞赛指导可咨询联系。
主要研究内容:
时空数据挖掘 |
时空流量预测、时空表征学习、时空异常检测等 |
城市计算 |
城市交通预测;城市感知计算;目标检测、跟踪等 |
深度学习 |
图像处理;3D点云;大语言模型;推荐系统;多媒体计算等 |
机器学习方法 |
低质数据分类、聚类;张量分解;跨模态/迁移学习等 |
*课题组在主要研究内容与方向中均发表过高水平论文。
主要主持或参与科研项目:
1. 2025-2028:《面向开放数据场景的XX时空XX研究》,国家自然科学基金面上项目,主持
2. 2023-2025:《面向城市流量预测的时空XXXX》,国家自然科学基金青年项目,主持
3. 2024-2027:《开放场景下XXXX数据XX和方法研究》,山东省重大基础研究项目,山大联合主持
4. 2025-2029:山东大学齐鲁青年学者项目,山东大学人才计划,主持
5. 2023-2025:泰山学者青年专家项目,主持
6. 2022-2025:《XXX交通流量预测》,山东省优秀青年科学基金,主持
7. 2022-2024:《复杂时空网络下的XXXX交通流量分布预测研究》,山东省自然科学基金青年项目,主持
8. 2022-2023:《面向开放复杂场景的XXXX机器人研究》,山东省科技中小企业创新能力提升,主持
9. 2024-2025:《动静态交通XXXX关键技术研究与应用》,青岛市科技计划关键技术攻关项目,主持
10. 2022-2026:山东大学青年学者未来计划项目,山东大学人才计划,主持
11. 2022-2024:交通数据分析与挖掘北京市重点实验室开放课题,主持
12. 2022-2025:国家重点研发计划课题,骨干
13. 2022-2024:山东省自然科学基金重大基础研究项目,骨干
14. 2023-2026:山东省重点研发计划 (重大科技创新工程),骨干
What's new:
01/2025: One paper is accepted to IEEE TKDE (CCF-A)
12/2024: Two papers are accepted to AAAI 2025 (CCF-A)
10/2024: One paper is accepted to Expert Systems with Applications (SCI-1)
07/2024: Two papers are accepted to CIKM 2024 (CCF-B)
05/2024: Two papers are accepted to KDD 2024 (CCF-A)
04/2024: Three papers are accepted to IJCAI 2024 (CCF-A)
03/2024: One paper is accepted to IEEE TMM (SCI-1)
03/2024: One paper is accepted to DASFAA 2024 (CCF-B)
02/2024: One paper is accepted to CVPR 2024 (CCF-A)
02/2024: One paper is accepted to IEEE TKDE (CCF-A)
02/2024: One paper is accepted to Knowledge Based Systems (SCI-1)
01/2024: One paper is accepted to FSE/ESEC 2024 (CCF-A)
01/2024: One paper is accepted to Artificial Intelligence (CCF-A,山东大学首篇,期刊每年仅发表百余篇论文)
12/2023: One paper is accepted to ICASSP 2024 (CCF-B)
12/2023: Two papers are accepted to AAAI 2024 (CCF-A)
10/2023: One paper is accepted to Knowledge Based Systems (SCI-1)
09/2023: One paper is accepted to ICDM 2023 (CCF-B)
08/2023: One paper is accepted to CIKM 2023 (CCF-B)
07/2023: One paper is accepted to ACM MM 2023 (CCF-A)
07/2023: One paper is accepted to Information Sciences (SCI-1)
06/2023: One paper is accepted to IEEE TMM (SCI-1)
03/2023: One paper is accepted to IEEE TPAMI (CCF-A)
03/2023: One paper is accepted to IEEE TSUSC (SCI-2)
01/2023: One paper is accepted to TOIS (CCF-A)
10/2022: One paper is accepted to IEEE TKDE (CCF-A)
08/2022: One paper is accepted to IEEE TKDE (CCF-A)
03/2022: Two papers are accepted to ICME 2022 (CCF-B)
03/2022: One paper is accepted to CVPR 2022 (CCF-A)
02/2022: I serve as the Technical Program Committee in the International Conference on Big Data and Artificial Intelligence (ICBDAI 2022), and welcome to submit papers.
01/2022: We held a Workshop about Spatio-temporal Data Mining in the International Conference on Machine Learning, Cloud Computing and Intelligent Mining, and welcome to submit papers.
11/2021: One paper is accepted to IEEE TMM (SCI-1)
08/2021: One paper is accepted to ACM-MM 2021 Industrial track (main Proceeding) (CCF-A)
08/2021: One paper is accepted to Briefings in Bioinformatics (SCI-1)
04/2021: One paper is accepted to IEEE TKDE (CCF-A)
03/2021: One paper is accepted to IEEE TMM (SCI-1)
02/2021: One Paper is accepted to IEEE TNNLS (SCI-1)
代表性论文:
*通讯作者;#共同一作
[1]. Yongshun Gong, Zhibin Li, Wei Liu, Xiankai Lu, Xinwang Liu, Ivor W. Tsang, Yilong Yin. Missingness-pattern-adaptive Learning with Incomplete Data. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023. (IF=24.31,中科院SCI-1区,CCF-A)
[2]. Xiaoyu Li, Yongshun Gong*, Wei Liu, Yilong Yin, Yu Zheng, Liqiang Nie. Dual-track Spatio-temporal Learning for Urban Flow Prediction with Adaptive Normalization. Artificial Intelligence (AIJ), 2024. (IF=14.4,CCF-A)
[3]. Yongshun Gong, Tiantian He, Meng Chen, Bin Wang, Liqiang Nie, Yilong Yin. Spatio-Temporal Enhanced Contrastive and Contextual Learning for Weather Forecasting. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2024. (IF=9.235,CCF-A)
[4]. An Yang, Zhibin Li, Xiaoyu Li, Wei Liu, Xinghao Yang, Haoliang Sun, Meng Chen, Yu Zheng, Yongshun Gong*. Spatio-Temporal Multivariate Probabilistic Modeling for Traffic Prediction. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2025. (IF=9.235,CCF-A)
[5]. Hao Qu, Yongshun Gong*, Meng Chen, Junbo Zhang, Yu Zheng, Yilong Yin. Forecasting Fine-grained Urban Flow via Spatio-temporal Contrastive Self-Supervision. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2022. (IF=9.235,CCF-A)
[6]. Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Yilong Yin, Yu Zheng. Missing Value Imputation for Multi-view Urban Statistical Data via Spatial Correlation Learning. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2021. (IF=9.235,CCF-A)
[7]. Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Yu Zheng. Online Spatiotemporal Crowd Flow Distribution Prediction for Complex Metro System. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2020. (IF=9.235,CCF-A)
[8]. Zheng, Xiao, Xiaoshui Huang, Guofeng Mei, Yuenan Hou, Zhaoyang Lyu, Bo Dai, Wanli Ouyang, and Yongshun Gong*. Point Cloud Pre-training with Diffusion Models. CVPR 2024. (CCF-A)
[9]. Jin Huang, Yongshun Gong*, Lu Zhang, Jian Zhang, Liqiang Nie, Yilong Yin. Modeling Multiple Aesthetic Views for Series Photo Selection. IEEE Transactions on Multimedia. 2023. (中科院SCI-1区,IF=8.18)
[10]. Yongshun Gong, Xue Dong, Jian Zhang, Meng Chen. Latent Evolution Model for Change Point Detection in Time-varying Networks. Information Sciences. 2023. (中科院SCI-1区,IF=8.1)
[11]. Yongshun Gong, Jinfeng Yi, Dong-dong Chen, Jian Zhang, Jiayu Zhou, Zhi-Hua Zhou. Inferring the Importance of Product Appearance with Semi-supervised Multi-modal Enhancement: A Step Towards the Screenless Retailing. ACM-MM-21. (CCF-A)
[12]. Dong, Xiangjun, Yongshun Gong*, and Longbing Cao. e-RNSP: An efficient method for mining repetition negative sequential patterns. IEEE Transactions on Cybernetics (TCYB), 2020, 50(5): 2084-2096. (中科院SCI-1区,IF=19.118,CCF-B)
[13]. Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Bei Chen, Xiangjun Dong. A Spatial Missing Value Imputation Method for Multi-view Urban Statistical Data. in Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI-20). 2020, 1310-1316. (CCF-A)
[14]. Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Jinfeng Yi. Potential Passenger Flow Prediction: A Novel Study for Urban Transportation Development. in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI-20). 2020, 4020-4027. (CCF-A)
[15]. Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Yu Zheng, Christina Kirsch. Network-wide Crowd Flow Prediction of Sydney Trains via customized Online Nonnegative Matrix Factorization. in Proceedings of the Conference on Information and Knowledge Management (CIKM-18), 2018, 1243-1252.(CCF-B)
[16]. Xinming Gao#, Yongshun Gong#, Tiantian Xu, Jinhu Lv, etc. Towards to a Better Structure and Looser Constraint to Mine Negative Sequential Patterns. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2020. (共同一作,中科院SCI-1区,IF=14.255,CCF-B)
[17]. Ping Qiu#, Yongshun Gong#, Yuanhai Zhao, Longbing Cao, Chengqi Zhang, Xiangjun Dong. An Efficient Method for Modeling Non-occurring Behaviors by Negative Sequential Patterns with Loose Constraints. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2021. (共同一作,中科院SCI-1区,IF=14.255,CCF-B)
[18]. Xu Zhang#, Yongshun Gong#, Chengqi Zhang, Xiaoming Wu, etc. Spatio-temporal fusion and contrastive learning for urban flow prediction. Knowledge-Based Systems. 2023. (共同一作,中科院SCI-1区, IF=8.8)
[19]. Xu Zhang#, Yongshun Gong#, Xinxin Zhang, etc. Mask-and Contrast-Enhanced Spatio-Temporal Learning for Urban Flow Prediction. in Proceedings of the Conference on Information and Knowledge Management (CIKM-23), 2023(CCF-B)
[20]. Zhibin Li, Jian Zhang, Yongshun Gong, Yazhou Yao, Qiang Wu. Field-wise Learning for Multi-field Categorical Data, NeurIPS-20, 2020, 1-10(CCF-A)